Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. New Stellar Mass Model
2.1. MICADO Imager
2.2. SimCADO Package
2.3. Inner-Surface Brightness Profile Variation
2.3.1. Mock MICADO Image Simulations
2.3.2. PSF Determination from MICADO Point Source Images
2.4. Brightness Profiles from MICADO Galaxy Images
3. Dynamical Model
3.1. Jeans Anisotropic Model (JAM)
3.2. Mock Stellar Kinematics
3.3. Improve IMBH Mass Measurements with MICADO
4. Conclusions
Software:
Acknowledgments
| 1 |
jampy v7.2.0 https://pypi.org/project/jampy/
|
| 2 | |
| 3 | Available from https://github.com/astronomyk/SimCADO
|
| 4 | |
| 5 | |
| 6 | v2.0.9 available from https://pypi.org/project/adamet/
|
References
- Ahn, C.P.; Seth, A.C.; Cappellari, M.; Krajnović, D.; Strader, J.; Voggel, K.T.; Walsh, J.L.; Bahramian, A.; Baumgardt, H.; Brodie, J.; et al. The Black Hole in the Most Massive Ultracompact Dwarf Galaxy M59-UCD3. ApJ 2018, 858, 102. [Google Scholar] [CrossRef]
- Nguyen, D.D. Improved dynamical constraints on the mass of the central black hole in NGC 404. arXiv e-prints 2017, p. arXiv:1712.02470. [Google Scholar] [CrossRef]
- Nguyen, D.D. Uncovering the Census of Black Holes in sub-Milky Way Mass Galaxies. In Proceedings of the ALMA2019: Science Results and Cross-Facility Synergies, December 2019, p. 106. [CrossRef]
- Thater, S.; Krajnović, D.; Weilbacher, P.M.; Nguyen, D.D.; Bureau, M.; Cappellari, M.; Davis, T.A.; Iguchi, S.; McDermid, R.; Onishi, K.; et al. Cross-checking SMBH mass estimates in NGC 6958 - I. Stellar dynamics from adaptive optics-assisted MUSE observations. MNRAS 2022, 509, 5416–5436. [Google Scholar] [CrossRef]
- Thater, S.; Lyubenova, M.; Fahrion, K.; Martín-Navarro, I.; Jethwa, P.; Nguyen, D.D.; van de Ven, G. Effect of the initial mass function on the dynamical SMBH mass estimate in the nucleated early-type galaxy FCC 47. A&A 2023, 675, A18. [Google Scholar] [CrossRef]
- Zou, F.; Gallo, E.; Seth, A.C.; Hodges-Kluck, E.; Ohlson, D.; Treu, T.; Baldassare, V.F.; Brandt, W.N.; Greene, J.E.; Madau, P.; et al. Central Massive Black Holes Are Not Ubiquitous in Local Low-mass Galaxies. ApJ 2025, 992, 176. [Google Scholar] [CrossRef]
- van den Bosch, R.C.E. Unification of the fundamental plane and Super Massive Black Hole Masses. ApJ 2016, 831, 134. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Cappellari, M.; Pereira-Santaella, M. Simulating supermassive black hole mass measurements for a sample of ultramassive galaxies using ELT/HARMONI high-spatial-resolution integral-field stellar kinematics. MNRAS 2023, 526, 3548–3569. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Ngo, H.N.; Le, T.Q.T.; Graham, A.W.; Soria, R.; Chilingarian, I.V.; Thatte, N.; Phuong, N.T.; Hoang, T.; Pereira-Santaella, M.; et al. Supermassive black hole mass measurement in the spiral galaxy NGC 4736 using JWST/NIRSpec stellar kinematics. A&A 2025, 698, L9. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Ngo, H.N.; Cappellari, M.; Le, T.Q.T.; Ho, T.H.T.; Le, T.N.; Gallo, E.; Thatte, N.; Zou, F.; Perna, M.; et al. Measuring the Central Dark Mass in NGC 4258 with JWST/NIRSpec Stellar Kinematics. arXiv e-prints 2025, arXiv:2509.20519. [Google Scholar]
- Nguyen, D.D.; Cappellari, M.; Le, T.Q.T.; Ngo, H.N.; Gallo, E.; Thatte, N.; Zou, F.; Ho, T.H.T.; Le, T.N.; Tong, H.G.; et al. Extending the Frontier of Spatially-Resolved Supermassive Black Hole Mass Measurements to at 1≲z≲2: Simulations with ELT/MICADO High-Resolution Mass Models and HARMONI Integral-Field Stellar Kinematics. arXiv e-prints 2025, arXiv:2511.10427. [Google Scholar]
