Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. The Nature of the Problem: ARBs Are Heterogeneous and Seem to Have Complex Links to Welfare
1.2. Five Tests for the Validity of ARBs as Welfare (Affect) Indicators
1.3. The Nature of Affect: Timescale as a Crucial Consideration
1.4. The Scope, Structure and Limitations of This Review
2. Are ARBs Valid Indicators of Poor Welfare?
2.1. Test 1: LINKS between ARBs and Negative Affect in Humans
2.1.1. Non-Clinical Human ARBs
Children Raised in Deprivation
Children with Adverse Autoimmune Responses to Infections
2.1.2. Human Clinical Populations’ ARBs
Humans with Clinical Conditions Characterised by ARBs
Other Neuroatypical Humans, if Institutionalized
2.1.3. Counter-Examples: When Human ARBs Seem to Fail Test 1
When Human ARBs Fail to Increase During Negative States/Experiences
When Levels of Human ARB Are Higher During Positive States/Experiences than Negative Situations
2.2. Test 2: Effects of Aversive Experiences on Animals’ ARBs
2.2.1. The Effects of Barren Housing
2.2.2. The Effects of Actual or Threatened Physical harm
2.2.3. The Effects of Food Restriction
2.2.4. Counter-Examples: When ARBs Seem to Fail Test 2
When ARBs Fail to Increase in Aversive Situations, or to Decrease in Preferred Ones
When Levels of ARB Are Higher in Preferred than Aversive Situations
2.3. Test 3: The Effects of Threats to Fitness on Animals’ ARBs
2.3.1. The Effects of Illness and Infection
2.3.2. The Effects of Early Parental Loss
2.3.3. The Effects of Social Isolation
2.3.4. Counter-Examples: When ARBs Seem to Fail Test 3
When ARBs Fail to Increase in Response to Threats to Fitness
2.3.5. When Levels of ARB Increase with Decreasing Threats to Fitness
2.4. Test 4: The Effects of Drugs That Reduce Negative Affect on Animal ARBs
2.4.1. Counter-Examples: When ARBs Seem to Fail Test 4
When ARBs Are Not Reduced (or Are Even Increased) by SSRIs or Benzodiazepines
When ARBs Are Increased by Drugs that Are Affect-Neutral or Even Promote Positive Affect
2.5. Test 5: ARBs and the Co-Occurrence of Other Validated Animal Welfare Indicators
2.5.1. When Treatments That Promote ARB Cause Other Signs of Negative Affect
2.5.2. When Populations with Elevated ARB Show Signs of More Negative Affect
2.5.3. When Individuals with Elevated ARB Show Signs of More Negative Affect
2.5.4. Counter-Examples: When ARBs Seem to Fail Test 5
When Treatments, Groups or Individuals Showing More ARB Do Not Display Other Signs of More Negative Affect
When High ARB Treatments, Groups or Individuals Show Signs of Less Negative Affect
3. Discussion
3.1. ARBs Reflect Prolonged Negative Affect (But Not Transient Negative Emotions)
3.2. ARBs Are Not Perfect Welfare Indicators, but Their Imperfections are Understandable
3.2.1. Evidence that ARBs Are Associated with Enhanced Coping, and Implications for Their Use in Welfare Assessment
3.2.2. Problems with Responsiveness: How and Why ARBs Can Fail to Track Long-Term Negative States, and the Implications for Their Use in Welfare Assessment
3.2.3. i) Neurological traits may not promote ARB
3.2.2. ii) Some Prolonged Negative States Promote Inactivity Instead of ARB
3.2.3. iii) The Influence of Prolonged Negative Affect on ARB Is Inhibited by Threshold/Priming Effects
3.2.4. iv) The Influence of Prolonged Negative Affect on ARB Is Masked by Ceiling Effects
3.2.5. v) Motivational Selectivity: Certain ARBs Reflect Specific Negative Experiences Only
3.2.6. vi) Understanding the Poor Responsiveness of ARBs: A Summary
3.2.7. Evidence That ARBs May Persist Even After Poor Conditions Are Improved, and Implications for Their Use in Welfare Assessment
3.2.8. Selectivity Problems: When ARBs Are Enhanced by Factors Other Than Prolonged Negative Affective States, and Implications for Their Use in Welfare Assessment
3.3. Using This Understanding to Refine the Use of ARBs in Welfare Assessment
3.3.1. i) Sub-Optimal Environments That Promote High ARB Phenotypes Induce Negative Moods, Mood Disorders and/or Cumulative Negative Affect (Rule of Thumb 1)
3.3.2. ii) Bouts of ARBs Do Not Validly Reflect Peaks of Negative Emotion (Rule of Thumb 2)
3.3.3. iii) ARBs May Be Associated with Modest Improvements in Coping, but They Do Not Fully Rectify Welfare (Rule of Thumb 3)
3.3.4. iv) As Indicators of Prolonged Negative Affect, ARBs Can Lack Responsiveness (So Risking ‘False Null’ Errors) (Rule of Thumb 4)
3.3.5. v) Animals’ Brains Can Predispose Subjects to ARB, or Protect Them from It, via Non-Affective Processes That Are Potential Confounds (Rule of Thumb 5)
3.3.6. vi) General Activity Can Be a Confound That Covaries with ARBs, Potentially Generating ‘False Nulls’ and ‘False Leads’ (Rule of Thumb 6)
3.4. Some Outstanding Questions
3.4.1. What New Insights Does This Review Yield About Potential Mechanisms?
- Early/prolonged/recurrent sub-optimal environments induce not only repeated behaviour, and potential neurological dysfunction (as in Figure 1), but also negative moods (including states caused by infection), or even mood disorders.
- Negative moods (including states caused by infection) potentially promote ARB emergence by increasing motivations to escape, perform displacement activities or self-soothe; while mood disorders promote repeated behaviours by increasing ‘agitation’ / ‘restlessness’.
- Negative moods (including states caused by infection)/mood disorders potentially promote ARB emergence by leading to state-dependent neurological changes (perhaps involving neuroinflammation) in brain regions involved in behavioural control, so increasing behavioural disinhibition and inflexibility (impulsive, compulsive or perseverant behavioural selection).
- ARB performance then potentially feeds back to further lower mood, by compromising adaptive behaviour (e.g., normal social interactions, etc.)
3.4.2. How Should ARBs Be Categorised/Classified?
References
- Adams, T.G.; Kelmendi, B.; Brake, C.A.; Gruner, P.; Badour, C.L.; Pittenger, C. The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder. Chronic Stress 2018, 2. [Google Scholar] [CrossRef] [PubMed]
- Ahola, L.; Mononen, J.; Mohaibes, M. Effects of access to extra cage constructions including a swimming opportunity on the development of stereotypic behaviour in singly housed juvenile farmed mink (Neovison vison). Appl. Anim. Behav. Sci. 2011, 134, 201–208. [Google Scholar] [CrossRef]
- Ahola, M.K.; Vapalahti, K.; Lohi, H. Early weaning increases aggression and stereotypic behaviour in cats. Sci. Rep. 2017, 1, 10412. [Google Scholar] [CrossRef] [PubMed]
- Akre, A.K.; Bakken, M.; Hovland, A.L.; Palme, R.; Mason, G.J. Clustered environmental enrichments induce more aggression and stereotypic behaviour than do dispersed enrichments in female mice. Appl. Anim. Behav. Sci. 2011, 131, 145–152. [Google Scholar] [CrossRef]
- Angevaare, M.J.; Prins, S.; van der Staay, F.J.; Nordquist, R.E. The effect of maternal care and infrared beak trimming on development, performance and behavior of Silver Nick hens. Appl. Anim. Behav. Sci. 2012, 140, 70–84. [Google Scholar] [CrossRef]
- Anonymous. OCD Inside [WWW Document]. Prison UK An Insid. View. 2014. Available online: https://prisonuk.blogspot.com/2014/07/ocd-inside.html.
- APA. Diagnostic and statistical manual of mental disorders: DSM-5-TR (5th edition, text revision.); American Psychiatric Association Publishing, 2022. [Google Scholar]
- Appleby, M.C.; Lawrence, A.B. Food restriction as a cause of steretypic behvaiour in tethered gilts. Am. J. Econ. Sociol. 1987, 45, 103–110. [Google Scholar] [CrossRef]
- Appleby, M.C.; Lawrence, A.B.; Illius, A.W. Influence of neighbours on stereotypic behaviour of tethered sows. Appl. Anim. Behav. Sci. 1989, 24, 137–146. [Google Scholar] [CrossRef]
- Arias-Esquivel, A.M.; Vasco, A.C.C. de M.; Lance, J.; Warren, L.K.; Rodriguez-Campos, L.A.; Lee, M.C.; Rodriguez, C.N.; Wickens, C.L. Investigating the gastrointestinal physiology of mature horses with and without a history of cribbing behavior in response to feeding a digestive support supplement. J. Equine Vet. Sci. 2024, 132, 104964. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Aydinonat, D.; Penn, D.J.; Smith, S.; Moodley, Y.; Hoelzl, F.; Knauer, F.; Schwarzenberger, F. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus). PLoS One 2014, 9, 2–6. [Google Scholar] [CrossRef]
- Bailoo, J.D.; Voelkl, B.; Varholick, J.; Novak, J.; Murphy, E.; Rosso, M.; Palme, R.; Würbel, H. Effects of weaning age and housing conditions on phenotypic differences in mice. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.G. Combination therapy for footpad lesions in a captive Bengal tiger (Panthera tigris tigris). J. Zoo Wildl. Med. 2002, 33, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.C.; Easley, S.P. An analysis of regurgitation and reingestion in captive chimpanzees. Appl. Anim. Behav. Sci. 1996, 49, 403–415. [Google Scholar] [CrossRef]
- Bandeli, M.; Mellor, E.L.; Kroshko, J.; Maherali, H.; Mason, G.J. The welfare problems of wide-ranging Carnivora reflect naturally itinerant lifestyles. R. Soc. Open Sci. 2023, 10. [Google Scholar] [CrossRef]
- Baribeau, D.A.; Vigod, S.; Pullenayegum, E.; Kerns, C.M.; Mirenda, P.; Smith, I.M.; Vaillancourt, T.; Volden, J.; Waddell, C.; Zwaigenbaum, L.; Bennett, T.; Duku, E.; Elsabbagh, M.; Georgiades, S.; Ungar, W.J.; Zaidman-Zait, A.; Szatmari, P. Repetitive behavior severity as an early indicator of risk for elevated anxiety symptoms in autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 890–899.e3. [Google Scholar] [CrossRef]
- Barnes, K. V.; Coughlin, F.R.; O’Leary, H.M.; Bruck, N.; Bazin, G.A.; Beinecke, E.B.; Walco, A.C.; Cantwell, N.G.; Kaufmann, W.E. Anxiety-like behavior in Rett syndrome: Characteristics and assessment by anxiety scales. J. Neurodev. Disord. 2015, 7, 1–14. [Google Scholar] [CrossRef]
- Bateson, M.; Poirier, C. Can biomarkers of biological age be used to assess cumulative lifetime experience? Anim. Welf. 2019, 28, 41–56. [Google Scholar] [CrossRef]
- Bateson, M.; Seeker, L.A. Telomere length Assessing Animal Welfare: A Guide to the Valid Use of Indicators of Affective States. In UFAW Animal Welfare Series; Mason, G.J., Nielsen, B.L., Mendl, M.T., Eds.; John Wiley & Sons Ltd.: Oxford, n.d. [Google Scholar]
- Bauer, E.; Babitz, M.; Boedeker, N.; Hellmuthh, H. Approaches to understanding and managing pacing in sloth bears in a zoological setting. Int. J. Comp. Psychol. 2013, 26. [Google Scholar] [CrossRef]
- Bechard, A.; Meagher, R.; Mason, G. Environmental enrichment reduces the likelihood of alopecia in adult C57BL/6J mice. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 171–174. [Google Scholar]
- Bechard, A.R.; Bliznyuk, N.; Lewis, M.H.; Bliznyuk, N.; Lewis, M.H. The development of repetitive motor behaviors in deer mice: Effects of environmental enrichment, repeated testing, and differential mediation by indirect basal ganglia pathway activation. Dev. Psychobiol. 2017, 59, 390–399. [Google Scholar] [CrossRef]
- Bechard, A.R.; Nicholson, A.; Mason, G.J. Litter size predicts adult stereotypic behavior in female laboratory mice. J. Am. Assoc. fr Lab. Anim. Sci. 2012, 51, 407–411. [Google Scholar]
- Beckett, C.; Bredenkamp, D.; Castle, J.; Groothues, C.; O’Connor, T.G.; Rutter, M. Behavior patterns associated with institutional deprivation: A study of children adopted from Romania. J. Dev. Behav. Pediatr. 2002, 23, 297–303. [Google Scholar] [CrossRef]
- Beckett, C.; Castle, J.; Groothues, C.; O’Connor, T.; Rutter, M. Health problems in children adopted from Romania: Association with duration of deprivation and behavioural problems. Adopt. Foster. 2003, 27, 19–29. [Google Scholar] [CrossRef]
- Bécuwe-Bonnet, V.; Bélanger, M.C.; Frank, D.; Parent, J.; Hélie, P. Gastrointestinal disorders in dogs with excessive licking of surfaces. J. Vet. Behav. Clin. Appl. Res. 2012, 7, 194–204. [Google Scholar] [CrossRef]
- Behen, M.E.; Muzik, O.; Saporta, A.S.D.; Wilson, B.J.; Pai, D.; Hua, J.; Chugani, H.T. Abnormal fronto-striatal connectivity in children with histories of early deprivation: A diffusion tensor imaging study. Brain Imaging Behav. 2009, 3, 292–297. [Google Scholar] [CrossRef]
- Bellanca, R.U.; Crockett, C.M. Factors predicting increased incidence of abnormal behavior in male pigtailed macaques. Am. J. Primatol. 2002, 58, 57–69. [Google Scholar] [CrossRef]
- Benhajali, H.; Ezzaouia, M.; Lunel, C.; Charfi, F.; Hausberger, M. Stereotypic behaviours and mating success in domestic mares. Appl. Anim. Behav. Sci. 2014, 153, 36–42. [Google Scholar] [CrossRef]
- Benjet, C.; Bromet, E.; Karam, E.G.; Kessler, R.C.; Mclaughlin, K.A.; Ruscio, A.M.; Shahly, V.; Stein, D.J.; Petukhova, M.; Hill, E.; Alonso, J.; Atwoli, L.; Bunting, B.; De Girolamo, G.; Florescu, S.; Gureje, O.; Lepine, J.P.; Kawakami, N.; Kovess-Masfety, V.; Piazza, M.; Scott, K.M.; Shalev, A.; Slade, T.; Torres, Y.; Viana, M.C.; Zarkov, Z.; Koenen, K.C. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. In Psychol. Med.; The, 2016; Volume 46, pp. 327–343. [Google Scholar] [CrossRef]
- Benoit, T.C.; Jocelyn, L.J.; Moddemann, D.M.; Embree, J.E. Romanian adoption: The Manitoba experience. Arch. Pediatr. Adolesc. Med. 1996, 150, 1278–1282. [Google Scholar] [CrossRef]
- Berg, K.L.; Shiu, C.S.; Acharya, K.; Stolbach, B.C.; Msall, M.E. Disparities in adversity among children with autism spectrum disorder: a population-based study. Dev. Med. Child Neurol. 2016, 58, 1124–1131. [Google Scholar] [CrossRef]
- Bergeron, R.; Badnell-Waters, A.J.; Lambton, S.; Mason, G. Stereotypic oral behvaiour in captive ungulates: Foraging, diet and gastrointestinal function. In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare. CABI; Mason, G., Rushen, J., Eds.; Wallingford, 2006; pp. 19–57. [Google Scholar]
- Berkson, G.; Mason, W.A. Stereotyped behaviors of chimpanzees: Relation to general arousal and alternative activities. Percept. Mot. Skills 1964, 19, 635–662. [Google Scholar] [CrossRef]
- Bhidayasiri, R.; Truong, D.D. Chorea and related disorders. Postgrad. Med. J. 2004, 80, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Bildsøe, M.; Heller, K.E.; Jeppesen, L.L. Effects of immobility stress and food restriction on stereotypies in low and high stereotyping female ranch mink. Behav. Processes 1991, 25, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, H.J.; Arkes, J.G. Some observations on the development of feather-pecking in poultry. Appl. Anim. Behav. Sci. 1984, 12, 145–157. [Google Scholar] [CrossRef]
- Boger, S.; Ehring, T.; Schwarzkopf, W.; Werner, G.G. Potential mediators of the association between childhood maltreatment and obsessive-compulsive disorder in adulthood. J. Obsessive. Compuls. Relat. Disord. 2020, 27, 100587. [Google Scholar] [CrossRef]
- Boinski, S.; Gross, T.S.; Davis, J.K. Terrestrial predator alarm vocalizations are a valid monitor of stress in captive brown capuchins (Cebus apella). Zoo Biol. 1999, 18, 295–312. [Google Scholar] [CrossRef]
- Bos, H.; Van Balen, F. Children of the new reproductive technologies: Social and genetic parenthood. Patient Educ. Couns. 2010, 81, 429–435. [Google Scholar] [CrossRef]
- Bos, K.; Zeanah, C.; Smyke, A.; Fox, N.; Nelson, C. Stereotypies in children with a history of early institutional care. Arch. Pediatr. Adolesc. Med. 2010, 164, 406–411. [Google Scholar] [CrossRef]
- Boyle, L.A.; Edwards, S.A.; Bolhuis, J.E.; Pol, F.; Šemrov, M.Z.; Schütze, S.; Nordgreen, J.; Bozakova, N.; Sossidou, E.N.; Valros, A. The evidence for a causal link between disease and damaging behavior in pigs. Front. Vet. Sci. 2022, 8. [Google Scholar] [CrossRef]
- Brent, L.; Lee, D.R.; Eichberg, J.W. The effects of single caging on chimpanzee behavior. Lab. Anim. Sci. 1989, 39, 345–346. [Google Scholar]
- Broom, D.; Mendl, M.; Zanella, A. A comparison of the welfare of sows in different housing conditions. Anim. Sci. 1995, 61, 369–385. [Google Scholar] [CrossRef]
- Broom, D.M.; Johnson, K.G. Stress and Animal Welfare; Chapman && Hall: London, 1993. [Google Scholar]
- Brummer, S.P.; Gese, E.M.; Shivik, J.A. The effect of enclosure type on the behavior and heart rate of captive coyotes. Appl. Anim. Behav. Sci. 2010, 125, 171–180. [Google Scholar] [CrossRef]
- Bucks, R.S.; Gidron, Y.; Harris, P.; Teeling, J.; Wesnes, K.A.; Perry, V.H. Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: A prospective study. Brain. Behav. Immun. 2008, 22, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Buisson, N.B.; Hully, M.; Celestin, E. Stereotypies and movement disorders in Rett syndrome [WWW Document]. www.rettsyndrome.eu. 2017. Available online: https://www.rettsyndrome.eu/wp-content/uploads/2018/05/Stereotypies.pdf.
