Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Wigner Functions of the Usual Even/Odd Coherent States
3. General Even/Odd Superpositions
4. Even/Odd “Barut–Girardello” Coherent States
5. Superpositions of Binomial States
6. Even/odd Coherent Phase States
7. Negative Binomial States
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wigner, E. On the quantum corrections for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Tatarskii, V.I. The Wigner representation of quantum mechanics. Sov. Phys. – Uspekhi 1983, 26, 311–327. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Schleich, W.P. Quantum Optics in Phase Space; Wiley: New York, USA, 2001. [Google Scholar]
- Vourdas, A. Analytic representations in quantum mechanics. J. Phys. A: Math. Gen. 2006, 39, R65–R141. [Google Scholar] [CrossRef]
- Takabayasi, T. The formulation of quantum mechanics in terms of ensemble in phase space. Prog. Theor. Phys. 1954, 11, 341–373. [Google Scholar] [CrossRef]
- Cahill, K.E.; Glauber, R.J. Density operators and quasiprobability distributions. Phys. Rev. 1969, 177, 1882–1902. [Google Scholar] [CrossRef]
- Royer, A. Wigner function as the expectation value of a parity operator. Phys. Rev. A 1977, 15, 449–450. [Google Scholar] [CrossRef]
- Dodonov, V.V. Wigner functions and statistical moments of quantum states with definite parity. Phys. Lett. A 2007, 364, 368–371. [Google Scholar] [CrossRef]
- Groenewold, H.J. On the principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Bartlett, M.S.; Moyal, J.E. The exact transition probabilities of quantum-mechanical oscillator calculated by the phase-space method. Proc. Cambr. Phil. Soc. 1949, 45, 545–553. [Google Scholar] [CrossRef]
- Cahill, K.E.; Glauber, R.J. Ordered expansions in boson amplitude operators. Phys. Rev. 1969, 177, 1857–1881. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Phase space eigenfunctions of multidimensional quadratic Hamiltonians. Physica A 1986, 137, 306–316. [Google Scholar] [CrossRef]
- Bateman Manuscript Project: Higher Transcendental Functions; Erdélyi, A., Ed.; McGraw-Hill: New York, NY, USA, 1953; vol. 2. [Google Scholar]
- Gradshtein, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th edition; Academic: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Klauder, J.R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. (NY) 1960, 11, 123–168. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man‘ko, V.I. Even and odd coherent states and excitations of a singular oscillator. Physica 1974, 72, 597–615. [Google Scholar] [CrossRef]
- Hillery, M. Amplitude-squared squeezing of the electromagnetic field. Phys. Rev. A 1987, 36, 3796–3802. [Google Scholar] [CrossRef]
- Bužek, V.; Vidiella-Barranco, A.; Knight, P.L. Superpositions of coherent states: Squeezing and dissipation. Phys. Rev. A 1992, 45, 6570–6585. [Google Scholar] [CrossRef] [PubMed]
- Gerry, C.C. Nonclassical properties of even and odd coherent states. J. Mod. Opt. 1993, 40, 1053–1071. [Google Scholar] [CrossRef]
- Ansari, N.A.; Di Fiore, L.; Manko, M.A.; Manko, V.I.; Solimeno, S.; Zaccaria, F. Quantum limits in interferometric gravitational-wave antennas in the presence of even and odd coherent states. Phys. Rev. A 1994, 49, 2151–2156. [Google Scholar] [CrossRef]
- Bužek, V.; Knight, P.L. Quantum interference, superposition states of light, and nonclassical effects. In Progress in Optics; Wolf, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1995; vol. XXXIV, pp. 1–158. [Google Scholar]
- de Matos Filho, R.L.; Vogel, W. Even and odd coherent states of the motion of a trapped ion. Phys. Rev. Lett. 1996, 76, 608–611. [Google Scholar] [CrossRef]
- Yurke, B.; Stoler, D. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 1986, 57, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Schleich, W.; Pernigo, M.; Kien, F.L. Nonclassical state from two pseudoclassical states. Phys. Rev. A 1991, 44, 2172–2187. [Google Scholar] [CrossRef] [PubMed]