- McConnell, N.J.; Ma, C.P. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties. ApJ 2013, 764, 184. [Google Scholar] [CrossRef]
- Saglia, R.P.; Opitsch, M.; Erwin, P.; Thomas, J.; Beifiori, A.; Fabricius, M.; Mazzalay, X.; Nowak, N.; Rusli, S.P.; Bender, R. The SINFONI Black Hole Survey: The Black Hole Fundamental Plane Revisited and the Paths of (Co)evolution of Supermassive Black Holes and Bulges. ApJ 2016, 818, 47. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Cappellari, M.; Ngo, H.N.; Le, T.Q.T.; Le, T.N.; Ho, K.N.H.; Nguyen, A.K.; On, P.T.; Tong, H.G.; Thatte, N.; et al. Simulating Intermediate Black Hole Mass Measurements for a Sample of Galaxies with Nuclear Star Clusters Using ELT/HARMONI High Spatial Resolution Integral-field Stellar Kinematics. AJ 2025, 170, 124. [Google Scholar] [CrossRef]
- Thatte, N. Harmoni. In Proceedings of the EAS2024, July 2024, p. 2682.
- Mezcua, M. Observational evidence for intermediate-mass black holes. International Journal of Modern Physics D 2017, 26, 1730021. [Google Scholar] [CrossRef]
- Fukugita, M.; Peebles, P.J.E. The Cosmic Energy Inventory. ApJ 2004, 616, 643–668. [Google Scholar] [CrossRef]
- van Wassenhove, S.; Volonteri, M.; Walker, M.G.; Gair, J.R. Massive black holes lurking in Milky Way satellites. MNRAS 2010, 408, 1139–1146. [Google Scholar] [CrossRef]
- Giersz, M.; Leigh, N.; Hypki, A.; Lützgendorf, N.; Askar, A. MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters. MNRAS 2015, 454, 3150–3165. [Google Scholar] [CrossRef]
- Volonteri, M. The Formation and Evolution of Massive Black Holes. Science 2012, 337, 544. [Google Scholar] [CrossRef]
- Bonoli, S.; Mayer, L.; Callegari, S. Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment. MNRAS 2014, 437, 1576–1592. [Google Scholar] [CrossRef]
- Neumayer, N.; Seth, A.; Böker, T. Nuclear star clusters. A&ARv 2020, 28, 4. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-Mass Black Holes. ARA&A 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Inayoshi, K.; Visbal, E.; Haiman, Z. The Assembly of the First Massive Black Holes. ARA&A 2020, 58, 27–97. [Google Scholar] [CrossRef]
- Seth, A.C.; van den Bosch, R.; Mieske, S.; Baumgardt, H.; Brok, M.D.; Strader, J.; Neumayer, N.; Chilingarian, I.; Hilker, M.; McDermid, R.; et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 2014, 513, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Voggel, K.T.; Seth, A.C.; Neumayer, N.; Mieske, S.; Chilingarian, I.; Ahn, C.; Baumgardt, H.; Hilker, M.; Nguyen, D.D.; Romanowsky, A.J.; et al. Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-compact Dwarf Galaxies in Centaurus A. ApJ 2018, 858, 20. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Andrews, J.; Arca Sedda, M.; Askar, A.; Baghi, Q.; Balasov, R.; Bartos, I.; Bavera, S.S.; Bellovary, J.; Berry, C.P.L.; et al. Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity 2023, 26, 2. [Google Scholar] [CrossRef]
- Arca Sedda, M.; Amaro Seoane, P.; Chen, X. Merging stellar and intermediate-mass black holes in dense clusters: implications for LIGO, LISA, and the next generation of gravitational wave detectors. A&A 2021, 652, A54. [Google Scholar] [CrossRef]