- Burke, J.T.; Mograbi, D.C.; Wolmarans, D.W. Behavioral restriction, lorazepam, and escitalopram uniquely influence the expression of naturalistic stereotypy in deer mice: perspectives on anxiety- and compulsive-like behavior. Front. Behav. Neurosci. 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.G.; Saravanan, A.; Helen Rodd, F. Rearing environment affects the brain size of guppies: Lab-reared guppies have smaller brains than wild-caught guppies. Ethology 2009, 115, 122–133. [Google Scholar] [CrossRef]
- Buse, J.; Kirschbaum, C.; Leckman, J.F.; Münchau, A.; Roessner, V. The modulating role of stress in the onset and course of Tourette’s syndrome: A review. Behav. Modif. 2014, 38, 184–216. [Google Scholar] [CrossRef]
- Cabanac, M. Physiological role of pleasure. Science (80-. ) 1971, 173, 1103–1107. [Google Scholar] [CrossRef]
- Cabib, S. The neurobiology of stereotypy II: The role of stress. In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CABI: Wallingford, 2006; pp. 227–255. [Google Scholar]
- Cabib, S.; Bonaventura, N. Parallel strain-dependent susceptibility to environmentally-induced stereotypies and stress-induced behavioral sensitization in mice. Physiol. Behav. 1997, 61, 499–506. [Google Scholar] [CrossRef]
- Cabib, S.; Campus, P.; Conversi, D.; Orsini, C.; Puglisi-Allegra, S. Functional and dysfunctional neuroplasticity in learning to cope with stress. Brain Sci. 2020, 10. [Google Scholar] [CrossRef]
- Cabib, S.; Campus, P.; Latagliata, E.C.; Orsini, C.; Tarmati, V. Repetitive and inflexible active coping and addiction-like neuroplasticity in stressed mice of a helplessness – resistant inbred strain. Behav. Sci. (Basel) 2021, 11, 174. [Google Scholar] [CrossRef]
- Cabib, S.; Giardino, L.; Calza, L.; Zanni, M.; Mele, A.; Puglisi-Allegra, A. Stress promotes major changes in dopamine receptor densities within the mesoaccumbens and nigrostraital systems. Neuroscience 1998, 84, 193–200. [Google Scholar] [CrossRef]
- Cait, J.; Cait, A.; Scott, R.W.; Winder, C.B.; Mason, G.J. Conventional laboratory housing increases morbidity and mortality in research rodents: results of a meta-analysis. BMC Biol. 2022, 20, 1–22. [Google Scholar] [CrossRef]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016, 233, 1637–1650. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Jones, K.; Miller, E.; Ariza, J.; Noctor, S.; Van de Water, J.; Martínez-Cerdeño, V. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav. Brain Res. 2014, 266, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Câmara-Souza, M.B.; Carvalho, A.G.; Figueredo, O.M.C.; Bracci, A.; Manfredini, D.; Rodrigues Garcia, R.C.M. Awake bruxism frequency and psychosocial factors in college preparatory students. Cranio 2023, 41, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.L.M.; Dallaire, J.A.; Mason, G.J. Environmentally enriched rearing environments reduce repetitive perseveration in caged mink, but increase spontaneous alternation. Behav. Brain Res. 2013, 239, 177–187. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care CCAC guidelines: Animal welfare assessment. 2021.
- Capitanio, J.P.; Cacioppo, S.; Cole, S.W. Loneliness in monkeys: neuroimmune mechanisms. Curr. Opin. Behav. Sci. 2019, 28, 51–57. [Google Scholar] [CrossRef]
- Cappadocia, M.C.; Weiss, J.A.; Pepler, D. Bullying experiences among children and youth with autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 266–277. [Google Scholar] [CrossRef]
- Carlson, M.; Earls, F. Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Ann. N. Y. Acad. Sci. 1997, 807, 419–428. [Google Scholar] [CrossRef]
- Carlstead, K.; Brown, J.L. Relationships between patterns of fecal corticoid excretion and behavior, reproduction, and environmental factors in captive black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Zoo Biol. 2005, 24, 215–232. [Google Scholar] [CrossRef]
- Carroll, S.L.; Sykes, B.W.; Mills, P.C. Understanding and treating equine behavioural problems. Vet. J. 2023, 296–297, 105985. [Google Scholar] [CrossRef]
- Carroll, S.L.; Sykes, B.W.; Mills, P.C. An online survey investigating perceived prevalence and treatment options for stereotypic behaviours in horses and undesirable behaviours associated with handling and riding. Equine Vet. Educ. 2020, 32, 71–81. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Ritchie, G.F.; Marsh, W.L.; Rapoport, J.L. DSM-IV stereotypic movement disorder: Persistence of stereotypies of infancy in intellectually normal adolescents and adults. J. Clin. Psychiatry 1996, 57, 116–122. [Google Scholar] [PubMed]
- Cavic, E.; Valle, S.; Chamberlain, S.R.; Grant, J.E. Sleep quality and its clinical associations in trichotillomania and skin picking disorder. Compr. Psychiatry 2021, 105, 152221. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S. Lifting the veil on trichotillomania. Am. J. Psychiatry 2007, 164, 568. [Google Scholar] [CrossRef]
- Chen, E.; Pipolo, G.; Crailsheim, D.; Morimoto, J. The lasting impact of social isolation: behavioral insights from former pet and entertainer chimpanzees in a sanctuary in Spain. Am. J. Primatol. 2025, 87. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Ning, M.X.; Chen, D.K.; Ma, W.T. Interactions between the gut microbiota and the host innate immune response against pathogens. Front. Immunol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Chosy, J.; Wilson, M.; Santymire, R. Behavioral and physiological responses in felids to exhibit construction. Zoo Biol. 2014, 33, 267–274. [Google Scholar] [CrossRef]
- Chow, A.; Hogan, J.A. The development of feather pecking in Burmese red junglefowl: the influence of early experience with exploratory-rich environments. Appl. Anim. Behav. Sci. 2005, 93, 283–294. [Google Scholar] [CrossRef]
- Christensen, R.E.; Tan, I.; Jafferany, M. Recent advances in trichotillomania: A narrative review. Acta Dermatovenerologica Alpina, Pannonica Adriat. 2023, 32, 151–157. [Google Scholar] [CrossRef]
- Chugani, H.T.; Behen, M.E.; Muzik, O.; Juhá, C.; Nagy, F.; Chugani, D.C. Local brain functional activity following early deprivation: A study of postinstitutionalized romanian orphans. Neuroimage 2001, 14, 1290–1301. [Google Scholar] [CrossRef]
- Cianfaglione, R.; Clarke, A.; Kerr, M.; Hastings, R.P.; Oliver, C.; Moss, J.; Heald, M.; Felce, D. A national survey of Rett syndrome: Behavioural characteristics. J. Neurodev. Disord. 2015, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cianfaglione, R.; Meek, A.; Clarke, A.; Kerr, M.; Hastings, R.P.; Felce, D. Direct observation of the behaviour of females with Rett syndrome. J. Dev. Phys. Disabil. 2016, 28, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Cinini, S.M.; Barnabe, G.F.; Galvão-Coelho, N.; de Medeiros, M.A.; Perez-Mendes, P.; Sousa, M.B.C.; Covolan, L.; Mello, L.E. Social isolation disrupts hippocampal neurogenesis in young non-human primates. Front. Neurosci. 2014, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.S.; Lindburg, D.G. Behavioral contrasts between male cynomolgus and lion-tailed macaques. Am. J. Primatol. 1993, 29, 49–59. [Google Scholar] [CrossRef]
- Clay, A.W.; Bloomsmith, M.A.; Bard, K.A.; Maple, T.L.; Marr, M.J. Long-term effects of infant attachment organization on adult behavior and health in nursery-reared, captive chimpanzees (Pan troglodytes). J. Comp. Psychol. 2015, 129, 145–159. [Google Scholar] [CrossRef]
- Clipperton-Allen, A.E.; Ingrao, J.C.; Ruggiero, L.; Batista, L.; Ovari, J.; Hammermueller, J.; Armstrong, J.N.; Bienzle, D.; Choleris, E.; Turner, P. V. Long-term provision of environmental resources alters behavior but not physiology or neuroanatomy of male and female BALB/c and C57BL/6 Mice. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 718–30. [Google Scholar]
- Clubb, R.; Mason, G. Capitivity effects on wide-range carnivores. Nature 2003, 425, 473–474. [Google Scholar] [CrossRef]
- Clubb, R.; Rowcliffe, M.; Lee, P.; Mar, K.U.; Moss, C.; Mason, G.J. Compromised survivorship in zoo elephants. Science (80-. ) 2008, 322, 1649. [Google Scholar] [CrossRef]
- Clubb, R.; Vickery, S. Locomotory stereotypies in carnivores: Does pacing stem from hunting, ranging or frustrated escape? In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare; Mason, G., Rushen, J., Eds.; CABI: Wallingford, 2006; pp. 58–85. [Google Scholar]
- Cohen, S.; Murphy, M.L.M.; Prather, A.A. Ten surprising facts about stressful life events and disease risk. Annu. Rev. Psychol. 2019, 70, 577–597. [Google Scholar] [CrossRef]
- Conti, G.; Hansman, C.; Heckman, J.J.; Novak, M.F.X.; Ruggiero, A.; Suomi, S.J. Primate evidence on the late health effects of early-life adversity. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 8866–8871. [Google Scholar] [CrossRef]
- Cooper, J.J.; Appleby, M.C. Motivational aspects of individual variation in response to nestboxes by laying hens. Anim. Behav. 1997, 54, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.J.; Appleby, M.C. Nesting behaviour of hens: Effects of experience on motivation. Appl. Anim. Behav. Sci. 1995, 42, 283–295. [Google Scholar] [CrossRef]
- Cooper, J.J.; Mason, G.J. The use of operant technology to measure behavioral priorities in captive animals. Behav. Res. Methods, Instruments Comput. 2001, 33, 427–434. [Google Scholar]
- Cooper, J.J.; Mason, G.J. Increasing costs of access to resources cause re-scheduling of behaviour in American mink (Mustela vison): Implications for the assessment of behavioural priorities. Appl. Anim. Behav. Sci. 2000, 66, 135–151. [Google Scholar] [CrossRef]
- Cooper, J.J.; Nicol, C.J. Stereotypic behaviour in wild caught and laboratory bred bank voles. Anim. Welf. 1996, 5, 245–257. [Google Scholar] [CrossRef]
- Cooper, J.J.; Nicol, C.J. Stereotypic behaviour affects environmental preference in bank voles, Clethrionomys glareolus. Anim. Behav. 1991, 41, 971–977. [Google Scholar] [CrossRef]
- Cooper, J.J.; Ödberg, F.O.; Nicol, C.J. Limitations on the effectiveness of environmental improvement in reducing stereotypic behaviour in bank voles (Clethrionomys glareolus). Appl. Anim. Behav. Sci. 1996, 48, 237–248. [Google Scholar] [CrossRef]
- Corsetti, S.; Natoli, E.; Palme, R.; Viggiano, E. Intraspecific interactions decrease stress affecting welfare in shelter dogs: A comparison of four different housing conditions. Animals 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Costa, P.; Macchi, E.; Tomassone, L.; Ricceri, F.; Bollo, E.; Scaglione, F.E.; Tarantola, M.; De Marco, M.; Prola, L.; Bergero, D.; Schiavone, A. Feather picking in pet parrots: Sensitive species, risk factor and ethological evidence. Ital. J. Anim. Sci. 2016, 15, 473–480. [Google Scholar] [CrossRef]
- Cox, J.H.; Nahar, A.; Termine, C.; Agosti, M.; Balottin, U.; Seri, S.; Cavanna, A.E. Social stigma and self-perception in adolescents with tourette syndrome. Adolesc. Health. Med. Ther. 2019, 10, 75–81. [Google Scholar] [CrossRef]
- Craig, A.D. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003, 26, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Cromer, K.R.; Schmidt, N.B.; Murphy, D.L. An investigation of traumatic life events and obsessive-compulsive disorder. Behav. Res. Ther. 2007, 45, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Cronin, G.M.; Glatz, P.C. Causes of feather pecking and subsequent welfare issues for the laying hen: a review. Anim. Prod. Sci. 2021, 61, 990–1005. [Google Scholar] [CrossRef]
- Cronin, G.M.; Wiepkema, P.R. An analysis of stereotyped behaviour in tethered sows. Ann. Rech. Vétérinaires 1984, 15, 263–270. [Google Scholar]
- Cross, H.A.; Harlow, H.F. Prolonged and progressive effects of partial isolation on the behaviour of macaque monkeys. J. Exp. Res. Personal. 1965, 1, 39–49. [Google Scholar]
- Cussen, V.A.; Mench, J.A. The relationship between personality dimensions and resiliency to environmental stress in orange-winged amazon parrots (Amazona amazonica), as indicated by the development of abnormal behaviors. PLoS One 2015, 10, e0126170. [Google Scholar] [CrossRef]
- D’Angelo, L.-S.C.; Eagle, D.M.; Grant, J.E.; Fineberg, N.A.; Robbins, T.W.; Chamberlain, S.R. Animal models of obsessive-compulsive spectrum disorders. CNS Spectr. 2014, 19, 28–49. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Tolkamp, B.J.; Kyriazakis, I.; Lawrence, A.B. “Freedom from hunger” and preventing obesity: The animal welfare implications of reducing food quantity or quality. Anim. Behav. 2009, 77, 275–288. [Google Scholar] [CrossRef]
- Dale, M.; van Duijn, E. Anxiety in Huntington’s disease. J. Neuropsychiatry Clin. Neurosci. 2015, 27, 262–271. [Google Scholar] [CrossRef]
- Dallaire, J.A.; Meagher, R.K.; Díez-León, M.; Garner, J.P.; Mason, G.J. Recurrent perseveration correlates with abnormal repetitive locomotion in adult mink but is not reduced by environmental enrichment. Behav. Brain Res. 2011, 224, 213–222. [Google Scholar] [CrossRef]
- Dallaire, J.A.; Meagher, R.K.; Mason, G.J. Individual differences in stereotypic behaviour predict individual differences in the nature and degree of enrichment use in caged American mink. Appl. Anim. Behav. Sci. 2012, 142, 98–108. [Google Scholar] [CrossRef]
- Dantzer, R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 2009, 29, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.D.; Lutz, C.K.; Tiefenbacher, S.; Novak, M.A.; Meyer, J.S. A rhesus monkey model of self-injury: Effects of relocation stress on behavior and neuroendocrine function. Biol. Psychiatry 2008, 63, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S. Farm animal welfare: Beyond “natural” behavior. Science (80-. ) 2023, 379, 326–328. [Google Scholar] [CrossRef]
- Dawkins, M.S. The Science of Animal Welfare: Understanding what Animals Want; Oxford University Press, 2021. [Google Scholar]
- Dawkins, M.S. Behavioural deprivation: A central problem in animal welfare. Appl. Anim. Behav. Sci. 1988, 20, 209–225. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Beardsley, T. Reinforcing properties of access to litter in hens. Appl. Anim. Behav. Sci. 1986, 15, 351–364. [Google Scholar] [CrossRef]
- De Haas, E.N.; Bolhuis, J.E.; De Jong, I.C.; Kemp, B.; Janczak, A.M.; Rodenburg, T.B. Predicting feather damage in laying hens during the laying period. Is it the past or is it the present? Appl. Anim. Behav. Sci. 2014, 160, 75–85. [Google Scholar] [CrossRef]
- de Haas, E.N.; van der Eijk, J.A.J. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens. Neurosci. Biobehav. Rev. 2018, 95, 170–188. [Google Scholar] [CrossRef]
- de Passillé, A.M.; Christopherson, R.; Rushen, J. Non-nutritive sucking by the calf and postprandial secretion of insulin, CCK and gastrin. Physiol. Behav. 1993, 54, 1069–1073. [Google Scholar] [CrossRef]
- de Passillé, A.M.; Metz, J.H.M.; Mekking, P.; Wiepkema, P.R. Does drinking milk stimulate sucking in young calves? Appl. Anim. Behav. Sci. 1992, 34, 23–36. [Google Scholar] [CrossRef]
- de Passillé, A.M.; Rushen, J. Motivational and physiological analysis of the causes and consequences of non-nutritive sucking by calves. Appl. Anim. Behav. Sci. 1997, 53, 15–31. [Google Scholar] [CrossRef]
- De Paula Vieira, A.; Guesdon, V.; de Passillé, A.M.; von Keyserlingk, M.A.G.; Weary, D.M. Behavioural indicators of hunger in dairy calves. Appl. Anim. Behav. Sci. 2008, 109, 180–189. [Google Scholar] [CrossRef]
- Deaton, J.E.; Berg, S.W.; Richlin, M.; Litrownik, A.J. Coping activities in solitary confinement of U.S. Navy POWs in Vietnam. J. Appl. Soc. Psychol. 1977, 7, 239–257. [Google Scholar] [CrossRef]
- Delgado, M.M.; Walcher, I.; Buffington, C.A.T. A survey-based assessment of risk factors for cross-sucking behaviors in neonatal kittens, Felis catus. Appl. Anim. Behav. Sci. 2020, 230, 105069. [Google Scholar] [CrossRef]
- Dellapiazza, F.; Michelon, C.; Picot, M.C.; Baghdadli, A. Early risk factors for anxiety disorders in children with autism spectrum disorders: results from the ELENA Cohort. Sci. Rep. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Desmarchelier, M.; Ferrell, S.T.; Frank, D. A systematic approach to behavior cases: The key to the right diagnosis - clinical cases. In Proceedings of the American Association of Zoo Veterinarians Annual Conference, 2016. [Google Scholar]
- Desmarchelier, M.R. A systematic approach in diagnosing behavior problems. In Fowler’s Zoo and Wild Animal Medicine Current Therapy; Miller, R.E., Calle, P.P., Lamberski, N., Eds.; Elsevier Inc., 2019; Volume 9, pp. 76–82. [Google Scholar] [CrossRef]
- Devanarayana, N.M.; Rajindrajith, S. Aerophagia among Sri Lankan schoolchildren: Epidemiological patterns and symptom characteristics. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 516–520. [Google Scholar] [CrossRef]
- Díez-León, M.; Bowman, J.; Bursian, S.; Filion, H.; Galicia, D.; Kanefsky, J.; Napolitano, A.; Palme, R.; Schulte-Hostedde, A.; Scribner, K.; Mason, G.J. Environmentally enriched male mink gain more copulations than stereotypic, barren-reared competitors. PLoS One 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Díez-León, M.; Bursian, S.; Galicia, D.; Napolitano, A.; Palme, R.; Mason, G. Environmentally enriching American mink (Neovison vison) increases lymphoid organ weight and skeletal symmetry, and reveals differences between two sub-types of stereotypic behaviour. Appl. Anim. Behav. Sci. 2016, 177, 59–69. [Google Scholar] [CrossRef]