- Brune, M.; Haroche, S.; Raimond, J.M.; Davidovich, L.; Zagury, N. Manipulation of photons in a cavity by dispersive atom-field coupling: quantum-nondemolition measurements and generation of “Schrödinger cat” states. Phys. Rev. A 1992, 45, 5193–5214. [Google Scholar] [CrossRef]
- Tara, K.; Agarwal, G.S.; Chaturvedi, S. Production of Schrödinger macroscopic quantum-superposition states in a Kerr medium. Phys. Rev. A 1993, 47, 5024–5029. [Google Scholar] [CrossRef] [PubMed]
- Janszky, J.; Domokos, P.; Adam, P. Coherent states on a circle and quantum interference. Phys. Rev. A 1993, 48, 2213–2219. [Google Scholar] [CrossRef]
- Janszky, J.; Vinogradov, A.V.; Kobayashi, T.; Kis, Z. Vibrational Schrödinger-cat states. Phys. Rev. A 1994, 50, 1777–1284. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Kalmykov, S.Y.; Man’ko, V.I. Statistical properties of Schrödinger real and imaginary cat states. Phys. Lett. A 1995, 199, 123–130. [Google Scholar] [CrossRef]
- Castaños, O.; López-Peña, R.; Man’ko, V.I. Crystallized Schrödinger cat states. J. Russ. Laser Res. 1995, 16, 477–525. [Google Scholar] [CrossRef]
- Monroe, C.; Meekhof, D.M.; King, B.E.; Wineland, D.J. A “Schrödinger cat” superposition state of an atom. Science 1996, 272, 1131–1136. [Google Scholar] [CrossRef]
- Delgado, A.; Klimov, A.B.; Retamal, J.C.; Saavedra, C. Macroscopic field superpositions from collective interactions. Phys. Rev. A 1998, 58, 655–662. [Google Scholar] [CrossRef]
- Malbouisson, J.M.C.; Baseia, B. Higher-generation Schrödinger cat states in cavity QED. J. Mod. Opt. 1999, 46, 2015–2041. [Google Scholar] [CrossRef]
- Dodonov, V.V. Nonclassical’ states in quantum optics: a `squeezed’ review of first 75 years. J. Opt. B: Quantum Semiclass. Opt. 2002, 4, R1–R33. [Google Scholar] [CrossRef]
- de Matos Filho, R.L.; Vogel, W. Nonlinear coherent states. Phys. Rev. A 1996, 54, 4560–4563. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Marmo, G.; Sudarshan, E.C.G.; Zaccaria, F. f-oscillators and nonlinear coherent states. Phys. Scripta 1997, 55, 528–541. [Google Scholar] [CrossRef]
- Sivakumar, S. Studies on nonlinear coherent states. J. Opt. B: Quantum Semiclass. Opt. 2000, 2, R61–R75. [Google Scholar] [CrossRef]
- Mancini, S. Even and odd nonlinear coherent states. Phys. Lett. A 1997, 233, 291–296. [Google Scholar] [CrossRef]
- Sivakumar, S. Even and odd nonlinear coherent states. Phys. Lett. A 1998, 250, 257–262. [Google Scholar] [CrossRef]
- Roy, B.; Roy, P. Time dependent nonclassical properties of even and odd nonlinear coherent states. Phys. Lett. A 1999, 263, 48–52. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, W.; Meng, S.-Y. Quantum properties of two-mode squeezed even and odd coherent states. Commun. Theor. Phys. 2007, 47, 317–324. [Google Scholar] [CrossRef]
- Darwish, M. Even and odd nonlinear negative binomial states. Int. J. Theor. Phys. 2008, 47, 3035–3056. [Google Scholar] [CrossRef]
- Mohammadbeigi, A.; Tavassoly, M.K. The decoherence of the quantum excitation of even/odd coherent states in a photon-loss channel. J. Phys. B: At. Mol. Opt. Phys. 2014, 47, 165502. [Google Scholar] [CrossRef]
- Ren, G.; Du, J.-m.; Zhang, W.-h.; Yu, H.-j. Nonclassicality generated by applying Hermite–polynomials photon-added operator on the even/odd coherent states. Int. J. Theor. Phys. 2017, 56, 1537–1549. [Google Scholar] [CrossRef]
- Weyl, H. Quantenmechanik und Gruppentheorie. Z. Phys. 1928, 46, 1–46. [Google Scholar] [CrossRef]
- Barut, A.O.; Girardello, L. New “coherent” states associated with non-compact groups. Commun. Math. Phys. 1971, 21, 41–55. [Google Scholar] [CrossRef]
- Stoler, D.; Saleh, B.E.A.; Teich, M.C. Binomial states of the quantized radiation field. Optica Acta 1985, 32, 345–355. [Google Scholar] [CrossRef]
- Fu, H.C.; Sasaki, R. Generalized binomial states: ladder operator approach. J. Math. Phys. 1996, 29, 5637–5644. [Google Scholar] [CrossRef]
- Vidiella Barranco, A. The binomial states of light. In Theory of Non-classical States of Light; Dodonov, V.V., Man’ko, V.I., Eds.; Taylor & Francis: London, England, 2003; pp. 241–276. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, vol. II; Gordon and Breach: London, England, 1986. [Google Scholar]
