Electroactive biofilms (EABs) are essential for the performance of bioelectrochemical systems (BESs), but their formation in Geobacter critically on conductive pili and exopolysaccharides, limiting applications under conditions where these components are deficient. Herein, we investigated the restorative effects of exogenous flavin mononucleotide (FMN) on EAB formation and extracellular electron transfer (EET) in two defective mutants of G. sulfurreducens: the pili-deficient PCA△1496 and exopolysaccharides-deficient PCA△1501. Results show that FMN significantly promoted biofilm thickness in PCAΔ1496 (250%) and PCAΔ1501 (33%), while boosting maximum current outputs by 175-fold and 317.7%, respectively. Spectroscopic and electrochemical analyses revealed that FMN incorporates into biofilms, binds to outer membrane c-type cytochromes (c-Cyts), and enhances electron exchange capacity. Differential pulse voltammetry further confirmed that FMN did not exist independently in the biofilm but bound to outer membrane c-Cyts as a cofactor. Collectively, exogenous FMN plays dual roles (electron shuttle and cytochrome-bound cofactor) in defective Geobacter EABs, effectively restoring biofilm formation and enhancing EET efficiency. This study expands the understanding of the mechanism of Geobacter EABs formation and provides a novel strategy for optimizing BES performance.