- Díez-León, M.; Kitchenham, L.; Duprey, R.; Bailey, C.D.C.; Choleris, E.; Lewis, M.H.; Mason, G.J. Neurophysiological correlates of stereotypic behaviour in a model carnivore species. Behav. Brain Res. 2019, 373, 112056. [Google Scholar] [CrossRef]
- Díez-León, M.; Mason, G. Effects of environmental enrichment and stereotypic behavior on maternal behavior and infant viability in a model carnivore, the American mink (Neovison vison). Zoo Biol. 2016, 35, 19–28. [Google Scholar] [CrossRef]
- Dixon, L.M.; Duncan, I.J.H. Changes in substrate access did not affect early feather-pecking behavior in two strains of laying hen chicks. J. Appl. Anim. Welf. Sci. 2010, 13, 1–14. [Google Scholar] [CrossRef]
- Dixon, L.M.; Duncan, I.J.H.; Mason, G. What’s in a peck? Using fixed action pattern morphology to identify the motivational basis of abnormal feather-pecking behaviour. Anim. Behav. 2008, 76, 1035–1042. [Google Scholar] [CrossRef]
- Dixon, L.M.; Dunn, I.C.; Brocklehurst, S.; Baker, L.; Boswell, T.; Caughey, S.D.; Reid, A.; Sandilands, V.; Wilson, P.W.; D’Eath, R.B. The effects of feed restriction, time of day, and time since feeding on behavioral and physiological indicators of hunger in broiler breeder hens. Poult. Sci. 2022, 101, 101838. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.L. An exploratory review of the associations between adverse experiences and autism. J. Aggress. Maltreatment Trauma 2021, 30, 1093–1112. [Google Scholar] [CrossRef]
- Doneley, R.J.T. Bacterial and parasitic diseases of parrots. Vet. Clin. NA Exot. Pet 2009, 12, 417–432. [Google Scholar] [CrossRef]
- Drury, S.S.; Theall, K.; Gleason, M.M.; Smyke, A.T.; De Vivo, I.; Wong, J.Y.Y.; Fox, N.A.; Zeanah, C.H.; Nelson, C.A. Telomere length and early severe social deprivation: Linking early adversity and cellular aging. Mol. Psychiatry 2012, 17, 719–727. [Google Scholar] [CrossRef]
- Duncan, I.J.H.; Rushen, J.; Lawrence, A.B. Conclusions and implications for animal welfare. In Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare; Lawrence, A.B., Rushen, J., Eds.; CAB International: Wallinford, 1993; pp. 193–206. [Google Scholar]
- Duncan, I.J.H.; Wood-Gush, D.G.M. The effect of a rauwolfia tranquilizer on stereotyped movements in frustrated domestic fowl. Appl. Anim. Ethol. 1974, 1, 67–76. [Google Scholar] [CrossRef]
- Duncan, I.J.H.; Wood-Gush, D.G.M. Thwarting of feeding behaviour in the domestic fowl. Anim. Behav. 1972, 20, 444–451. [Google Scholar] [CrossRef]
- Ebisawa, K.; Nakayama, S.; Pai, C.; Kinoshita, R.; Koie, H. Prevalence and risk factors for feather-damaging behavior in psittacine birds: Analysis of a Japanese nationwide survey. PLoS One 2021, 16, 1–15. [Google Scholar] [CrossRef]
- Egeland, B.; Sroufe, L.A.; Erickson, M. The developmental consequence of different patterns of maltreatment. Child Abus. Negl. 1983, 7, 459–469. [Google Scholar] [CrossRef]
- Ellis, H.H.; Fisher, P.A.; Zaharie, S. Predictors of disruptive behavior, developmental delays, anxiety, and affective symptomatology among institutionally reared Romanian children. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.K.J.; Gross, A.N.; Richter, S.H.; Rommen, J.; Touma, C.; Würbel, H. Variation in stress reactivity affects cage-induced stereotypies in female CD-1 (ICR) mice. Appl. Anim. Behav. Sci. 2011, 133, 101–108. [Google Scholar] [CrossRef]
- Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 2005, 8, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Faccin, J.E.G.; Laskoski, F.; Hernig, L.F.; Kummer, R.; Lima, G.F.R.; Orlando, U.A.D.; Goncalves, M.A.D.; Mellagi, A.P.G.; Ulguim, R.R.; Bortolozzo, F.P. Impact of increasing weaning age on pig performance and belly nosing prevalence in a commercial multisite production system. J. Anim. Sci. 2020, 98, 1–8. [Google Scholar] [CrossRef]
- Fasano, A.; Petrovic, I. Insights into pathophysiology of punding reveal possible treatment strategies. Mol. Psychiatry 2010, 15, 560–573. [Google Scholar] [CrossRef]
- Fazio, J.M.; Barthel, T.; Freeman, E.W.; Garlick-Ott, K.; Scholle, A.; Brown, J.L. Utilizing camera traps, closed circuit cameras and behavior observation software to monitor activity budgets, habitat use, and social interactions of zoo-housed asian elephants (Elephus maximus). Animals 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Ferretti, C.J.; Taylor, B.P.; Shinall, J.; Hollander, E. Psychiatric assessment and pharmacological treatment. In Autism Spectrum Disorders; Hollander, E., Hagerman, R.J., Fein, D., Eds.; American Psychiatric Publishing, 2018; pp. 111–141. [Google Scholar]
- Fineberg, N.A.; Chamberlain, S.R.; Goudriaan, A.E.; Stein, D.J.; Vanderschuren, L.J.M.J.; Gillan, C.M.; Shekar, S.; Gorwood, P.A.P.M.; Voon, V.; Morein-Zamir, S.; Denys, D.; Sahakian, B.J.; Moeller, F.G.; Robbins, T.W.; Potenza, M.N. New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 2014, 19, 69–89. [Google Scholar] [CrossRef]
- Fisher, L.; Ackland, T.; Carter, M.; Ellwood, A.-L.; Gilman, L.; Mainemer, H.; Morison, S.; Thompson, S.; Aitken, H.; Blamey, J.; Boecker, C.; Brown, K.; Carley, S.; Drew, R.; Dykman, L.; Krygsveld, S.; Lawes, P.; Mann, S.; Morum, B.; Mulloy, R.; Ogmundson, A.; Olsen, T.; Plante, K.; Rodrigues, L.; Rutherford, R.; Sayani, S.; Vigue, T.; Wang, C.; Wiebe, V.; Wong, S.; Ames, E.W.; Chisholm, K.; Savoie, L. Problems reported by parents of romanian orphans adopted to British Columbia. Int. J. Behav. Dev. 1997, 20, 67–82. [Google Scholar] [CrossRef]
- Flamand, A.; Robinet, L.; Raskin, A.; Braconnier, M.; Bouhamidi, A.; Derolez, G.; Lochin, C.; Helleu, C.; Petit, O. The social dimension of equine welfare: social contact positively affects the emotional state of stalled horses. Anim. Behav. 2025, 221, 123055. [Google Scholar] [CrossRef]
- Foley, J.P. First year development of a rhesus monkey (Macaca mulatta) reared in isolation. Pedagog. Semin. J. Genet. Psychol. 1934, 45, 39–105. [Google Scholar] [CrossRef]
- Fontenot, M.B.; Padgett, E.E.; Dupuy, A.M.; Lynch, C.R.; De Petrillo, P.B.; Higley, J.D. The effects of flouxetine and buspirone on self-injurious and stereotypic behavior in adult male rhesus macaques. Comp. Med. 2005, 55, 67–74. [Google Scholar]
- Forget, S. Treatment-resistant stereotypic behaviours in laboratory mice (Mus musculus): Investigating causes and behavioural correlates. In The University of Guelph; 2025. [Google Scholar]
- Fowler, S.C.; Covington, H.E.; Miczek, K.A. Stereotyped and complex motor routines expressed during cocaine self-administration: Results from a 24-h binge of unlimited cocaine access in rats. Psychopharmacology (Berl) 2007, 192, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.H. The effects of own-home and institution-rearing on the behavioural development of normal and mongol children. J. Child Psychol. Psychiatry. 1971, 12, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Frank, D. Repetitive behaviors in cats and dogs: Are they really a sign of obsessive-compulsive disorders (OCD)? Can. Vet. J. 2013, 54, 129. [Google Scholar] [PubMed]
- Frank, D.; Bélanger, M.C.; Bécuwe-Bonnet, V.; Parent, J. Prospective medical evaluation of 7 dogs presented with fly biting. Can. Vet. J. 2012, 53, 1279–1284. [Google Scholar]
- Franklin, A.R.; Mathersul, D.C.; Raine, A.; Ruscio, A.M. Restlessness in generalized anxiety disorder: using actigraphy to measure physiological reactions to threat. Behav. Ther. 2021, 52, 734–744. [Google Scholar] [CrossRef]
- Friend, T.H. Behavior of picketed circus elephants. Appl. Anim. Behav. Sci. 1999, 62, 73–88. [Google Scholar] [CrossRef]
- Fritz, J.; Nash, L.T.; Alford, P.L.; Bowen, J.A. Abnormal behaviors, with a special focus on rocking, and reproductive competence in a large sample of captive chimpanzees (Pan troglodytes). Am. J. Primatol. 1992, 27, 161–176. [Google Scholar] [CrossRef]
- Fuld, S. Autism spectrum disorder: The impact of stressful and traumatic life events and implications for clinical practice. Clin. Soc. Work J. 2018, 46, 210–219. [Google Scholar] [CrossRef]
- Fureix, C.; Walker, M.; Harper, L.; Reynolds, K.; Saldivia-Woo, A.; Mason, G.J. Stereotypic behaviour in standard non-enriched cages is an alternative to depression-like responses in C57BL/6 mice. Behav. Brain Res. 2016, 305, 186–190. [Google Scholar] [CrossRef]
- Gage, L.J. Use of buspirone and enrichment to manage aberrant behavior in an American badger (Taxidea taxus). J. Zoo Wildl. Med. 2005, 36, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, A.; Cucinotta, F.; Giunta, I.; Di Modica, I.; De Domenico, C.; Costanza, C.; Germanò, E.; Frankovich, J. Immune/inflammatory underpinnings of neurodevelopmental disorders and Pediatric Acute-Onset Neuropsychiatric Syndrome: A scoping review. Int. J. Mol. Sci. 2025, 26, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Galeano, M.G.; Cantarelli, V.I.; Ruiz, R.D.; Fiol de Cuneo, M.; Ponzio, M.F. Reproductive performance and weaning success in fur-chewing chinchillas (Chinchilla lanigera). Reprod. Biol. 2014, 14, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Galeano, M.G.; Ruiz, R.D.; de Cuneo, M.F.; Ponzio, M.F. Effectiveness of fluoxetine to control fur-chewing behaviour in the chinchilla (Chinchilla lanigera). Appl. Anim. Behav. Sci. 2013, 146, 112–117. [Google Scholar] [CrossRef]
- García-Villamisar, D.; Rojahn, J. Comorbid psychopathology and stress mediate the relationship between autistic traits and repetitive behaviours in adults with autism. J. Intellect. Disabil. Res. 2015, 59, 116–124. [Google Scholar] [CrossRef]
- Garner, J.P. Perseveration and stereotypy – Systems-level insights from clinical psychology. In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CAB International: Oxford, 2006; pp. 121–152. [Google Scholar]
- Gershuny, B.S.; Keuthen, N.J.; Gentes, E.L.; Russo, A.R.; Emmott, E.C.; Jameson, M.; Dougherty, D.D.; Loh, R.; Jenike, M.A. Current posttraumatic stress disorder and history of trauma in trichotillomania. J. Clin. Psychol. 2006, 62, 1521–1529. [Google Scholar] [CrossRef]
- Girotti, M.; Carreno, F.R.; Morilak, D.A. Role of orbitofrontal cortex and differential effects of acute and chronic stress on motor impulsivity measured with 1-choice serial reaction time test in male rats. Int. J. Neuropsychopharmacol. 2022, 25, 1026–1036. [Google Scholar] [CrossRef]
- Goeller, H.B.; Downey, B.C.; Tucker, C.B. Limit feeding total mixed rations exacerbates intersucking in year-old dairy heifers. J. Dairy Sci. 2023, 106, 9494–9506. [Google Scholar] [CrossRef]
- Goldberg, X.; Soriano-Mas, C.; Alonso, P.; Segalàs, C.; Real, E.; López-Solà, C.; Subirà, M.; Via, E.; Jiménez-Murcia, S.; Menchón, J.M.; Cardoner, N. Predictive value of familiality, stressful life events and gender on the course of obsessive-compulsive disorder. J. Affect. Disord. 2015, 185, 129–134. [Google Scholar] [CrossRef]
- Gonyou, H.W.; Develliers, N.; Faucitano, L.; Friendship, R.; Pasma, T.; Widowski, T.M.; Ringgenberg, N.; Possberg, Fl. Code of practice for the care & handling of pigs: review of scientific research on priority issues. NFACC Pig Code Pract. Sci. Comm. 2012. [Google Scholar]
- Gottlieb, D.H.; Capitanio, J.P.; Mccowan, B. Risk factors for stereotypic behavior and self-biting in rhesus macaques (Macaca mulatta): Animal’s history, current environment, and personality. Am. J. Primatol. 2013, 75, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Grados, M.; Prazak, M.; Saif, A.; Halls, A. A review of animal models of obsessive-compulsive disorder: A focus on developmental, immune, endocrine and behavioral models. Expert Opin. Drug Discov. 2016, 11, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Grams, V.; Bögelein, S.; Grashorn, M.A.; Bessei, W.; Bennewitz, J. Quantitative genetic analysis of traits related to fear and feather pecking in laying hens. Behav. Genet. 2014, 45, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E. Trichotillomania (hair pulling disorder). Indian J. Psychiatry 2019, 61, S136–S139. [Google Scholar] [CrossRef]
- Grant, J.E.; Chamberlain, S.R. Prevalence of skin picking (excoriation) disorder. J. Psychiatr. Res. 2020, 130, 57–60. [Google Scholar] [CrossRef]
- Grant, J.E.; Leppink, E.; Chamberlain, S. Body focused repetitive behavior disorders and perceived stress: Clinical and cognitive associations. J. Obsessive. Compuls. Relat. Disord. 2015, 5, 82–86. [Google Scholar] [CrossRef]
- Grant, J.E.; Redden, S.A.; Leppink, E.W.; Chamberlain, S.R. Trichotillomania and co-occurring anxiety. Compr. Psychiatry 2017a, 72, 1–5. [Google Scholar] [CrossRef]
- Grant, J.E.; Redden, S.A.; Medeiros, G.C.; Odlaug, B.L.; Curley, E.E.; Tavares, H.; Keuthen, N.J. Trichotillomania and its clinical relationship to depression and anxiety. Int. J. Psychiatry Clin. Pract. 2017b, 21, 302–306. [Google Scholar] [CrossRef]
- Greco, B.J.; Meehan, C.L.; Hogan, J.N.; Leighty, K.A.; Mellen, J.; Mason, G.J.; Mench, J.A. The days and nights of zoo elephants: Using epidemiology to better understand stereotypic behavior of African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) in North American zoos. PLoS One 2016, 11, e0144276. [Google Scholar] [CrossRef]
- Green, L.E.; Lewis, K.; Kimpton, A.; Nicol, C.J.; House, L. Cross-sectional study of the prevalence of feather pecking in laying hens in alternative systems and its associations with management and disease. Vet. Rec. 2000, 147, 233–238. [Google Scholar] [CrossRef]
- Gross, A.N.M.; Engel, A.K.J.; Würbel, H. Simply a nest? Effects of different enrichments on stereotypic and anxiety-related behaviour in mice. Appl. Anim. Behav. Sci. 2011, 134, 239–245. [Google Scholar] [CrossRef]
- Guay, P.J.; Iwaniuk, A.N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 2008, 110, 276–284. [Google Scholar] [CrossRef]
- Guido, C.A.; Loffredo, L.; Zicari, A.M.; Pavone, P.; Savasta, S.; Gagliano, A.; Brindisi, G.; Galardini, G.; Bertolini, A.; Spalice, A. The impact of the COVID-19 epidemic during the lockdown on children with the pediatric acute-onset neuropsychiatric syndrome (PANDAS/PANS): The importance of environmental factors on clinical conditions. Front. Neurol. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.; Jakubovski, E.; Fremer, C.; Dietrich, A.; Hoekstra, P.J.; Jäger, B.; Müller-Vahl, K.R. Yale Global Tic Severity Scale (YGTSS): Psychometric quality of the gold standard for tic assessment based on the large-scale EMTICS study. Front. Psychiatry 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Hadley, C.; Hadley, B.; Ephraim, S.; Yang, M.; Lewis, M.H. Spontaneous stereotypy and environmental enrichment in deer mice (Peromyscus maniculatus): Reversibility of experience. Appl. Anim. Behav. Sci. 2006, 97, 312–322. [Google Scholar] [CrossRef]
- Haines, J.; Williams, C.L.; Brain, K.L. The psychopathology of incarcerated self-mutilators. Can. J. Psychiatry 1995, 40, 514–522. [Google Scholar] [CrossRef]
- Hall, S.; Thorns, T.; Oliver, C. Structural and environmental characteristics of stereotyped behaviors. Am. J. Ment. Retard. 2003, 108, 391–402. [Google Scholar] [CrossRef]
- Haney, C. Mental health issues in long-term solitary and “supermax” confinement. Crime Delinq 2003, 49, 124–156. [Google Scholar] [CrossRef]
- Hansen, C.P.B.; Jeppesen, L.L. Short term behavioural consequences of denied access to environmental facilities in mink. Agric. Food Sci. Finl 2000, 9, 149–155. [Google Scholar] [CrossRef]
- Hansen, S.W.; Jensen, M.B. Quantitative evaluation of the motivation to access a running wheel or a water bath in farm mink. Appl. Anim. Behav. Sci. 2006, 98, 127–144. [Google Scholar] [CrossRef]
- Hansen, S.W.; Jeppesen, L.L. Temperament, stereotypies and anticipatory behaviour as measures of welfare in mink. Appl. Anim. Behav. Sci. 2005, 99, 172–182. [Google Scholar] [CrossRef]
- Hansen, S.W.; Malmkvist, J.; Palme, R.; Damgaard, B.M. Do double cages and access to occupational materials improve the welfare of farmed mink? Anim. Welf. 2007, 16, 63–76. [Google Scholar] [CrossRef]
- Happaney, K.; Zelazo, P.D. Resistance to extinction: A measure of orbitofrontal function suitable for children? Brain Cogn. 2004, 55, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Harding, E.J.; Paul, E.S.; Mendl, M. Cognitive bias and affective state. J. R. Soc. Med. 2004, 427, 312–312. [Google Scholar] [CrossRef]
- Harlow, H.F.; Harlow, M.K. Social deprivation in monkeys. Sci. Am. 1962, 207, 136–150. [Google Scholar] [CrossRef]
- Harper, L.; Choleris, E.; Ervin, K.; Fureix, C.; Reynolds, K.; Walker, M.; Mason, G.J. Stereotypic mice are aggressed by their cage-mates, and tend to be poor demonstrators in social learning tasks. Anim. Welf. 2015, 24, 463–473. [Google Scholar] [CrossRef]
- Harris, K.M.; Mark Mahone, E.; Singer, H.S. Nonautistic motor stereotypies: Clinical Features and longitudinal follow-up. Pediatr. Neurol. 2008, 38, 26–272. [Google Scholar] [CrossRef]
- Harvey, N.C.; Farabaugh, S.M.; Druker, B.B. Effects of early rearing experience on adult behavior and nesting in captive Hawaiian crows (Corvus hawaiiensis). Zoo Biol. 2002, 21, 59–75. [Google Scholar] [CrossRef]
- Hausberger, M.; Gautier, E.; Müller, C.; Jego, P. Lower learning abilities in stereotypic horses. Appl. Anim. Behav. Sci. 2007, 107, 299–306. [Google Scholar] [CrossRef]
- Hauzenberger, A.R.; Gebhardt-Henrich, S.G.; Steiger, A. The influence of bedding depth on behaviour in golden hamsters (Mesocricetus auratus). Appl. Anim. Behav. Sci. 2006, 100, 280–294. [Google Scholar] [CrossRef]