- Lerner, E.C.; Huang, H.W.; Walters, G.E. Some mathematical properties of oscillator phase operator. J. Math. Phys. 1970, 11, 1679–1684. [Google Scholar] [CrossRef]
- Aharonov, Y.; Lerner, E.C.; Huang, H.W.; Knight, J.M. Oscillator phase states, thermal equilibrium and group representations. J. Math. Phys. 1973, 14, 746–756. [Google Scholar] [CrossRef]
- Lévy-Leblond, J.-M. Who is afraid of nonhermitian operators? A quantum description of angle and phase. Ann. Phys. (NY) 1976, 101, 319–341. [Google Scholar] [CrossRef]
- Vourdas, A. SU(2) and SU(1;1) phase states. Phys. Rev. A 1990, 41, 1653–1661. [Google Scholar] [CrossRef]
- Shapiro, J.H.; Shepard, S.R. Quantum phase measurement: a system-theory perspective. Phys. Rev. A 1991, 43, 3795–3818. [Google Scholar] [CrossRef]
- Hall, M.J.W. Phase resolution and coherent phase states. J. Mod. Opt. 1993, 40, 809–824. [Google Scholar] [CrossRef]
- Vourdas, A.; Brif, C.; Mann, A. Factorization of analytic representations in the unit disc and number-phase statistics of a quantum harmonic oscillator. J. Phys. A: Math. Gen. 1996, 29, 5887–5898. [Google Scholar] [CrossRef]
- Wünsche, A. A class of phase-like states. J. Opt. B: Quantum Semiclass. Opt. 2001, 3, 206–218. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Mizrahi, S.S. Creating quanta with an `annihilation’ operator. J. Phys. A: Math. Gen. 2002, 35, 8847–8857. [Google Scholar] [CrossRef]
- Gazeau, J.-P.; Hussin, V.; Moran, J.; Zelaya, K. Generalized Susskind–Glogower coherent states. J. Math. Phys. 2021, 62, 072104. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Dodonov, V.V. Coherent phase states in the coordinate and Wigner representations. Quantum Rep. 2022, 4, 509–522. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Diagonal harmonious state representation. Int. J. Theor. Phys. 1993, 32, 1069–1076. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Mizrahi, S.S. Uniform nonlinear evolution equations for pure and mixed quantum states. Ann. Phys. (NY) 1995, 237, 226–268. [Google Scholar] [CrossRef]
- Fu, H.C.; Sasaki, R. Negative binomial states of quantized radiation fields. J. Phys. Soc. Jpn. 1997, 66, 1989–1994. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Darwish, M. Partial phase state as a nonlinear coherent state and some of its properties. J. Mod. Opt. 2004, 51, 209–222. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Dodonov, V.V. Statistical properties of superpositions of coherent phase states with opposite arguments. Entropy 2024, 26, 977. [Google Scholar] [CrossRef]
- Aharonov, Y.; Huang, H.W.; Knight, J.M.; Lerner, E.C. Generalized destruction operators and a new method in group theory. Lett. Nuovo Cim. 1971, 2, 1317–1320. [Google Scholar] [CrossRef]
- Onofri, E.; Pauri, M. Analyticity and quantization. Lett. Nuovo Cim. 1972, 3, 35–42. [Google Scholar] [CrossRef]
- Joshi, A.; Lawande, S.V. The effects of negative binomial field distribution on Rabi oscillations. Opt. Commun. 1989, 70, 21–24. [Google Scholar] [CrossRef]
- Matsuo, K. Glauber–Sudarshan P-representation of negative binomial states. Phys. Rev. A 1990, 41, 519–522. [Google Scholar] [CrossRef]
- Stephen, S.M. Negative binomial states of the quantized radiation field. J. Mod. Opt. 1998, 45, 2201–2205. [Google Scholar] [CrossRef]
- Joshi, A.; Obada, A.-S.F. Some statistical properties of the even and the odd negative binomial states. J. Phys. A: Math. Gen. 1997, 30, 81–97. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Mizrahi, S.S.; de Souza Silva, A.L. Decoherence and thermalization dynamics of a quantum oscillator. J. Opt. B: Quantum Semiclass. Opt. 2000, 2, 271–281. [Google Scholar] [CrossRef]
- Dodonov, V.V.; de Souza, L.A. Decoherence of superpositions of displaced number states. J. Opt. B: Quantum Semiclass. Opt. 2005, 7, S490–S499. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B. Classicalization times of parametrically amplified “Schrödinger cat” states coupled to phase-sensitive reservoirs. Phys. Lett. A 2011, 375, 3668–3676. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