- Heathers, J.A.J.; Gilchrist, K.H.; Hegarty-Craver, M.; Grego, S.; Goodwin, M.S. An analysis of stereotypical motor movements and cardiovascular coupling in individuals on the autism spectrum. Biol. Psychol. 2019, 142, 90–99. [Google Scholar] [CrossRef]
- Hediger, H. Wild Animals in Captivity; Butterworth Scientific Publications: London, 1950. [Google Scholar]
- Hemmings, A.; McBride, S.D.; Hale, C.E. Perseverative responding and the aetiology of equine oral stereotypy. Appl. Anim. Behav. Sci. 2007, 104, 143–150. [Google Scholar] [CrossRef]
- Hemmings, A.J.; Parker, M.O.; Hale, C.; McBride, S.D. Causal and functional interpretation of mu-and delta-opioid receptor profiles in mesoaccumbens and nigrostriatal pathways of an oral stereotypy phenotype. Behav. Brain Res. 2018, 353, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Hoksbergen, R.; Ter Laak, J.; Rijk, K.; Van Dijkum, C.; Stoutjesdijk, F. Post-institutional autistic syndrome in Romanian adoptees. J. Autism Dev. Disord. 2005, 35, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Homer, B.; Judd, J.; Mohammadi Dehcheshmeh, M.; Ebrahimie, E.; Trott, D.J. Gut microbiota and behavioural issues in production, performance, and companion animals: A systematic review. Animals 2023, 13, 1–20. [Google Scholar] [CrossRef]
- Hoorweg, F.A.; Vermeer, H.M.; Pedersen, L.J.; Spoolder, H.A. Review on hunger induced behaviours: Aggression and stereotypies. Regul. 625 2017. [Google Scholar]
- Hopper, L.M.; Freeman, H.D.; Ross, S.R. Reconsidering coprophagy as an indicator of negative welfare for captive chimpanzees. Appl. Anim. Behav. Sci. 2016, 176, 112–119. [Google Scholar] [CrossRef]
- Horesh, N.; Shmuel-Baruch, S.; Farbstein, D.; Ruhrman, D.; Milshtein, N.B.A.; Fennig, S.; Apter, A.; Steinberg, T. Major and minor life events, personality and psychopathology in children with tourette syndrome. Psychiatry Res. 2018, 260, 1–9. [Google Scholar] [CrossRef]
- Houghton, D.C.; Mathew, A.S.; Twohig, M.P.; Saunders, S.M.; Franklin, M.E.; Compton, S.N.; Neal-Barnett, A.M.; Woods, D.W. Trauma and trichotillomania: A tenuous relationship. J. Obsessive. Compuls. Relat. Disord. 2016, 11, 91–95. [Google Scholar] [CrossRef]
- Houpt, K.A. Motivation for cribbing by horses. Anim. Welf. 2012, 21, 1–7. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Wang, X.; Ji, Y.; Li, C.; Qiu, B. Transcriptomic profiles link corticostriatal microarchitecture to genetics of neurodevelopment and neuropsychiatric risks. Transl. Psychiatry 2025, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Huber-Eicher, B.; Audige, L.; Audigé, L. Analysis of risk factors for the occurrence of feather pecking in laying hen growers. Br. J. Pharmacol. 1999, 40, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Huber-Eicher, B.; Sebo, F. Reducing feather pecking when raising laying hen chicks in aviary systems. Appl. Anim. Behav. Sci. 2001, 73, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Huber-Eicher, B.; Wechsler, B. Feather pecking in domestic chicks: its relation to dustbathing and foraging. Anim. Behav. 1997, 54, 757–768. [Google Scholar] [CrossRef]
- Hubrecht, R.C.; Serpell, J.A.; Poole, T.B. Correlates of pen size and housing conditions on the behaviour of kennelled dogs. Appl. Anim. Behav. Sci. 1992, 34, 365–383. [Google Scholar] [CrossRef]
- Hugo, C.; Seier, J.; Mdhluli, C.; Daniels, W.; Harvey, B.H.; Toit, D.; Wolfe-Coote, S.; Nel, D.; Stein, D.J. Fluoxetine decreases stereotypic behavior in primates. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 639–643. [Google Scholar] [CrossRef]
- Humphreys, K.L.; Gleason, M.M.; Drury, S.S.; Miron, D.; Nelson, C.A.; Fox, N.A.; Zeanah, C.H. Effects of institutional rearing and foster care on psychopathology at age 12 years in Romania: Follow-up of an open, randomised controlled trial. Lancet Psychiatry 2015. [Google Scholar] [CrossRef]
- Hurst, J.L.; Barnard, C.J.; Nevison, C.M.; West, C.D. Housing and welfare in laboratory rats: The welfare implications of social isolation and social contact among females. Anim. Welf. 1998, 7, 121–136. [Google Scholar] [CrossRef]
- Hurst, J.L.; Barnard, C.J.; Nevison, C.M.; West, C.D. Housing and welfare in laboratory rats: welfare implications of isolation and social contact among caged males. Anim. Welf. 1997, 6, 329–347. [Google Scholar] [CrossRef]
- Hurtubise, J.L.; Howland, J.G. Effects of stress on behavioral flexibility in rodents. Neuroscience 2017, 345, 176–192. [Google Scholar] [CrossRef]
- Hwang, J.B.; Kim, J.S.; Ahn, B.H.; Jung, C.H.; Lee, Y.H.; Kam, S. Clonazepam treatment of pathologic childhood aerophagia with psychological stresses. J. Korean Med. Sci. 2007, 22, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Iffland, H.; Wellmann, R.; Bennewitz, J.; Preuß, S.; Tetens, J.; Bessei, W.; Piepho, H.-P. A novel model to explain extreme feather pecking behavior in laying hens. Behav. Genet. 2020, 50, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Ijichi, C.L.; Collins, L.M.; Elwood, R.W. Evidence for the role of personality in stereotypy predisposition. Anim. Behav. 2013, 85, 1145–1151. [Google Scholar] [CrossRef]
- Imthon, A.K.; Caldart, C.A.; Do Rosário, M.C.; Fontenelle, L.F.; Miguel, E.C.; Ferrão, Y.A. Stressful life events and the clinical expression of obsessive–compulsive disorder (Ocd): An exploratory study. J. Clin. Med. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Jacobson, S.L.; Ross, S.R.; Bloomsmith, M.A. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: Prevalence and potential influencing factors. PeerJ 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Jensen, P.; Keeling, L.; Schütz, K.; Andersson, L.; Mormède E, P.; Brändström, H.; Forkman, B.; Kerje, S.; Fredriksson, R.; Ohlsson, C.; Larsson, S.; Mallmin, H.; Kindmark, A. Feather pecking in chickens is genetically related to behavioural and developmental traits. Physiol. Behav. 2005, 86, 52–60. [Google Scholar] [CrossRef]
- Jeong, D.H.; Yang, J.J.; Yeon, S.C. Fluoxetine therapy to decrease stereotypic behavior in the asiatic black bear (ursus thibetanus). J. Zoo Wildl. Med. 2019, 50, 718–722. [Google Scholar] [CrossRef]
- Jeppesen, L.L.; Falkenberg, H. Effects of play balls on pelt-biting, behaviour, and level of stress in ranch mink. Scientifur 1990, 14, 179–186. [Google Scholar]
- Jeppesen, L.L.; Heller, K.E.; Bildsøe, M. Stereotypies in female farm mink (Mustela vison) may be genetically transmitted and associated with higher fertility due to effects on body weight. Appl. Anim. Behav. Sci. 2004, 86, 137–143. [Google Scholar] [CrossRef]
- Jeppesen, L.L.; Heller, K.E.; Dalsgaard, T. Effects of early weaning and housing conditions on the development of stereotypies in farmed mink. Appl. Anim. Behav. Sci. 2000, 68, 85–92. [Google Scholar] [CrossRef]
- Jiao, X.; Pang, K.C.H.; Beck, K.D.; Minor, T.R.; Servatius, R.J. Avoidance perseveration during extinction training in Wistar-Kyoto rats: An interaction of innate vulnerability and stressor intensity. Behav. Brain Res. 2011, 221, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Johansson, V.; Sandin, S. Repetitive behaviors and life-quality in adults with autism spectrum disorder. Eur. Psychiatry 2023, 66, S471–S472. [Google Scholar]
- Jones, M.A.; Mason, G.; Pillay, N. Early environmental enrichment protects captive-born striped mice against the later development of stereotypic behaviour. Appl. Anim. Behav. Sci. 2011a, 135, 138–145. [Google Scholar] [CrossRef]
- Jones, M.A.; Mason, G.; Pillay, N. Early social experience influences the development of stereotypic behaviour in captive-born striped mice Rhabdomys. Appl. Anim. Behav. Sci. 2010a, 123, 70–75. [Google Scholar] [CrossRef]
- Jones, M.A.; Mason, G.J.; Pillay, N. Correlates of birth origin effects on the development of stereotypic behaviour in striped mice. Rhabdomys. Anim. Behav. 2011b, 82, 149–159. [Google Scholar] [CrossRef]
- Jones, M.A.; Van Lierop, M.; Mason, G.J.; Pillay, N. Increased reproductive output in stereotypic captive Rhabdomys females: Potential implications for captive breeding. Appl. Anim. Behav. Sci. 2010b, 123, 63–69. [Google Scholar] [CrossRef]
- Joshi, S.; Pillay, N. Association between personality and stereotypic behaviours in the African striped mouse Rhabdomys dilectus. Appl. Anim. Behav. Sci. 2016, 174, 154–161. [Google Scholar] [CrossRef]
- Karlen, G.A.M.; Hemsworth, P.H.; Gonyou, H.W.; Fabrega, E.; David Strom, A.; Smits, R.J. The welfare of gestating sows in conventional stalls and large groups on deep litter. Appl. Anim. Behav. Sci. 2007, 105, 87–101. [Google Scholar] [CrossRef]
- Kaufman, M.E.; Levitt, H. Some determinants of stereotyped behaviours in institutionalized mental defectives. J. Intellect. Disabil. Res. 1965, 9, 201–209. [Google Scholar] [CrossRef]
- Keating, J.; Van Goozen, S.; Uljarevic, M.; Hay, D.; Leekam, S.R. Restricted and repetitive behaviors and their developmental and demographic correlates in 4–8-year-old children: A transdiagnostic approach. Front. Behav. Neurosci. 2023, 17, 1–15. [Google Scholar] [CrossRef]
- Keiper, R.R. Studies of stereotypy in the canary (Serinus canarius). Anim. Behav. 1970, 18, 353–357. [Google Scholar] [CrossRef]
- Keiper, Ronald R. Causal factors of stereotypies in caged birds. Anim. Behav 1969, 17, 1–4. [Google Scholar] [CrossRef]
- Keiper, Ronald R. Drug effects on canary stereotypies. Psychopharmacologia 1969, 16, 16–24. [Google Scholar] [CrossRef] [PubMed]
- King, R.A.; Scahill, L.; Vitulano, L.A.; Schwab-Stone, M.; Tercyak, K.P.; Riddle, M.A. Childhood trichotillomania: Clinical phenomenology, comorbidity, and family genetics. J. Am. Acad. Child Adolesc. Psychiatry 1995, 34, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Kitchenham, L.; Mason, G.J. The neurobiology of environmentally induced stereotypic behaviours in captive animals: Assessing the basal ganglia pathways and cortico-striatal-thalamo-cortical circuitry hypotheses. Behaviour 2021, 158, 1251–1302. [Google Scholar] [CrossRef]
- Kjaer, J.B.; Guémené, D. Adrenal reactivity in lines of domestic fowl selected on feather pecking behavior. Physiol. Behav. 2008, 96, 370–373. [Google Scholar] [CrossRef]
- Kjaer, J.B.; Jørgensen, H. Heart rate variability in domestic chicken lines genetically selected on feather pecking behavior. Genes, Brain Behav. 2011, 10, 747–755. [Google Scholar] [CrossRef]
- Kłosowska, J.; Antosz-Rekucka, R.; Kałużna-Wielobób, A.; Prochwicz, K. Dissociative experiences mediate the relationship between traumatic life events and types of skin picking. Findings from non-clinical sample. Front. Psychiatry 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Ko, C.H.; Lu, Y.C.; Lee, C.H.; Liao, Y.C. The influence of adverse childhood experiences and depression on addiction severity among methamphetamine users: exploring the role of perseveration. Front. Psychiatry 2024, 15, 1–12. [Google Scholar] [CrossRef]
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; De Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B.E.; Piazza, M.; Sampson, N.; Ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 2017, 47, 2260–2274. [Google Scholar] [CrossRef]
- Koistinen, T.; Ahola, L.; Mononen, J. Blue foxes’ (Alopex lagopus) preferences between earth floor and wire mesh floor. Appl. Anim. Behav. Sci. 2008, 111, 38–53. [Google Scholar] [CrossRef]
- Koistinen, T.; Ahola, L.; Mononen, J. Blue foxes’ motivation for access to an earth floor measured by operant conditioning. Appl. Anim. Behav. Sci. 2007, 107, 328–341. [Google Scholar] [CrossRef]
- Koistinen, T.; Korhonen, H.T.; Hämäläinen, E.; Mononen, J. Blue foxes’ (Vulpes lagopus) motivation to gain access and interact with various resources. Appl. Anim. Behav. Sci. 2016, 176, 105–111. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Korff, S.; Stein, D.J.; Harvey, B.H. Cortico-striatal cyclic AMP-phosphodiesterase-4 signalling and stereotypy in the deer mouse: Attenuation after chronic fluoxetine treatment. Pharmacol. Biochem. Behav. 2009, 92, 514–520. [Google Scholar] [CrossRef]
- Korff, S.; Stein, D.J.; Harvey, B.H. Stereotypic behaviour in the deer mouse: Pharmacological validation and relevance for obsessive-compulsive disorder. Prog. Neuro-Psychopharmacoloy 2008, 32, 348–355. [Google Scholar] [CrossRef]
- Korte, S.M.; Beuving, G.; Ruesink, W.; Blokhuis, H.J. Plasma catecholamine and corticosterone levels during manual restraint in chicks from a high and low feather pecking line of laying hens. Physiol. Behav. 1997, 62, 437–441. [Google Scholar] [CrossRef]
- Kostal, L.; Savory, C.J.; Hughes, B.O. Diurnal and individual variation in behaviour of restricted-fed broiler breeders. Appl. Anim. Behav. Sci. 1992, 32, 361–374. [Google Scholar] [CrossRef]
- Kostal, L.; Savory, G.J. Behavioral responses of restricted-fed fowls to pharmacological manipulation of 5-HT and GABA receptor subtypes. Pharmacol. Biochem. Behav. 1996, 53, 995–1004. [Google Scholar] [CrossRef]
- Kronenberg, S.; Shouldice, M.; Bitnun, A.; Gill, P.; Levy, D.M.; Logan, W.; Pringsheim, T.; Sandor, P.; Yeh, E.A.; Wilbur, C. Frequency and impact of PANDAS/PANS diagnosis. Can. Pediatr. Surveill. Progr 2023. [Google Scholar]
- Kryukova, N. V.; Manukhova, D.A.; Slavina, M.D. Deviations in the development of captivity walrus (Odobenus rosmarus) skull. Biol. Bull. 2024, 51, 358–370. [Google Scholar] [CrossRef]
- La Bella, S.; Scorrano, G.; Rinaldi, M.; Di Ludovico, A.; Mainieri, F.; Attanasi, M.; Spalice, A.; Chiarelli, F.; Breda, L. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS): Myth or reality? The state of the art on a controversial disease. Microorganisms 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Lacy, R.C.; Alaks, G.; Walsh, A.; Kozak, C.A. Evolution of Peromyscus leucopus mice in response to a captive environment. PLoS One 2013, 8, e72452. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.S.L.; Aman, M.G. The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2007, 37, 855–866. [Google Scholar] [CrossRef]
- Lamoureux, L.; Beverley, J.A.; Marinelli, M.; Steiner, H. Fluoxetine potentiates methylphenidate-induced behavioral responses: Enhanced locomotion or stereotypies and facilitated acquisition of cocaine self-administration. Addict. Neurosci. 2023, 9, 100131. [Google Scholar] [CrossRef]
- Landau, D.; Iervolino, A.C.; Pertusa, A.; Santo, S.; Singh, S.; Mataix-Cols, D. Stressful life events and material deprivation in hoarding disorder. J. Anxiety Disord. 2011, 25, 192–202. [Google Scholar] [CrossRef]
- Langen, M.; Durston, S.; Kas, M.J.H.; van Engeland, H.; Staal, W.G. The neurobiology of repetitive behavior:...and men. Neurosci. Biobehav. Rev. 2011, 35, 356–365. [Google Scholar] [CrossRef]
- Lanzarini, E.; Pruccoli, J.; Grimandi, I.; Spadoni, C.; Angotti, M.; Pignataro, V.; Sacrato, L.; Franzoni, E.; Parmeggiani, A. Phonic and motor stereotypies in autism spectrum disorder: Video analysis and neurological characterization. Brain Sci. 2021, 11. [Google Scholar] [CrossRef]
- Latham, N.; Mason, G.J. Frustration and perseveration in stereotypic captive animals: Is a taste of enrichment worse than none at all? Behav. Brain Res. 2010, 211, 96–104. [Google Scholar] [CrossRef]
- Latham, N.; Mason, G.J. Maternal deprivation and the development of stereotypic behaviour. Appl. Anim. Behav. Sci. 2007, 110, 84–108. [Google Scholar] [CrossRef]
- Laurence, A.; Lumineau, S.; Calandreau, L.; Arnould, C.; Leterrier, C.; Boissy, A.; Houdelier, C. Short- and long-term effects of unpredictable repeated negative stimuli on Japanese quail’s fear of humans. PLoS One 2014, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.B.; Brown, S.M.; Bradford, B.M.; Mabbott, N.A.; Bombail, V.; Rutherford, K.M.D. Non-neuronal brain biology and its relevance to animal welfare. Neurosci. Biobehav. Rev. 2025, 173, 106136. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.B.; Illius, A.W. Methodology for measuring hunger and food needs using operant conditioning in the pig. Appl. Anim. Behav. Sci. 1989, 24, 273–285. [Google Scholar] [CrossRef]
- Lebelt, D.; Zanella, A.J.; Unshelmt, J. Physiological correlates associated with cribbing behaviour in horses: changes in thermal threshold, heart rate, plasma P-endorphin and serotonin. Equine Clin. Behavoiur 1998, 27, 21–27. [Google Scholar] [CrossRef]
- Leonardi, L.; Perna, C.; Bernabei, I.; Fiore, M.; Ma, M.; Frankovich, J.; Tarani, L.; Spalice, A. Pediatric Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS): Immunological features underpinning controversial entities. Children 2024, 11. [Google Scholar] [CrossRef]
- Leruste, H.; Brscic, M.; Cozzi, G.; Kemp, B.; Wolthuis-Fillerup, M.; Lensink, B.J.; Bokkers, E.A.M.; van Reenen, C.G. Prevalence and potential influencing factors of non-nutritive oral behaviors of veal calves on commercial farms. J. Dairy Sci. 2014, 97, 7021–7030. [Google Scholar] [CrossRef]
- Lewis, M.H. Stereotyped movement disorder. In Encycl. autism Spectr. Disord.; 2013. [Google Scholar]
- Lewis, M.H.; Gluck, J.P.; Petitto, J.M.; Hensley, L.L.; Ozer, H. Early social deprivation in nonhuman primates: Long-term effects on survival and cell-mediated immunity. Biol. Psychiatry 2000, 47, 119–126. [Google Scholar] [CrossRef]
- Lewis, M.H.; Lindenmaier, Z.; Boswell, K.; Edington, G.; King, M.A.; Muehlmann, A.M. Subthalamic nucleus pathology contributes to repetitive behavior expression and is reversed by environmental enrichment: Genes. Brain Behav. 2018, 17, e12468. [Google Scholar] [CrossRef]
- Lewis, M.H.; Presti, M.F.; Lewis, J.B.; Turner, C.A. The neurobiology of stereotypy I: Environmental Complexity. In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CAB International: Oxford, 2006; pp. 190–226. [Google Scholar]
- Lewis, R.; Hurst, J. The assessment of bar chewing as an escape behaviour in laboratory mice. Anim. Welf. 2004, 13, 19–25. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Xie, L.; Ji, Y.; Cheng, K.; Zhou, Q.; Wang, T.; Shively, C.; Wu, Q.; Gong, W.; Fang, L.; Zhan, Q.; Melgiri, N.D.; Xie, P. Depression-like behavioral phenotypes by social and social plus visual isolation in the adult female Macaca fascicularis. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Lin, H.; Katsovich, L.; Ghebremichael, M.; Findley, D.B.; Grantz, H.; Lombroso, P.J.; King, R.A.; Zhang, H.; Leckman, J.F. Psychosocial stress predicts future symptom severities in children and adolescents with Tourette syndrome and/or obsessive-compulsive disorder. J. Child Psychol. Psychiatry Allied Discip. 2007, 48, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Williams, K.A.; Katsovich, L.; Findley, D.B.; Grantz, H.; Lombroso, P.J.; King, R.A.; Bessen, D.E.; Johnson, D.; Kaplan, E.L.; Landeros-Weisenberger, A.; Zhang, H.; Leckman, J.F. Streptococcal upper respiratory tract infections and psychosocial stress predict future tic and obsessive-compulsive symptom severity in children and adolescents with Tourette syndrome and obsessive-compulsive disorder. Biol. Psychiatry 2010, 67, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, J.P. The pathophysiology of agitation. J. Clin. Psychiatry 2000, 61, 5–10. [Google Scholar] [PubMed]
- Litz, B.T.; Keane, T.M.; Fisher, L.; Marx, B.; Monaco, V. Physical health complaints in combat-related post-traumatic stress disorder: A preliminary report. J. Trauma. Stress 1992, 5, 131–141. [Google Scholar] [CrossRef]
- Lochner, C.; Du Toit, P.L.; Zungu-Dirwayi, N.; Marais, A.; Van Kradenburg, J.; Seedat, S.; Niehaus, D.J.H.; Stein, D.J. Childhood trauma in obsessive-compulsive disorder, trichotillomania, and controls. Depress. Anxiety 2002, 15, 66–68. [Google Scholar] [CrossRef]
- Luchins, D.J.; Goldman, M.B.; Lieb, M.; Hanrahan, P. Repetitive behaviors in chronically institutionalized schizophrenic patients. Schizophr. Res. 1992, 8, 119–123. [Google Scholar] [CrossRef]
- Luescher, A.U. Diagnosis and management of compulsive disorders in dogs and cats. Clin. Tech. Small Anim. Pract. 2004, 19, 233–239. [Google Scholar] [CrossRef]
- Lumeij, J.T.; Hommers, C.J. Foraging “enrichment” as treatment for pterotillomania. Appl. Anim. Behav. Sci. 2008, 111, 85–94. [Google Scholar] [CrossRef]
- Lutz, C.; Marinus, L.; Chase, W.; Meyer, J.; Novak, M. Self-injurious behavior in male rhesus macaques does not reflect externally directed aggression. Physiol. Behav. 2003a, 78, 33–39. [Google Scholar] [CrossRef]
- Lutz, C.; Well, A.; Novak, M. Stereotypic and self-injurious behavior in rhesus macaques: A survey and retrospective analysis of environment and early experience. Am. J. Primatol. 2003b, 60, 1–15. [Google Scholar] [CrossRef]
- Lutz, C.K. Stereotypic behavior in nonhuman primates as a model for the human condition. ILAR J. 2014, 55, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C.K.; Davis, E.B.; Ruggiero, A.M.; Suomi, S.J. Early predictors of self-biting in socially-housed rhesus macaques (Macaca mulatta). Am. J. Primatol. 2007, 69, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Maclean, K. The impact of institutionalization on child development. Dev. Psychopathol. 2003, 15, 853–884. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.F.; Seligman, M.E. Learned helplessness: Theory and evidence. J. Exp. Psychol. Gen. 1976, 105, 3–46. [Google Scholar] [CrossRef]
- Maisch, H.; Vellinga, N.R.; Boersma, H. Best Practice Guideline Dhole (C. alpinus) (1. Edition). In EAZA Best Practice Guidelines; 2017. [Google Scholar]
- Malmkvist, J.; Brix, B.; Henningsen, K.; Wiborg, O. Hippocampal neurogenesis increase with stereotypic behavior in mink (Neovison vison). Behav. Brain Res. 2012, 229, 359–364. [Google Scholar] [CrossRef]
- Malmkvist, J.; Díez-León, M.; Christensen, J.W. Animals with various forms of abnormal behaviour differ in learning performance and use of enrichment: Evidence from farm mink. Appl. Anim. Behav. Sci. 2024, 271, 106167. [Google Scholar] [CrossRef]
- Maneeton, P.; Maneeton, B.; Kienngam, N.; Maneeton, N.; Winichaikul, Y.; Kawilapat, S. Updated systematic review and meta-analysis of randomized controlled trials: Antidepressants for restricted and repetitive behaviors in autism spectrum disorder. Neuropsychiatr. Dis. Treat. 2024, 20, 1711–1723. [Google Scholar] [CrossRef]
- Maraz, A.; Hende, B.; Bert Urban, R.; Demetrovics, Z. Pathological grooming: Evidence for a single factor behind trichotillomania, skin picking and nail biting. PLoS One 2017, 12, 1–13. [Google Scholar] [CrossRef]
- Martin, J. The Carrier State of Streptococcus pyogenes. In Basic Biology to Clinical Manifestations; Ferretti, J., Stevens, D., Fischetti, V., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, 2022; pp. 1–12. [Google Scholar]
- Martin, L.A.; Ashwood, P.; Braunschweig, D.; Cabanlit, M.; Van de Water, J.; Amaral, D.G. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain. Behav. Immun. 2008, 22, 806–816. [Google Scholar] [CrossRef]
- Martin, L.J.; Spicer, D.M.; Lewis, M.H.; Gluck, J.P.; Cork, L.C. Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain: I. Subcortical regions. J. Neurosci. 1991, 11, 3344–3358. [Google Scholar] [CrossRef]
- Maslak, R.; Sergiel, A.; Hill, S.P. Some aspects of locomotory stereotypies in spectacled bears (Tremarctos ornatus) and changes in behavior after relocation and dental treatment. J. Vet. Behav. 2013, 8, 335–341. [Google Scholar] [CrossRef]
- Mason, G.; Mendl, M. Do the stereotypies of pigs, chickens and mink reflect adaptive species differences in the control of foraging? Appl. Anim. Behav. Sci. 1997, 53, 45–58. [Google Scholar] [CrossRef]
- Mason, G.J. Stereotypic behaviour in captive animals: Fundamentals and implications for welfare and beyond. In Stereotypic Animal Behaviour Fundamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CABI: Wallingford, 2006; pp. 325–356. [Google Scholar]
- Mason, G.J. Tail-biting in mink (Mustela vison) is influenced by age at removal from the mother. Anim. Welf. 1994, 3, 305–311. [Google Scholar] [CrossRef]
- Mason, G.J. Age and context affect the stereotypies of caged mink. Behaviour 1993, 127, 191–229. [Google Scholar] [CrossRef]
- Mason, G.J. Stereotypies and suffering. Behav. Processes 1991, 25, 103–115. [Google Scholar] [CrossRef]
- Mason, G.J.; Clubb, R.; Latham, N.; Vickery, S. Why and how should we use environmental enrichment to tackle stereotypic behaviour? Appl. Anim. Behav. Sci. 2007, 102, 163–188. [Google Scholar] [CrossRef]
- Mason, G.J.; Cooper, J.; Clarebrough, C. Frustrations of fur-farmed mink. Nat. 2001, 410, 35–36. [Google Scholar] [CrossRef]
- Mason, G.J.; Latham, N. Can’t stop, won’t stop: Is stereotypy a reliable animal welfare indicator? Anim. Welf. 2004, 13, 57–69. [Google Scholar]
- Mason, G.J.; Mendl, M.T. Measuring the unmeasurable: The construct validation of affective state indicators Assessing Animal Welfare: A Guide to the Valid Use of Indicators of Affective States. In UFAW Animal Welfare Series; Mason, G.J., Nielsen, B.L., Mendl, M.T., Eds.; John Wiley & Sons Ltd.: Oxford, n.d. [Google Scholar]
- Mason, G.J.; Rushen, J. Stereotypic Animal Behaviour Funadamentals and Applications to Welfare, 2nd ed.; CABI: Wallingford, 2006. [Google Scholar]
- McAfee, L.M.; Mills, D.S.; Cooper, J.J. The use of mirrors for the control of stereotypic weaving behaviour in the stabled horse. Appl. Anim. Behav. Sci. 2002, 78, 159–173. [Google Scholar] [CrossRef]
- Mcbride, S.D.; Roberts, K.; Hemmings, A.J.; Ninomiya, S.; Parker, M.O. The impulsive horse: Comparing genetic, physiological and behavioral indicators to those of human addiction. Physiol. Behav. 2022, 254, 113896. [Google Scholar] [CrossRef]
- McConnachie, E.; Smid, A.M.C.; Thompson, A.J.; Weary, D.M.; Gaworski, M.A.; Von Keyserlingk, M.A.G. Cows are highly motivated to access a grooming substrate. Biol. Lett. 2018, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mcklveen, J.M.; Myers, B.; Herman, J.P. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J. Neuroendocrinol. 2015, 27, 446–456. [Google Scholar] [CrossRef]
- Meagher, R.K.; Campbell, D.L.M.; Dallaire, J.A.; Díez-León, M.; Palme, R.; Mason, G.J. Sleeping tight or hiding in fright? The welfare implications of different subtypes of inactivity in mink. Appl. Anim. Behav. Sci. 2013, 144, 138–146. [Google Scholar] [CrossRef]
- Meagher, R.K.; Dallaire, A.A.; Campbell, J.L.M.; Ross, D.; Møller, M.H. Benefits of a ball and chain: Simple environmental enrichments improve welfare and reproductive success in farmed American mink (Neovison vison). PLoS One 2014, 9, 110589. [Google Scholar] [CrossRef] [PubMed]
- Meagher, Rebecca; Bechard, Allison; Palme, R.; Díez-Leó, M.; Bruce Hunter, D.; Mason, G.; Meagher, R; Bechard, A; Leo´n, D.-L. Decreased litter size in inactive female mink (Neovison vison): Mediating variables and implications for overall productivity. Can. J. Anim. Sci. 2012, 92, 131–141. [Google Scholar] [CrossRef]
- Meehan, C.L.; Garner, J.P.; Mench, J.A. Environmental enrichment and development of cage stereotypy in orange-winged amazon parrots (Amazona amazonica). Dev. Psychobiol. 2004, 44, 209–218. [Google Scholar] [CrossRef]
- Meehan, C.L.; Garner, J.P.; Mench, J.A. Isosexual pair housing improves the welfare of young Amazon parrots. Appl. Anim. Behav. Sci. 2003, 81, 73–88. [Google Scholar] [CrossRef]
- Meers, L.; Ödberg, F.O. Paradoxical rate-dependent effect of fluoxetine on captivity-induced stereotypies in bank voles. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 964–971. [Google Scholar] [CrossRef]
- Mehrabian, A.; Friedman, S.L. An analysis of fidgeting and associated individual differences. J. Pers. 1986, 54, 406–429. [Google Scholar] [CrossRef]
- Mehtar, M.; Mukaddes, N.M. Posttraumatic Stress Disorder in individuals with diagnosis of Autistic Spectrum Disorders. Res. Autism Spectr. Disord. 2011, 5, 539–546. [Google Scholar] [CrossRef]
- Mellor, E.L.; Mason, G.J. Feeding, mating and animal wellbeing: new insights from phylogenetic comparative methods. Proc. R. Soc. B Biol. Sci. 2023, 290, 20222571. [Google Scholar] [CrossRef] [PubMed]
- Mellor, E.L.; McDonald Kinkaid, H.K.; Mendl, M.T.; Cuthill, I.C.; Van Zeeland, Y.R.A.; Mason, G.J. Nature calls: Intelligence and natural foraging style predict poor welfare in captive parrots. Proc. R. Soc. B Biol. Sci. 2021, 288, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mendl, M.; Paul, E.S. Animal affect and decision-making. Neurosci. Biobehav. Rev. 2020, 112, 144–163. [Google Scholar] [CrossRef] [PubMed]
- Mendl, M.T.; Paul, E.S.; Mason, G.J. Animal welfare and affective states Assessing Animal Welfare: A Guide to the Valid Use of Indicators of Affective States. In UFAW Animal Welfare Series; Mason, G.J., Nielsen, B.L., Mendl, M.T., Eds.; John Wiley & Sons Ltd.: Oxford, n.d. [Google Scholar]
- Mertens, P.A. Pharmacological treatment of feather-picking in pet birds. In Proceedings of the First International Meeting Veterinary Behavioural Medicine; Mills, D.S., Heath, S.E., Harrington, L.J., Eds.; UFAW: Birmingham, 1997; pp. 209–211. [Google Scholar]
- Metcalf, J. A prisoner’s three tips for beating boredom [WWW Document]. Prison Writ. 2020. Available online: https://prisonwriters.com/boredom-in-prison/.
- Mikkola, S.; Salonen, M.; Hakanen, E.; Lohi, H. Fearfulness associates with problematic behaviors and poor socialization in cats. iScience 2022, 25, 105265. [Google Scholar] [CrossRef]
- Miller, J.M.; Singer, H.S.; Bridges, D.D.; Waranch, H.R. Behavioral therapy for treatment of stereotypic movements in nonautistic children. J. Child Neurol. 2006, 21, 119–125. [Google Scholar] [CrossRef]
- Miller, K.A.; Mench, J.A. The differential effects of four types of environmental enrichment on the activity budgets, fearfulness, and social proximity preference of Japanese quail. Appl. Anim. Behav. Sci. 2005, 95, 169–187. [Google Scholar] [CrossRef]
- Miller, L.J.; Ivy, J.A.; Vicino, G.A.; Schork, I.G. Impacts of natural history and exhibit factors on carnivore welfare. J. Appl. Anim. Welf. Sci. 2019, 22, 188–196. [Google Scholar] [CrossRef]
- Mills, D.S.; Luescher, A. Veterinary and pharmacological approaches to abnormal repetitive behaviour. In Stereotypic Animal Behaviour Fundamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CABI: Wallingford, 2006; pp. 286–324. [Google Scholar]
- Mindus, C.; van Staaveren, N.; Bharwani, A.; Fuchs, D.; Gostner, J.M.; Kjaer, J.B.; Kunze, W.; Mian, M.F.; Shoveller, A.K.; Forsythe, P.; Harlander-Matauschek, A. Ingestion of Lactobacillus rhamnosus modulates chronic stress-induced feather pecking in chickens. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Monteiro, S.; Roque, S.; de Sá-Calçada, D.; Sousa, N.; Correia-Neves, M.; Cerqueira, J.J. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Moore, H.L.; Brice, S.; Powell, L.; Ingham, B.; Freeston, M.; Parr, J.R.; Rodgers, J. The mediating effects of alexithymia, intolerance of uncertainty, and anxiety on the relationship between sensory processing differences and restricted and repetitive behaviours in autistic adults. J. Autism Dev. Disord. 2022, 52, 4384–4396. [Google Scholar] [CrossRef]
- Mora, S.; Martín-González, E.; Flores, P.; Moreno, M. Neuropsychiatric consequences of childhood group A streptococcal infection: A systematic review of preclinical models. Brain. Behav. Immun. 2020, 86, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Morin, K.M. Carceral space: Prisoners and animals, First edit. ed, Antipode; Taylor and Francis, 2016. [Google Scholar] [CrossRef]
- Morrissey, K.L.H.; Widowski, T.; Leeson, S.; Sandilands, V.; Arnone, A.; Torrey, S. The effect of dietary alterations during rearing on growth, productivity, and behavior in broiler breeder females. Poult. Sci. 2014, 93, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Mosallanejad, B.; Varzi, H.N.; Avizeh, R.; Pourmahdi, M.; Khalili, F. Comparative evaluation between hypericin (hypiran) and fluoxetine in treatment of companion dogs with tail chasing. Vet. Res. Forum 2015, 6, 167–172. [Google Scholar] [PubMed]
- Mount, R.H.; Hastings, R.P.; Reilly, S.; Cass, H.; Charman, T. Behavioural and emotional features in Rett syndrome. Disabil. Rehabil. 2001, 23, 129–138. [Google Scholar] [CrossRef]
- Moy, S.S.; Riddick, N. V; Nikolova, V.D.; Teng, B.L.; Agster, K.L.; Nonneman, R.J.; Young, N.B.; Baker, L.K.; Nadler, J.J.; Bodfish, J.W. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav. Brain Res. 2014, 259, 200–214. [Google Scholar] [CrossRef]
- Muehlmann, A.M.; Lewis, M.H. Abnormal repetitive behaviours: Shared phenomenology and pathophysiology. J. Intellect. Disabil. Res. 2012, 56, 427–440. [Google Scholar] [CrossRef]
- Murayama, K.; Nakao, T.; Ohno, A.; Tsuruta, S.; Tomiyama, H.; Hasuzawa, S.; Mizobe, T.; Kato, K.; Kanba, S. Impacts of stressful life events and traumatic experiences on onset of obsessive-compulsive disorder. Front. Psychiatry 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Murphy, T.K.; Snider, L.A.; Mutch, P.J.; Harden, E.; Zaytoun, A.; Edge, P.J.; Storch, E.A.; Yang, M.C.K.; Mann, G.; Goodman, W.K.; Swedo, S.E. Relationship of movements and behaviors to Group A Streptococcus infections in elementary school children. Biol. Psychiatry 2007, 61, 279–284. [Google Scholar] [CrossRef]
- Muthugovindan, D.; Singer, H. Motor stereotypy disorders. Curr. Opin. Neurol. 2009, 22, 131–136. [Google Scholar] [CrossRef]
- Nagy, K.; Bodó, G.; Bárdos, G.; Bánszky, N.; Kabai, P. Differences in temperament traits between crib-biting and control horses. Appl. Anim. Behav. Sci. 2010, 122, 41–47. [Google Scholar] [CrossRef]
- Nagy, K.; Bodó, G.; Bárdos, G.; Harnos, A.; Kabai, P. The effect of a feeding stress-test on the behaviour and heart rate variability of control and crib-biting horses (with or without inhibition). Appl. Anim. Behav. Sci. 2009, 121, 140–147. [Google Scholar] [CrossRef]
- Napolitano, F.; De Rosa, G.; Sevi, A. Welfare implications of artificial rearing and early weaning in sheep. Appl. Anim. Behav. Sci. 2008, 110, 58–72. [Google Scholar] [CrossRef]
- Nash, L.T.; Fritz, J.; Alford, P.A.; Brent, L. Variables influencing the origins of diverse abnormal behaviors in a large sample of captive chimpanzees (Pan troglodytes). Am. J. Primatol. 1999, 48, 15–29. [Google Scholar] [CrossRef]
- National Instititute of Mental Health. PANS and PANDAS: Questions and Answers [WWW Document]. U.S. Dep. Heal. Hum. Serv. Natl. Institutes Heal. 2025. Available online: https://www.nimh.nih.gov/health/publications/pandas.
- National Research Council (US) Committee on Recognition and Alleviation of Distress in Laboratory Animals. Recognition and alleviation of distress in laboratory animals; National Academies Press (US): Washington, DC, 2008. [Google Scholar] [CrossRef]
- NC3Rs. Behavioural indicators [WWW Document]. 2025. Available online: https://macaques.nc3rs.org.uk/welfare-assessment/behavioural-indicators.
- Nelson, C.A.; Fox, N.A.; Zeanah, C.H. Romania’s abandoned children: deprivation, brain development, and the struggle for recovery; Harvard University Press, 2014. [Google Scholar]
- Nettle, D.; Bateson, M. The evolutionary origins of mood and its disorders. Curr. Biol. 2012, 22, R712–R721. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.; Calistri, P.; Canali, E.; Drewe, J.; Garin-Bastuji, B.; Gonzales Rojas, J.; Schmidt, C.; Herskin, M.; Miranda Chueca, M.; Padalino, B.; Pasquali, P.; Roberts, H.; Spoolder, H.; Stahl, K.; Velarde, A.; Viltrop, A.; Winckler, C.; Tiemann, I.; de Jong, I.; Gebhardt-Henrich, S.; Keeling, L.; Riber, A.; Ashe, S.; Candiani, D.; Garc ́ıa Matas, R.; Hempen, M.; Mosbach-Schulz, O.; Rojo Gimeno, C.; Van der Stede, Y.; Vitali, M.; Bailly-Caumette, E.; Michel, V. Scientific opinion on the welfare of broilers on farm. EFSA J. 2023, 21, 7788. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Farabaugh, A.H.; Alpert, J.E.; Gordon; Worthington, Johanna; Rosenbaum, John J; Fava, Jerrold F M. Timing of onset of antidepressant response with fluoxetine treatment. Am. J. Psychiatry 2000, 157, 1423–1428. [Google Scholar] [CrossRef]
- Nimmo-Smith, V.; Heuvelman, H.; Dalman, C.; Lundberg, M.; Idring, S.; Carpenter, P.; Magnusson, C.; Rai, D. Anxiety disorders in adults with Autism Spectrum Disorder: A population-based study. J. Autism Dev. Disord. 2020, 50, 308–318. [Google Scholar] [CrossRef]
- Nip, E. The long-term effects of environmental enrichment on agonism in female C57BL/6, BALB/c, and DBA/2 mice; University of Guelph, 2018. [Google Scholar]
- Nip, E.; Adcock, A.; Nazal, B.; Maclellan, A.; Niel, L.; Choleris, E.; Levison, L.; Mason, G.J. Why are enriched mice nice? Investigating how environmental enrichment reduces agonism in female C57BL/6, DBA/2, and BALB/c mice. Appl. Anim. Behav. Sci. 2019, 217, 73–82. [Google Scholar] [CrossRef]
- Nordgreen, J.; Edwards, S.A.; Boyle, L.A.; Bolhuis, J.E.; Veit, C.; Sayyari, A.; Marin, D.E.; Dimitrov, I.; Janczak, A.M.; Valros, A. A proposed role for pro-inflammatory cytokines in damaging behavior in pigs. Front. Vet. Sci. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Norscia, I.; Collarini, E.; Cordoni, G. Anxiety behavior in pigs (Sus scrofa) decreases through affiliation and may anticipate threat. Front. Vet. Sci. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Novak, M.A. Self-injurious behavior in rhesus monkeys: New insights into its etiology, physiology, and treatment. Am. J. Primatol. 2003, 59, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.A.; Meyer, J.S.; Lutz, C.; Gimpel, J.; Mason, G.J. The effects of enrichment in biomedical facilities: Some insights into their effects on laboratory primates’ stereotypies. In Stereotypic Animal Behaviour Funadamentals and Applications to Welfare; Mason, G., Rushen, J., Eds.; CABI: Wallingford, 2006; p. 266. [Google Scholar]
- O’Connor, V.L.; Vonk, J. Scaredy-cats don’t succeed: behavioral traits predict problem-solving success in captive felidae. PeerJ 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Oakley, C.; Mahone, E.M.; Morris-Berry, C.; Kline, T.; Singer, H.S. Primary complex motor stereotypies in older children and adolescents: Clinical features and longitudinal follow-up. Pediatr. Neurol. 2015, 52, 398–403.e1. [Google Scholar] [CrossRef] [PubMed]
- Oatley, K.; Johnson-Laird, P.N. Cognitive approaches to emotions. Trends Cogn. Sci. 2014, 18, 134–140. [Google Scholar] [CrossRef]
- Ödberg, F.O. The influence of cage size and environmental enrichment on the development of stereotypies in bank voles (Clethfionomys glareolus). Behav. Processes 1987, 14, 155–173. [Google Scholar] [CrossRef]
- Olsson, I.A.S.; Keeling, L.J. The push-door for measuring motivation in hens: Laying hens are motivated to perch at night. Anim. Welf. 2002, 11, 11–19. [Google Scholar] [CrossRef]
- Olsson, I.A.S.; Sherwin, C.M. Behaviour of laboratory mice in different housing conditions when allowed to self-administer an anxiolytic. Lab. Anim. 2006, 40, 392–399. [Google Scholar] [CrossRef]
- Özten, E.; Sayar, G.H.; Eryılmaz, G.; Kağan, G.; Işık, S.; Karamustafalıoğlu, O. The relationship of psychological trauma with trichotillomania and skin picking. Neuropsychiatr. Dis. Treat. 2015, 11, 1203–1210. [Google Scholar] [CrossRef]
- PANDAS Network Understanding PANDAS and PANS: A comprehensive resource guide [WWW Document]. 2025. Available online: https://pandasnetwork.org/understanding-pandas/.
- Park, R.M.; Schubach, K.M.; Cooke, R.F.; Herring, A.D.; Jennings, J.S.; Daigle, C.L. Impact of a cattle brush on feedlot steer behavior, productivity and stress physiology. Appl. Anim. Behav. Sci. 2020, 228, 104995. [Google Scholar] [CrossRef]
- Parker, M.; Goodwin, D.; Redhead, E.S. Survey of breeders’ management of horses in Europe, North America and Australia: Comparison of factors associated with the development of abnormal behaviour. Appl. Anim. Behav. Sci. 2008, 114, 206–215. [Google Scholar] [CrossRef]
- Patiño, J.J.; Vélez, S.A.; Martínez, J.R. Ethological, endocrinological, and gastroscopic evaluation of crib-biting Colombian creole horses. J. Vet. Behav. 2020, 40, 92–97. [Google Scholar] [CrossRef]
- Pedersen, L.J.; Jensen, M.B.; Hansen, S.W.; Munksgaard, L.; Ladewig, J.; Matthews, L. Social isolation affects the motivation to work for food and straw in pigs as measured by operant conditioning techniques. Appl. Anim. Behav. Sci. 2002, 77, 295–309. [Google Scholar] [CrossRef]
- Perré, Y.; Wauters, A.-M.; Richard-Yris, M.-A. Influence of mothering on emotional and social reactivity of domestic pullets. Appl. Anim. Behav. Sci. 2002, 75, 133–146. [Google Scholar] [CrossRef]
- Peterson, E.J.; Worlein, J.M.; Lee, G.H.; Dettmer, A.M.; Varner, E.K.; Novak, M.A. Rhesus macaques (Macaca mulatta) with self-injurious behavior show less behavioral anxiety during the human intruder test. Am. J. Primatol. 2017, 79, e22569. [Google Scholar] [CrossRef] [PubMed]
- Phemister, M.R.; Richardson, A.M.; Thomas, G. V. Observations of young normal and handicapped children. Child. Care. Health Dev. 1978, 4, 247–259. [Google Scholar] [CrossRef]
- Pineda, M. Treatment for anxiety and future treatments in rett syndrome. Biomed. J. Sci. Tech. Res. 2024, 54, 46496–46500. [Google Scholar] [CrossRef]
- Pingitore, G.; Chrobak, V.; Petrie, J. The social and psychological factors of bruxism. J. Prosthet. Dent. 1991, 65, 443–446. [Google Scholar] [CrossRef]
- Plato, S.M. Comparing the pathology of equine stereotypical behaviours to obsessive-compulsive and related disorder in humans: An exploratory Delphi study. Appl. Anim. Behav. Sci. 2022, 105571. [Google Scholar] [CrossRef]
- Poirier, C. Hippocampal structural plasticity Assessing Animal Welfare: A Guide to the Valid Use of Indicators of Affective States. In UFAW Animal Welfare Series; Mason, G.J., Nielsen, B.L., Mendl, M.T., Eds.; John Wiley & Sons Ltd.: Oxford, n.d. [Google Scholar]
- Poirier, C.; Bateson, M.; Gualtieri, F.; Armstrong, E.A.; Laws, G.C.; Boswell, T.; Smulders, T. V. Validation of hippocampal biomarkers of cumulative affective experience. Neurosci. Biobehav. Rev. 2019a, 101, 113–121. [Google Scholar] [CrossRef]
- Poirier, C.; Oliver, C.J.; Castellano Bueno, J.; Flecknell, P.; Bateson, M. Pacing behaviour in laboratory macaques is an unreliable indicator of acute stress. Sci. Reports 2019b, 2019 91 9, 1–8. [Google Scholar] [CrossRef]
- Polanco, A. Validating markers of cumulative experience in laboratory rhesus monkeys (Macaca mulatta); University of Guelph, 2021. [Google Scholar]
- Polanco, A.; Díez-León, M.; Mason, G.J. Stereotypic behaviours are heterogeneous in their triggers and treatments in the American mink, Neovison vison, a model carnivore. Anim. Behav. 2018, 141, 105–114. [Google Scholar] [CrossRef]
- Polverino, G.; Manciocco, A.; Vitale, A.; Alleva, E. Stereotypic behaviours in Melopsittacus undulatus: Behavioural consequences of social and spatial limitations. Appl. Anim. Behav. Sci. 2015, 165, 143–155. [Google Scholar] [CrossRef]
- Pomerantz, O.; Meiri, S.; Terkel, J. Socio-ecological factors correlate with levels of stereotypic behavior in zoo-housed primates. Behav. Processes 2013, 98, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, O.; Paukner, A.; Terkel, J. Some stereotypic behaviors in rhesus macaques (Macaca mulatta) are correlated with both perseveration and the ability to cope with acute stressors. Behav. Brain Res. 2012, 230, 274–280. [Google Scholar] [CrossRef]
- Ponzio, M.F.; Busso, J.M.; Ruiz, R.D.; de Cuneo, M.F. A survey assessment of the incidence of fur-chewing in commercial chinchilla (Chinchilla lanigera) farms. Anim. Welf. 2007, 16, 471–479. [Google Scholar] [CrossRef]
- Poroshinska, O.; Polishchuk, A.; Shmayun, S.; Kozii, N.; Shahanenko, R.; Chornozub, M.; Stovbetska, L.; Shahanenko, V.; Koziy, V. The use of anxiolytic drugs for the correction of behavioral disorders in mammals. Regul. Mech. Biosyst. 2024, 15, 42–48. [Google Scholar] [CrossRef]
- Poulsen, E.M.B.; Cambell Teskey, G. Pacing, prozac and a polar bear. In Stereotypic Animal Behaviour Fundamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CABI: Wallingford, 2006; p. 309. [Google Scholar]
- Quest, K.M.; Byiers, B.J.; Payen, A.; Symons, F.J. Rett syndrome: A preliminary analysis of stereotypy, stress, and negative affect. Res. Dev. Disabil. 2014, 35, 1191–1197. [Google Scholar] [CrossRef]
- Rafaeli-Mor, N.; Foster, L.; Berkson, G. Self-reported body rocking and other habits in college students. Am. J. Ment. Retard. 1999, 104, 1–10. [Google Scholar] [CrossRef]
- Rapoport, J.L.; Ryland, D.H.; Kriete, M. Drug treatment of canine acral lick: An animal model of obsessive-compulsive disorder. Arch. Gen. Psychiatry 1992, 49, 517–521. [Google Scholar] [CrossRef]
- Redbo, I.; Emanuelson, M.; Oredsson, N.; Lundberg, K. Feeding level and oral stereotypies in dairy cows. Anim. Sci. 1996, 62, 199–206. [Google Scholar] [CrossRef]
- Redman, K.R. The effectiveness of dusting as a reinforcer for the chinchilla (Chinchilla lanigera); University of North Dakota, 1974. [Google Scholar]
- Robbins, T.W.; Gillan, C.M.; Smith, D.G.; de Wit, S.; Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends Cogn. Sci. 2012, 16, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.; Bergeron, R.; Farmer, C.; Meunier-Salaün, M.C. Does the number of daily meals affect feeding motivation and behaviour of gilts fed high-fibre diets? Appl. Anim. Behav. Sci. 2002, 76, 105–117. [Google Scholar] [CrossRef]
- Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. In Psychology of Learning; Shanks, D., Ed.; SAGE Publications Ltd, 2009. [Google Scholar]
- Rodenburg, T.B.; Buitenhuis, A.J.; Ask, B.; Uitdehaag, K.A.; Koene, P.; Van Der Poel, J.J.; Van Arendonk, J.A.M.; Bovenhuis, H. Genetic and phenotypic correlations between feather pecking and open-field response in laying hens at two different ages. Behav. Genet. 2004, 34, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, T.B.; Uitdehaag, K.A.; Ellen, E.D.; Komen, J. The effects of selection on low mortality and brooding by a mother hen on open-field response, feather pecking and cannibalism in laying hens. Anim. Welf. 2009, 18, 427–432. [Google Scholar] [CrossRef]
- Rodgers, J.; Glod, M.; Connolly, B.; McConachie, H. The relationship between anxiety and repetitive behaviours in autism spectrum disorder. J. Autism Dev. Disord. 2012, 42, 2404–2409. [Google Scholar] [CrossRef]
- Rolls, E.T. Emotion and Decision-Making Explained; Oxford University Press: Oxcford, 2014. [Google Scholar]
- Rommeck, I.; Anderson, K.; Heagerty, A.; Cameron, A.; McCowan, B. Risk factors and remediation of self-injurious and self-abuse behavior in rhesus macaques. J. Appl. Anim. Welf. Sci. 2009a, 12, 61–72. [Google Scholar] [CrossRef]
- Rommeck, I.; Gottlieb, D.H.; Strand, S.C.; McCowan, B. The effects of four nursery rearing strategies on infant behavioral development in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 2009b, 48, 395–401. [Google Scholar]
- Roper, T.J. Nest material and food as reinforcers for fixed-ratio responding in mice. Learn. Motiv. 1975, 6, 327–343. [Google Scholar] [CrossRef]
- Rozek, J.C.; Millam, J.R. Preference and motivation for different diet forms and their effect on motivation for a foraging enrichment in captive Orange-winged Amazon parrots (Amazona amazonica). Appl. Anim. Behav. Sci. 2011, 129, 153–161. [Google Scholar] [CrossRef]
- Rushen, J.; de Passillé, A.M. The motivation of non-nutritive sucking in calves, Bos taurus. Anim. Behav. 1995, 49, 1503–1510. [Google Scholar] [CrossRef]
- Rutter, M.; Kreppner, J.; Croft, C.; Murin, M.; Colvert, E.; Beckett, C.; Castle, J.; Sonuga-Barke, E. Early adolescent outcomes of institutionally deprived and non-deprived adoptees. III. Quasi-autism. J. Child Psychol. Psychiatry Allied Discip. 2007, 48, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Sampogna, G.; Del Vecchio, V.; Giallonardo, V.; Luciano, M.; Fiorillo, A. Diagnosis, clinical features, and implications of agitated depression. Psychiatr. Clin. North Am. 2020, 43, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.O.; Bangasser, D.A. The effects of early life stress on impulsivity. Neurosci. Biobehav. Rev. 2022, 137. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Segura, C.; Spanagel, R. Behavioural assessment of drug reinforcement and addictive features in rodents: An overview. Addict. Biol. 2006, 11, 2–38. [Google Scholar] [CrossRef]
- Sargent, T.D.; Keiper, R.R. Stereotypies in caged canaries. Anim. Behav. 1967, 15, 62–66. [Google Scholar] [CrossRef]
- Sarkhel, S.; Praharaj, S.K.; Sinha, V.K. Role of life events in obsessive compulsive disorder. Isr. J. Psychiatry Relat. Sci. 2011, 48, 182–185. [Google Scholar] [CrossRef]
- Savory, C.J.; Mann, J.S. Stereotyped pecking after feeding by restricted-fed fowls is influenced by meal size. Appl. Anim. Behav. Sci. 1999, 62, 209–217. [Google Scholar] [CrossRef]
- Savory, C.J.; Maros, K.; Rutter, S.M. Assessment of hunger in growing broiler breeders in relation to a commercial restricted feeding programme. Anim. Welf. 1993, 2, 131–152. [Google Scholar] [CrossRef]
- Scantlebury, C.E.; Archer, D.C.; Proudman, C.J.; Pinchbeck, G.L. Management and horse-level risk factors for recurrent colic in the UK general equine practice population. Equine Vet. J. 2015, 47, 202–206. [Google Scholar] [CrossRef]
- Schino, G.; Perretta, G.; Taglioni, A.M.; Monaco, V.; Troisi, A. Primate displacement activities as an ethopharmacological model of anxiety. Anxiety 1996, 2, 186–191. [Google Scholar] [CrossRef]
- Schlussman, S.D.; Ho, A.; Zhou, Y.; Curtis, A.E.; Kreek, M.J. Effects of “binge” pattern cocaine on stereotypy and locomotor activity in C57BL/6J and 129/J mice. Pharmacol. Biochem. Behav. 1998, 60, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Doherr, M.G.; Steiger, A. The influence of the breeding method on the behaviour of adult African grey parrots (Psittacus erithacus). Appl. Anim. Behav. Sci. 2006, 98, 293–307. [Google Scholar] [CrossRef]
- Schneper, L.M.; Brooks-Gunn, J.; Notterman, D.A.; Suomi, S.J. Early-life experiences and telomere length in adult rhesus monkeys: An exploratory study. Psychosom. Med. 2016, 78, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Schoenecker, B.; Heller, K.E. Stimulation of serotonin (5-HT) activity reduces spontaneous stereotypies in female but not in male bank voles (Clethrionomys glareolus) Stereotyping female voles as a new animal model for human anxiety and mood disorders? Appl. Anim. Behav. Sci. 2003, 80, 161–170. [Google Scholar] [CrossRef]
- Schoenecker, B.; Heller, K.E. The involvement of dopamine (DA) and serotonin (5-HT) in stress-induced stereotypies in bank voles (Clethrionomys glareolus). Appl. Anim. Behav. Sci. 2001, 73, 311–319. [Google Scholar] [CrossRef]
- Scholey, A.; Haskell, C.; Robertson, B.; Kennedy, D.; Milne, A.; Wetherell, M. Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress. Physiol. Behav. 2009, 97, 304–312. [Google Scholar] [CrossRef]
- Schønecker, B. Increased survival and reproductive success associated with stereotypical behaviours in laboratory-bred bank voles (Clethrionomys glareolus). Appl. Anim. Behav. Sci. 2009, 121, 55–62. [Google Scholar] [CrossRef]
- Schouten, W.G.P.; Wiepkema, P.R. Coping styles of tethered sows. Behav. Processes 1991, 25, 125–132. [Google Scholar] [CrossRef]
- Schrock, J.M.; Sugiyama, L.S.; Snodgrass, J.J. Lassitude: A coordination system to support host immunity. Oxford Handb. Evol. Emot. 2024, 297–316. [Google Scholar] [CrossRef]
- Schweitzer, C.; Arnould, C. Emotional reactivity of Japanese quail chicks with high or low social motivation reared under unstable social conditions. Appl. Anim. Behav. Sci. 2010, 125, 143–150. [Google Scholar] [CrossRef]
- Sege, C.T.; Bradley, M.M.; Lang, P.J. Avoidance and escape: Defensive reactivity and trait anxiety. Behav. Res. Ther. 2018, 104, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Seibert, L.M. Pharmacotherapy for behavioral disorders in pet birds. J. Exot. Pet Med. 2007, 16, 30–37. [Google Scholar] [CrossRef]
- Seibert, L.M.; Crowell-Davis, S.L.; Wilson, G.H.; Ritchie, B.W. Placebo-controlled clomipramine trial for the treatment of feather picking disorder in cockatoos. J. Am. Anim. Hosp. Assoc. 2004, 40, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Selemon, L.D.; Friedman, H.R. Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation. Neuroscience 2013, 248, 213–224. [Google Scholar] [CrossRef]
- Šemrov, M.Z.; Patt, A. The tail as an iceberg indicator: interrelationships with welfare problems. In Tail Biting in Pigs: A Comprehensive Guide to Its Aetiology, Impact and Wider Significance in Pig Management; Driscoll, K., Valros, A., Eds.; Brill: Wageningen, the Netherlands, 2024; pp. 351–326. [Google Scholar]
- Seo, T.; Sato, S.; Kosaka, K.; Sakamoto, N.; Tokumoto, K. Tongue-playing and heart rate in calves. Appl. Anim. Behav. Sci. 1998, 58, 179–182. [Google Scholar] [CrossRef]
- Shaikh, N.; Leonard, E.; Martin, J.M. Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics 2010, 126, e557-564. [Google Scholar] [CrossRef]
- Sharma, N.P.; Huecker, M.R. Agitation [WWW Document]. StatPearls [Internet]. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493153/.
- Sheridan, M.A.; Fox, N.A.; Zeanah, C.H.; McLaughlin, K.A.; Nelson, C.A. Variation in neural development as a result of exposure to institutionalization early in childhood. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 12927–12932. [Google Scholar] [CrossRef]
- Sherwin, C.M. The use and perceived importance of three resources which provide caged laboratory mice the opportunity for extended locomotion. Appl. Anim. Behav. Sci. 1998, 55, 353–367. [Google Scholar] [CrossRef]
- Sherwin, C.M. Laboratory mice persist in gaining access to resources: A method of assessing the importance of environmental features. Appl. Anim. Behav. Sci. 1996, 48, 203–213. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Nicol, C.J. Behavioural demand functions of caged laboratory mice for additional space. Anim. Behav. 1997, 53, 67–74. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Nicol, C.J. Reorganization of behaviour in laboratory mice, Mus musculus, with varying cost of access to resources. Anim. Behav. 1996, 51, 1087–1093. [Google Scholar] [CrossRef]
- Shively, C.A.; Register, T.C.; Friedman, D.P.; Morgan, T.M.; Thompson, J.; Lanier, T. Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis). Biol. Psychol. 2005, 69, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Shukla, T.; Pandey, S. Stereotypies in adults: A systematic review. Neurol. Neurochir. Pol. 2020, 54, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Shulman, L.M.; Sanchez-Ramos, J.R.; Weiner, W.J. Defining features, clinical conditions, and theoretical constructs of stereotyped movements. In Stereotyped Movements - Brain & Behavior Relationships; Sprague, R.L., Newell, K.M., Eds.; American Psychiatric Association: Washington, DC, 1996; pp. 17–24. [Google Scholar]
- Shyne, A. Meta-analytic review of the effects of enrichment on stereotypic behavior in zoo mammals. Zoo Biol. 2006, 25, 317–337. [Google Scholar] [CrossRef]
- Shyne, A.; Block, M. The effects of husbandry training on stereotypic pacing in captive African wild dogs (Lycaon pictus). J. Appl. Anim. Welf. Sci. 2010, 13, 56–65. [Google Scholar] [CrossRef]
- Singer, H.S. Treatment of tics and Tourette syndrome. Curr. Treat. Options Neurol. 2010, 12, 539–561. [Google Scholar] [CrossRef]
- Singer, H.S. Motor stereotypies. Semin. Pediatr. Neurol. 2009, 16, 77–81. [Google Scholar] [CrossRef]
- Sisman, F.N.; Tok, O.; Ergun, A. The effect of psychological state and social support on nail-biting in adolescents: An exploratory study. Sch. Psychol. Int. 2017, 38, 304–318. [Google Scholar] [CrossRef]
- Smith, A.P. Chewing gum and stress reduction. J. Clin. Transl. Res. 2016, 2, 52–54. [Google Scholar] [CrossRef]
- Soares, J.M.; Sampaio, A.; Ferreira, L.M.; Santos, N.C.; Marques, F.; Palha, J.A.; Cerqueira, J.J.; Sousa, N. Stress-induced changes in human decision-making are reversible. Transl. Psychiatry 2012, 2. [Google Scholar] [CrossRef]
- Sohel, A.J.; Shutter, M.C.; Patel, P.; Molla, M. Fluoxetine [WWW Document]. StatPearls [Internet]. 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459223/.
- Sonuga-Barke, E.; Kennedy, M.; Golm, D.; Knights, N.; Kovshoff, H.; Kreppner, J.; Kumsta, R.; Maughan, B.; O’Connor, T.G.; Schlotz, W. Adoptees’ responses to separation from, and reunion with, their adoptive parent at age 4 years is associated with long-term persistence of autism symptoms following early severe institutional deprivation. Dev. Psychopathol. 2020, 32, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Soussignan, R.; Koch, P. Rhythmical stereotypies (leg-swinging) associated with reductions in heart-rate in normal school children. Biol. Psychol. 1985, 21, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Spann, M.N.; Mayes, L.C.; Kalmar, J.H.; Guiney, J.; Womer, F.Y.; Pittman, B.; Mazure, C.M.; Sinha, R.; Blumberg, H.P. Childhood abuse and neglect and cognitive flexibility in adolescents. Child Neuropsychol. 2012, 18, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, C.; Lübke, L.; Müller, S.; Lindstädt, T.; Gallinat, C. Childhood maltreatment, traumatic experiences, and posttraumatic stress disorder in pathological skin picking: An online case-control study. Gen. Hosp. Psychiatry 2022, 78, 9–13. [Google Scholar] [CrossRef]
- Spoolder, H.A.M.; Burbidge, J.A.; Edwards, S.A.; Howard Simmins, P.; Lawrence, A.B. Provision of straw as a foraging substrate reduces the development of excessive chain and bar manipulation in food restricted sows. Appl. Anim. Behav. Sci. 1995, 43, 249–262. [Google Scholar] [CrossRef]
- Srinivasan, J.; Mink, J.W. Stereotypies and other developmental hyperkinesias. In Hyperkinetic Movement Disorders: Differential Diagnosis and Treatment, 1st Ed.; Albanese, A., Jankovic, J., Eds.; Blackwell Publishing Ltd., 2012; pp. 353–362. [Google Scholar]
- Stein, D.J. Obsessive-compulsive disorder. Lancet 2002, 360, 397–405. [Google Scholar] [CrossRef]
- Stein, D.J.; Flessner, C.A.; Franklin, M.; Keuthen, N.J.; Lochner, C.; Woods, D.W. Is trichotillomania a stereotypic movement disorder? An analysis of body-focused repetitive behaviors in people with hair-pulling. Ann. Clin. Psychiatry 2008, 20, 194–198. [Google Scholar] [CrossRef]
- Stein, D.J.; Ruscio, A.M.; Altwaijri, Y.; Chiu, W.T.; Sampson, N.A.; Gaxiola, S.A.; Al Hamzawi, A.; Alonso, J.; Chardoul, S.; Gureje, O. Obsessive-compulsive disorder in the World Mental Health surveys. BMC Med. 2025, 23, 416. [Google Scholar] [CrossRef]
- Steinberg, T.; Shmuel-Baruch, S.; Horesh, N.; Apter, A. Life events and Tourette syndrome. Compr. Psychiatry 2013, 54, 467–473. [Google Scholar] [CrossRef]
- Sullivan, J.; Rodgers, J.; Lidstone, J.; Uljarevic, M.; Mcconachie, H.; Freeston, M.; Le, A.; Prior, M.; Leekam, S. Relations among restricted and repetitive behaviors, anxiety and sensory features in children with autism spectrum disorders. Res. Autism Spectr. Disord. 2014, 8, 82–92. [Google Scholar] [CrossRef]
- Suñol, M.; Contreras-Rodríguez, O.; Macià, D.; Martínez-Vilavella, G.; Martínez-Zalacaín, I.; Subirà, M.; Pujol, J.; Sunyer, J.; Soriano-Mas, C. Brain structural correlates of subclinical obsessive-compulsive symptoms in healthy children. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, P.M.; Krogh Hansen, B.; Malmkvist, J.; Hansen, S.W.; Palme, R.; Lau Jeppesen, L. Selection against stereotypic behaviour may have contradictory consequences for the welfare of farm mink (Mustela vison). Appl. Anim. Behav. Sci. 2007, 107, 110–119. [Google Scholar] [CrossRef]
- Swaisgood, R.; Shepherdson, D. Environmental enrichment as a strategy for mitigating stereotypies in zoo animals: A literature review and meta-analysis. In Stereotypic Animal Behaviour Fundamentals and Applications to Welfare; Mason, G.J., Rushen, J., Eds.; CAB International: Oxford, 2006; pp. 256–285. [Google Scholar]
- Swaisgood, R.R.; Shepherdson, D.J. Scientific approaches to enrichment and stereotypies in zoo animals: What’s been done and where should we go next? Zoo Biol. 2005, 24, 499–518. [Google Scholar] [CrossRef]
- Swedo, S.; Menendez, C.M.; Cunningham, M.W. Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infectionn (PANDAS): A case series. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, 2024; pp. 75–79. [Google Scholar] [CrossRef]
- Swedo, S.E. From research subgroup to clinical syndrome: Modifying the PANDAS criteria to describe PANS (Pediatric Acute-Onset Neuropsychiatric Syndrome). Pediatr. Ther. 02 2012. [Google Scholar] [CrossRef]
- Tan, C.Y.; Chiu, N.C.; Zeng, Y.H.; Huang, J.Y.; Tzang, R.F.; Chen, H.J.; Lin, Y.J.; Sun, F.J.; Ho, C.S. Psychosocial stress in children with Tourette syndrome and chronic tic disorder. Pediatr. Neonatol. 2024, 65, 336–340. [Google Scholar] [CrossRef]
- Tatemoto, P.; Broom, D.M.; Zanella, A.J. Changes in stereotypies: Effects over time and over generations. Anim. 2022, 12, 2504. [Google Scholar] [CrossRef]
- Taylor, S.B.; Anglin, J.M.; Paode, P.R.; Riggert, A.G.; Olive, M.F.; Conrad, C.D. Chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring of the striatum. Neuroscience 2014, 280, 231–242. [Google Scholar] [CrossRef]
- Terlouw, E.M.C.; Lawrence, A.B. Long-term effects of food allowance and housing on development of stereotypies in pigs. Appl. Anim. Behav. Sci. 1993, 38, 103–126. [Google Scholar] [CrossRef]
- Terlouw, E.M.C.; Wiersma, A.; Lawrence, A.B.; Macleod, H.A. Ingestion of food facilitates the performance of stereotypies in sows. Anim. Behav. 1993. [Google Scholar] [CrossRef]
- The assessment of pain and distress in animals. In Appendix III in report of the technical committee to enquire into the welfare of animals kept under intensive husbandry conditions; Thrope, W.H., Brambell, F.W.R., Eds.; London, 1965. [Google Scholar]
- Tiego, J.; Chamberlain, S.R.; Harrison, B.J.; Dawson, A.; Albertella, L.; Youssef, G.J.; Fontenelle, L.F.; Yücel, M. Heritability of overlapping impulsivity and compulsivity dimensional phenotypes. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Tiira, K.; Hakosalo, O.; Kareinen, L.; Thomas, A.; Hielm-Björkman, A.; Escriou, C.; Arnold, P.; Lohi, H. Environmental effects on compulsive tail chasing in dogs. PLoS One 2012, 7, e41684–e41684. [Google Scholar] [CrossRef] [PubMed]
- Tilly, S.L.C.; Dallaire, J.; Mason, G.J. Middle-aged mice with enrichment-resistant stereotypic behaviour show reduced motivation for enrichment. Anim. Behav. 2010, 80, 363–373. [Google Scholar] [CrossRef]
- Tottenham, N.; Hare, T.A.; Quinn, B.T.; McCarry, T.W.; Nurse, M.; Gilhooly, T.; Millner, A.; Galvan, A.; Davidson, M.C.; Eigsti, I.M.; Thomas, K.M.; Freed, P.J.; Booma, E.S.; Gunnar, M.R.; Altemus, M.; Aronson, J.; Casey, B.J. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 2010, 13, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Tröster, H. Prevalence and functions of stereotyped behaviors in nonhandicapped children in residential care. J. Abnorm. Child Psychol. 1994, 22, 79–97. [Google Scholar] [CrossRef]
- Tynes, V. V; Sinn, L. Abnormal repetitive behaviors in dogs and cats: A guide for practitioners. Vet. Clin. North Am. Small Anim. Pract. 2014, 44, 543–564. [Google Scholar] [CrossRef]
- Uljarević, M.; Evans, D.W. Relationship between repetitive behaviour and fear across normative development, autism spectrum disorder, and down syndrome. Autism Res. 2017, 10, 502–507. [Google Scholar] [CrossRef]
- van der Eijk, J.A.J.; Lammers, A.; Kjaer, J.B.; Rodenburg, T.B. Stress response, peripheral serotonin and natural antibodies in feather pecking genotypes and phenotypes and their relation with coping style. Physiol. Behav. 2019, 199, 1–10. [Google Scholar] [CrossRef]
- van der Staay, F.J.; Schuurman, T.; Hulst, M.; Smits, M.; Prickaerts, J.; Kenis, G.; Korte, S.M. Effects of chronic stress: A comparison between tethered and loose sows. Physiol. Behav. 2010, 100, 154–164. [Google Scholar] [CrossRef]
- Van Moffaert, M. Clinical features and drug treatment of psychodermatological disorders. J. Eur. Acad. Dermatology Venereol. 1995, 5, S36. [Google Scholar] [CrossRef]
- van Staaveren, N.; Ellis, J.; Baes, C.F.; Harlander-Matauschek, A. A meta-analysis on the effect of environmental enrichment on feather pecking and feather damage in laying hens. Poult. Sci. 2021, 100, 397–411. [Google Scholar] [CrossRef]
- van Zeeland, Y. Medication for behavior modification in birds. Vet. Clin. North Am. - Exot. Anim. Pract. 2018, 21, 115–149. [Google Scholar] [CrossRef] [PubMed]
- Van Zeeland, Y.R.A.; Spruit, B.M.; Rodenburg, T.B.; Riedstra, B.; Van Hierden, Y.M.; Buitenhuis, B.; Mechiel Korte, S.; Lumeij, J.T. Feather damaging behaviour in parrots: A review with consideration of comparative aspects. Appl. Anim. Behav. Sci. 2009, 121, 75–95. [Google Scholar] [CrossRef]
- Vandeleest, J.J.; Mccowan, B.; Capitanio, J.P. Early rearing interacts with temperament and housing to influence the risk for motor stereotypy in rhesus monkeys (Macaca mulatta). Appl. Anim. Behav. Sci. 2011, 132, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Veissier, I.; De Passillé, A.M.; Després, G.; Rushen, J.; Charpentier, I.; Ramirez De La Fe, A.R.; Pradel, P. Does nutritive and non-nutritive sucking reduce other oral behaviors and stimulate rest in calves? J. Anim. Sci. 2002, 80, 2574–2587. [Google Scholar] [CrossRef]
- Vidal-Ribas, P.; Stringaris, A.; Rück, C.; Serlachius, E.; Lichtenstein, P.; Mataix-Cols, D. Are stressful life events causally related to the severity of obsessive-compulsive symptoms? A monozygotic twin difference study. Eur. Psychiatry 2015, 30, 309–316. [Google Scholar] [CrossRef]
- Vinke, C.M.; Hansen, S.W.; Mononen, J.; Korhonen, H.; Cooper, J.J.; Mohaibes, M.; Bakken, M.; Spruijt, B.M. To swim or not to swim: An interpretation of farmed mink’s motivation for a water bath. Appl. Anim. Behav. Sci. 2008, 111, 1–27. [Google Scholar] [CrossRef]
- Visser, E.K.; Ellis, A.D.; Van Reenen, C.G. The effect of two different housing conditions on the welfare of young horses stabled for the first time. Appl. Anim. Behav. Sci. 2008, 114, 521–533. [Google Scholar] [CrossRef]
- Vivar, J. Dispatches from the Canadian carceral state: The truth about provincial prisons. J. Prison. Prison. 2014, 23, 6–9. [Google Scholar] [CrossRef]
- Waiblinger, E.; König, B. Refinement of gerbil housing and husbandry in the laboratory. Altern. to Lab. Anim. 2004, 32, 163–169. [Google Scholar] [CrossRef]
- Waitt, C.; Buchanan-Smith, H.M. What time is feeding? How delays and anticipation of feeding schedules affect stump-tailed macaque behavior. Appl. Anim. Behav. Sci. 2001, 75, 75–85. [Google Scholar] [CrossRef]
- Wald, E.R.; Eickhoff, J.; Flood, G.E.; Heinz, M. V.; Liu, D.; Agrawal, A.; Morse, R.P.; Raney, V.M.; Veerapandiyan, A.; Madan, J.C. Estimate of the incidence of PANDAS and PANS in 3 primary care populations. Front. Pediatr. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Wales, L.; Charman, T.; Mount, R.H. An analogue assessment of repetitive hand behaviours in girls and young women with Rett syndrome. J. Intellect. Disabil. Res. 2004, 48, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Mason, G.J. A comparison of two types of running wheel in terms of mouse preference, health, and welfare. Physiol. Behav. 2018, 191, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Duggan, G.; Roulston, N.; Van Slack, A.; Mason, G.J. Negative affective states and their effects on morbidity, mortality and longevity. Anim. Welf. 2012, 21, 497–509. [Google Scholar] [CrossRef]
- Wallgren, T.; Lundeheim, N.; Wallenbeck, A.; Westin, R.; Gunnarsson, S. Rearing pigs with intact tails-experiences and practical solutions in Sweden. Animals 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Wallgren, T.; Westin, R.; Gunnarsson, S. A survey of straw use and tail biting in Swedish pig farms rearing undocked pigs. Acta Vet. Scand. 2016, 58, 1–11. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, H.; Li, M.; Rong, J.; Liao, X.; Wu, Y.; Wang, Y. Differences in peripheral and central metabolites and gut microbiome of laying hens with different feather-pecking phenotypes. Front. Microbiol. 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Wang, M.; Ricardi, R.; Ritfeld, G.J. PANDAS, a series of difficult decisions: a case report. BMC Psychiatry 2024, 24. [Google Scholar] [CrossRef]
- Warniment, A.; Brent, L. Abnormal behavior in a captive chimpanzee colony. Anim. Welf. Inst. 1996, 10–13. [Google Scholar]
- Weary, D.M.; Appleby, M.C.; Fraser, D. Responses of piglets to early separation from the sow. Appl. Anim. Behav. Sci. 1999, 63, 289–300. [Google Scholar] [CrossRef]
- Webb, L.E.; Van Reenen, C.G.; Engel, B.; Berends, H.; Gerrits, W.J.J.; Bokkers, E.A.M. Understanding oral stereotypies in calves: Alternative strategies, hypothalamic-pituitary-adrenal axis (re)activity and gene by environment interactions. Animal 2017, 11, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.M.; Curry-Pochy, L.S.; Shafer, R.; Rudy, J.; Lewis, M.H. Reversal learning in C58 mice: Modeling higher order repetitive behavior. Behav. Brain Res. 2017, 332, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.L. Investigation of specific stereotypic behaviors in horses; Michigan State University, 2009. [Google Scholar]
- Widowski, T.M.; Torrey, S.; Bench, C.J.; Gonyou, H.W. Development of ingestive behaviour and the relationship to belly nosing in early-weaned piglets. Appl. Anim. Behav. Sci. 2008, 110, 109–127. [Google Scholar] [CrossRef]
- Wiedenmayer, C. Causation of the ontogenetic development of stereotypic digging in gerbils. Anim. Behav. 1997, 53, 461–470. [Google Scholar] [CrossRef]
- Wigham, S.; Rodgers, J.; South, M.; McConachie, H.; Freeston, M. The interplay between sensory processing abnormalities, intolerance of uncertainty, anxiety and restricted and repetitive behaviours in autism spectrum disorder. J. Autism Dev. Disord. 2015, 45, 943–952. [Google Scholar] [CrossRef]
- Wilkes, B.J.; Bass, C.; Korah, H.; Febo, M.; Lewis, M.H. Volumetric magnetic resonance and diffusion tensor imaging of C58/J mice: Neural correlates of repetitive behavior. Brain Imaging Behav. 2019, 14, 2084–2096. [Google Scholar] [CrossRef]
- Wilkes, B.J.; Lewis, M.H. The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neurosci. Biobehav. Rev. 2018, 92, 152–171. [Google Scholar] [CrossRef]
- Willard, S.L.; Shively, C.A. Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis). Am. J. Primatol. 2012, 74, 528–542. [Google Scholar] [CrossRef]
- Williams, I.; Hoppitt, W.; Grant, R. The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare. Appl. Anim. Behav. Sci. 2017, 186, 85–92. [Google Scholar] [CrossRef]
- Williams, K.; Wheeler, D.M.; Silove, N.; Hazell, P. Cochrane review: Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Evidence-Based Child Heal. 2011, 6, 1044–1078. [Google Scholar] [CrossRef]
- Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress 2017, 6, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Gattuso, J.J.; Hannan, A.J.; Renoir, T. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol. Dis. 2023, 185, 106223. [Google Scholar] [CrossRef] [PubMed]
- Wolmarans, D.W.; Brand, L.; Stein, D.J.; Harvey, B.H. Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): Response to escitalopram treatment and basal serotonin transporter (SERT) density. Behav. Brain Res. 2013, 256, 545–553. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depressive disorder (depression) [WWW Document]. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/depression?
- Würbel, H.; Stauffacher, M. Age and weight at weaning affect corticosterone level and development of stereotypies in ICR-mice. Anim. Behav. 1997, 53, 891–900. [Google Scholar] [CrossRef]
- Wynchank, D.; Berk, M. Behavioural changes in dogs with acral lick dermatitis during a 2 month extension phase of fluoxetine treatment. Hum. Psychopharmacol. 1998, 13, 435–437. [Google Scholar] [CrossRef]
- Yalcin, E.; Aytug, N. Use of fluoxetine to treat stereotypical pacing behavior in a brown bear (Ursus arctos). J. Vet. Behav. Clin. Appl. Res. 2007, 2, 73–76. [Google Scholar] [CrossRef]
- Yang, K.; Essa, A.; Noriega, D.; Yu, D.; Osiecki, L.; Gauvin, C.A.; Illmann, C.; Bortolato, M.; Dunn, E.C.; Mathews, C.A.; Scharf, J.M. Relationship between adverse childhood experiences and symptom severity in adult men with Tourette syndrome. J. Psychiatr. Res. 2022, 155, 252–259. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, H.; Lee, P.H.; Tsetsos, F.; Davis, L.K.; Yu, D.; Lee, S.H.; Dalsgaard, S.; Haavik, J.; Barta, C.; Zayats, T.; Eapen, V.; Wray, N.R.; Devlin, B.; Daly, M.; Neale, B.; Børglum, A.D.; Crowley, J.J.; Scharf, J.; Mathews, C.A.; Faraone, S. V.; Franke, B.; Mattheisen, M.; Smoller, J.W.; Paschou, P. Investigating shared genetic basis across Tourette syndrome and comorbid neurodevelopmental disorders along the impulsivity-compulsivity spectrum. Biol. Psychiatry 2021, 90, 317–327. [Google Scholar] [CrossRef]
- Yasir, W.; Sherin, M.; Kazmi, S.F. The role of childhood trauma in developing nail biting and trichotillomania among adolescents. Int. J. Innov. Creat. Chang. 2021, 15, 1314–1332. [Google Scholar]
- Yeo, S.K.; Lee, W.K. The relationship between adolescents’ academic stress, impulsivity, anxiety, and skin picking behavior. Asian J. Psychiatr. 2017, 28, 111–114. [Google Scholar] [CrossRef]
- Young, F.M. The incidence of nervous habits observed in college students. J. Pers. 1947, 15, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Young, L.E.; McCallum, R.T.; Perreault, M.L.; Mason, G.J. Opportunistically using a chronic unpredictable stress study to investigate ‘inactive-but-awake’ behaviour as a potential welfare indicator in laboratory rats. Appl. Anim. Behav. Sci. 2024, 274. [Google Scholar] [CrossRef]
- Yue, S.; Duncan, I.J.H. Frustrated nesting behaviour: Relation to extra-cuticular shell calcium and bone strength in White Leghorn hens. Br. Poult. Sci. 2003, 44, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Zadegan, S.A.; Ramirez, F.; Park, J.W.; Rocha, N.P.; Furr Stimming, E.; Teixeira, A.L. Frequency of depression in Huntington’s disease: A systematic review and meta-analysis. J. Huntingtons. Dis. 2025, 14, 43–58. [Google Scholar] [CrossRef]
- Zhang, C.; Juniper, D.T.; Meagher, R.K. Effects of physical enrichment items and social housing on calves’ growth, behaviour and response to novelty. Appl. Anim. Behav. Sci. 2021, 237, 105295. [Google Scholar] [CrossRef]
- Zhang, M. yue; Li, X.; Zhang, X. hui; Liu, H. gui; Li, J. hong; Bao, J. Effects of confinement duration and parity on stereotypic behavioral and physiological responses of pregnant sows. Physiol. Behav. 2017, 179, 369–376. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Mao, Y.; Feng, X.-L.; Zheng, N.; Lü, L.-B.; Ma, Y.-Y.; Qin, D.-D.; Hu, X.-T. Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys. Behav. Brain Res. 2016, 306, 154–159. [Google Scholar] [CrossRef]
- Zibell, S.; Madansky, E. Impact of gum chewing on stress levels: Online self-perception research study. Curr. Med. Res. Opin. 2009, 25, 1491–1500. [Google Scholar] [CrossRef]
- Zimmerman, P.H.; Koene, P.; Van Hooff, J.A.R.A.M. Thwarting of behaviour in different contexts and the gakel-call in the laying hen. Appl. Anim. Behav. Sci. 2000, 69, 255–264. [Google Scholar] [CrossRef]
- Zohar, A.H.; LaBuda, M.; Moschel-Ravid, O. Obsessive-compulsive behaviors and cognitive functioning: A study of compulsivity, frame shifting and type a activity patterns in a normal population. Neuropsychiatry, Neuropsychol. Behav. Neurol. 1995, 8, 163–167. [Google Scholar]




| Condition (ARB) | Levels of negative mood or affective disorders compared to neurotypical humans | Within condition, associations between ARB and negative experiences, negative mood or affective disorders |
| Autism Spectrum Disorder (various repetitive behaviours) | Higher prevalence of anxiety in people with autism (e.g., Fuld, 2018; Nimmo-Smith et al., 2020), and elevated levels of anxiety (e.g., Rodgers et al., 2012, rev. Baribeau et al., 2020; García-Villamisar and Rojahn, 2015) Depression is more common too (e.g., Fuld, 2018) |
Children with high anxiety perform more ARB than those without anxiety (Rodgers et al., 2012) Children who are more bullied show more anxiety and more ARB (Cappadocia et al., 2012) Childhood trauma or stress exposure is associated with more severe symptoms in children/adolescents (Berg et al., 2016; Mehtar and Mukaddes, 2011; reviewed Dodds, 2021) Individual ARB scores positively covary with scores for stress (i.e., number of perceived stressors experienced day-to-day) and anxiety (Dellapiazza et al., 2022; García-Villamisar and Rojahn, 2015; Moore et al., 2022; Uljarević and Evans, 2017; Wigham et al., 2015) Compared to individuals reporting relatively high quality of life, those who self-report low quality of life show more ARB (Johansson and Sandin, 2023) |
| Excoriation Disorder (skin-picking) | Greater depressive tendencies (Özten et al., 2015); also higher PTSD scores (Özten et al., 2015; Spitzer et al., 2022) Higher ‘psychological distress’ (Spitzer et al., 2022), and more likely to sleep poorly than controls (Cavic et al., 2021) |
Academic stress and trait anxiety scores predict skin-picking severity in adolescents (Yeo and Lee, 2017). Skin-picking severity covaries with self-reported distress in adults (Maraz et al., 2017) |
| Obsessive-Compulsive Disorder (various compulsions) | Involves persistent worry and distress (APA, 2022) In children/adolescents, higher levels of psychosocial stress (Lin et al., 2007), and more anxiety and depression (Horesh et al., 2018) Increased risks of depression (e.g., reviewed Vidal-Ribas et al., 2015) |
Levels of psychosocial stress in children/ adolescents predict future OCD symptom severity (Lin et al., 2007), especially in subjects previously exposed to Streptococcus (Lin et al., 2010) OCD is anecdotally elevated in prison (Prison UK, 2014) Experiencing stressful life events or traumas often seems to trigger OCD onset (e.g., Murayama et al., 2020) |
|
Rett’s Syndrome (various repetitive behaviours) |
High anxiety (e.g., Barnes et al., 2015) Elevated anxiety and low mood (Mount et al., 2001) |
Anxiety leads to more ARB (Pineda, 2024); see also Buisson et al. (2017) Positive relationship between ARBs and anxiety scores (Cianfaglione et al., 2015) |
| Stereotypic Movement Disorder (SMD) (various repetitive behaviours) | Among college students who body rock, anxiety disorders and ‘general distress’ are higher than in the general population (Rafaeli-Mor et al., 1999). Elevated anxiety (Lewis, 2013), including clinical levels (Oakley et al., 2015), is common in SMD; most subjects also reported challenges at school (see also Castellanos et al., 1996) |
|
| Tourette’s syndrome (tics) | In children/adolescents, elevated levels of psychosocial stress (Lin et al., 2007); anxiety and depression (Horesh et al., 2018) | Levels of psychosocial stress in children/adolescents predict future tic severity (Lin et al., 2007), especially in subjects previously exposed to Streptococcus (Lin et al., 2010) Weak but significant positive correlation between motor tics severity and the quantity of daily minor negative events (Steinberg et al., 2013); clinical experience also suggests stressful experiences (e.g., starting school, relationship challenges) increase tic severity (Buse et al., 2014) More stressful events in the preceding months were associated with increased severity of tics (Tan et al., 2024) |
| Trichotillomania (hair-pulling) | Adults are more likely to experience anxious or depressed moods (e.g., Özten et al., 2015; Houghton et al., 2016; Cavic et al., 2021); also higher PTSD scores (Ötzen et al., 2015; (though cf. Gershuny et al., [2006] who find less PTSD despite trauma exposure) More likely to sleep poorly than controls (Cavic et al., 2021) Linked with depression in children (King et al., 1995; cited by Chamberlain et al., 2007) |
Severe hair-pulling is linked with elevated depression (Houghton et al., 2016), higher distress scores (Maraz et al., 2017), and poorer sleep quality (Cavic et al., 2021) Affected individuals develop more severe forms of hair pulling if clinically depressed, especially if also have an anxiety disorder (Grant et al., 2017b, 2017a, reviewed Yasir et al., 2021) Yasir et al. (2021) find that degrees of childhood trauma predict degrees of hair-pulling in adolescents |
|
Other Hair-pulling and other self-directed ARBs pooled Chorea (e.g., in Huntington’s disease) |
Depression and anxiety are common in Huntington’s disease (Dale and van Duijn, 2015; Zadegan et al., 2025) |
The degree to which individuals find their lives unpredictable, uncontrollable, and stressful predicts time spent in self-directed ARBs (e.g., hair-pulling, skin-picking: Grant et al., 2015) Higher scores of depression, anxiety and stress linked with performing more forms of self-directed ARB, along with hair-pulling (e.g., skin-picking, nail-biting: Stein et al., 2008) Severity of hair-plucking, skin-picking and nail-biting covaries with distress (Maraz et al., 2017) Chorea is usually worsened by anxiety and stress (Bhidayasiri and Truong, 2004) |
| Species | Preferred resource | Effect on ARB in animals housed without this |
|---|---|---|
| Chickens (Gallus gallus domesticus) | Nestboxes (e.g., Cooper and Appleby, 1995; 1997) |
Increased pacing before egg-laying (Yue and Duncan, 2003; Zimmerman et al., 2000) |
| Foraging/dust-bathing substrates (e.g., Dawkins and Beardsley, 1986) | More prevalent, more time-consuming feather pecking (e.g., Blokhuis and Arkes, 1984; Nicol et al., 2001; Dixon and Duncan, 2010) | |
| Perches for sleeping on at night (Olsson and Keeling, 2002) | More prevalent feather pecking (Huber-Eicher and Audige, 1999) | |
| Parrots (assuming similarities across species: Mellor et al., 2021) | Opportunities to forage (chew and manipulate—studied in orange-winged Amazon parrots (Rozek and Millam, 2011) | Reduced feather-plucking/chewing (Lumeij and Hommers, 2008)—studied in African grey parrots (Psittacus erithacus) |
|
Chinchillas (Chinchilla lanigera) |
Dust-bathing substrates (Redman, 1974) |
More prevalent fur-chewing (trend: Ponzio et al., 2007) |
| Mice (Mus musculus) | Nesting material (Roper, 1975) |
More cage-top twirling (Gross et al., 2011) |
| Diverse resources, including more space, diverse forms of shelter and nesting material, running wheels, hammocks, and chewable cardboard (Sherwin, 1998, 1996; Sherwin and Nicol, 1997, 1996; Tilly et al., 2010; Walker and Mason, 2018) | More prevalent, time-consuming ARB including backflipping, route-tracing, bar-mouthing, cage-top twirling and fur-plucking (e.g., Olsson and Sherwin, 2006; Tilly et al., 2010; Bechard et al., 2011; Nip et al., 2019) | |
| Bank voles (Clerionomys glareolus) | Loose hay and twigs as cover (Cooper et al., 1996) |
More prevalent repetitive jumping ARB (Ödberg, 1987) |
|
Gerbils (Meriones unguiculatus) |
Opaque artificial burrows (chambers plus tunnels) (Waiblinger and König, 2004) | Increased stereotypic digging in cage corners (Waiblinger and König, 2004; Wiedenmayer, 1997) |
| Mink (Neogale vision) | Water in which animals can swim/head-dip (Cooper and Mason, 2000; Mason et al., 2001) | Locomotor ARBs (e.g., pacing) are more prevalent and time-consuming (Hansen and Jeppesen, 2000; Ahola et al., 2011; though cf. Vinke et al., 2008) |
| Running wheels (Hansen and Jensen, 2006) | Increased locomotor ARBs (e.g., pacing) and ‘stationary’ whole-body ARBs (e.g., head-twirling: Malmkvist et al., 2024) | |
| Diverse resources, including space, flowing water, and novel and/or manipulable objects (Dallaire et al., 2012; Díez-León et al., 2016) | Pacing, head-twirling and scrabbling are more prevalent and time-consuming (e.g., Dallaire et al., 2011; Campbell et al., 2013; Díez-León et al., 2016) | |
| Blue Foxes (Vulpes lagopus) | Dirt floors for digging (Koistinen et al., 2016, 2007) | More time spent in oral ARBs (Koistinen et al., 2008) |
| Pigs (Sus scrofa) | Straw to manipulate and forage in (e.g., Pedersen et al., 2002) | Increased prevalence of tail-biting (reviewed by Wallgren et al., 2019) |
| Cattle (Bos taurus) | Brushes to self-scratch and groom with (McConnachie et al., 2018) | More time spent bar-licking (Park et al., 2020) |
| ARB Type | Test 2: Aversive Stimuli | Test 3: Fitness Threats | Test 4: Affect Modulating Drugs | Test 5: Concordance with Other Valid Indicators |
|---|---|---|---|---|
| Self-plucking in Psittaciformes | ↑ Barren housing | ↑ Illness and infection; early parental loss; social isolation |
↓ By tricyclic antidepressant | Social isolation can ↓ telomeres Individual ↑ fearfulness and “neuroticism” |
| Route-tracing / Repetitive Jumping in Rodents | ↑ Barren housing and food deprivation | ↑ Early weaning and social isolation | ↓ By anxiolytics antidepressants | Barren housing ↓ disease resilience and lifespan Individual ↑ corticosterone response to challenge |
| Self-injurious Behaviour in Primates | ↑ Barren housing and repeated/long-term exposure to aversive stimuli (e.g., CUS) | ↑ Maternal deprivation and social isolation | ↓ By SSRIs | Social isolation ↓ hippocampal neurogenesis) and ↓ health and survival Early maternal loss ↓ telomeres ↑ illness and ↓ survival Group-level ↑ cortisol response to stressor and sleep disruption |
| Pacing in Carnivora | ↑ Barren housing and food deprivation | ↑ Illness and infection, and early loss of the mother | SSRI ↓ pacing | ↑ Heart rate in small enclosures that induce pacing Group ↓ reproductive success Individual ↑ pacing correlates with ↓ reproductive success |
| ARB Type | Test 2: Aversive Stimuli | Test 3: Fitness Threats | Test 4: Affect Modulating Drugs | Test 5: Covariation with Valid Indicators |
|---|---|---|---|---|
| Self-plucking in Psittaciformes | ARBs take time to develop, plus eventually plateau RoT 4: False nulls due to threshold and ceiling effects |
Rearing with a parent does not always ↓ feather-plucking, nor does social isolation always ↑ RoT 4: False nulls (likely threshold effects), but possible priming to respond to futurechallenges with ARB |
Not always ↓ by SSRIs Meaning uncertain: affective impact of SSRIs is highly variable. Best to follow RoT 1 |
N/A |
| Route-tracing / Repetitive Jumping in Mice | Not all genotypes respond to stressors with ARB RoT 5: False nulls:ARBs not suitable for comparing genotypes ARBs take time to develop and also eventually plateau RoT 4: False nulls due to threshold and ceiling effects With time, becomes hard to alleviate with ‘enriched’ housing Possibly indicates hard-to-treat negative affect/cumulative poor welfare over a lifetime (more research needed) Best to follow RoT 1 |
No apparent effect of maternal separation age RoT 4: False null (likely threshold effect), but possible priming to respond to futurechallenges with ARB |
↑ When benzodiazepine given to restraint-stressed mice False lead possibly caused by reduced inactivity, in which case ideally corrected with RoT 6 (though N. B. freezing, hiding and inactive-but-awake were unfortunately not recorded) |
High ARB individuals have ↑ reproductive success and are less anxious RoTs 3 & 5: ARBs are not suitable for comparing individuals |
| Self-injurious Behaviour in Primates | Not ↓ by ‘enrichment’ (not ↑ by all stressors) RoT 4: False null (perhaps caused by motivational specificity) |
Social isolation does not ↑ SIB RoT 4: False null (perhaps caused by motivational specificity) |
Self-biters are less reactive to human presence and respond with ↓ ARB—replaced with freezing RoTs 3 & 5: ARBs not suitable for comparing individuals |
|
| Pacing in Carnivora | Pacing is ↓ by aversive stimuli when animals hide instead Pacing may ↑ with general activity levels and anticipation of food arrival RoT 2: ARB bout onset/offset does not reliably indicate negative emotion RoT 6: False nulls caused by increased inactivity |
May not reflect pain if housing is improved RoT 4: False null due to possible threshold effects |
Long-term pacing may be treatment-resistant Possibly indicates hard-to-treat negative affect/cumulative poor welfare over a lifetime (more research needed); best to follow RoT 1 |
Not always consistent at the individual level RoTs 3 & 5: ARBs not suitable for comparing individuals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).