- Valluri, M.; Ferrarese, L.; Merritt, D.; Joseph, C.L. The Low End of the Supermassive Black Hole Mass Function: Constraining the Mass of a Nuclear Black Hole in NGC 205 via Stellar Kinematics. ApJ 2005, 628, 137–152. [Google Scholar] [CrossRef]
- Tremou, E.; Strader, J.; Chomiuk, L.; Shishkovsky, L.; Maccarone, T.J.; Miller-Jones, J.C.A.; Tudor, V.; Heinke, C.O.; Sivakoff, G.R.; Seth, A.C.; et al. The MAVERIC Survey: Still No Evidence for Accreting Intermediate-mass Black Holes in Globular Clusters. ApJ 2018, 862, 16. [Google Scholar] [CrossRef]
- Reines, A.E.; Greene, J.E.; Geha, M. Dwarf Galaxies with Optical Signatures of ACTIVE Massive Black Holes. ApJ 2013, 775, 116. [Google Scholar] [CrossRef]
- Baldassare, V.F.; Reines, A.E.; Gallo, E.; Greene, J.E. A 50,000 M⊙ Solar Mass Black Hole in the Nucleus of RGG 118. ApJL 2015, 809, L14, [1506.07531. [Google Scholar] [CrossRef]
- Zaw, I.; Rosenthal, M.J.; Katkov, I.Y.; Gelfand, J.D.; Chen, Y.P.; Greenhill, L.J.; Brisken, W.; Noori, H.A. An Accreting, Anomalously Low-mass Black Hole at the Center of Low-mass Galaxy IC 750. ApJ 2020, 897, 111. [Google Scholar] [CrossRef]
- Davis, B.L.; Graham, A.W. Refining the mass estimate for the intermediate-mass black hole candidate in NGC 3319. PASA 2021, 38, e030. [Google Scholar] [CrossRef]
- Chilingarian, I.V.; Katkov, I.Y.; Zolotukhin, I.Y.; Grishin, K.A.; Beletsky, Y.; Boutsia, K.; Osip, D.J. A Population of Bona Fide Intermediate-mass Black Holes Identified as Low-luminosity Active Galactic Nuclei. ApJ 2018, 863, 1. [Google Scholar] [CrossRef]
- Barth, A.J.; Ho, L.C.; Rutledge, R.E.; Sargent, W.L.W. POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole. ApJ 2004, 607, 90–102. [Google Scholar] [CrossRef]
- Thornton, C.E.; Barth, A.J.; Ho, L.C.; Rutledge, R.E.; Greene, J.E. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52. ApJ 2008, 686, 892–910, [0807.1535. [Google Scholar] [CrossRef]
- den Brok, M.; Seth, A.C.; Barth, A.J.; Carson, D.J.; Neumayer, N.; Cappellari, M.; Debattista, V.P.; Ho, L.C.; Hood, C.E.; McDermid, R.M. Measuring the Mass of the Central Black Hole in the Bulgeless Galaxy NGC 4395 from Gas Dynamical Modeling. ApJ 2015, 809, 101. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; Reines, A.E.; den Brok, M.; Sand, D.; McLeod, B. Extended Structure and Fate of the Nucleus in Henize 2-10. ApJ 2014, 794(34), 1408.4446. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; den Brok, M.; Neumayer, N.; Cappellari, M.; Barth, A.J.; Caldwell, N.; Williams, B.F.; Binder, B. Improved Dynamical Constraints on the Mass of the Central Black Hole in NGC 404. ApJ 2017, 836, 237. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; Neumayer, N.; Kamann, S.; Voggel, K.T.; Cappellari, M.; Picotti, A.; Nguyen, P.M.; Böker, T.; Debattista, V.; et al. Nearby Early-type Galactic Nuclei at High Resolution: Dynamical Black Hole and Nuclear Star Cluster Mass Measurements. ApJ 2018, 858, 118. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; Neumayer, N.; Iguchi, S.; Cappellari, M.; Strader, J.; Chomiuk, L.; Tremou, E.; Pacucci, F.; Nakanishi, K.; et al. Improved Dynamical Constraints on the Masses of the Central Black Holes in Nearby Low-mass Early-type Galactic Nuclei and the First Black Hole Determination for NGC 205. ApJ 2019, 872, 104. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Bureau, M.; Thater, S.; Nyland, K.; den Brok, M.; Cappellari, M.; Davis, T.A.; Greene, J.E.; Neumayer, N.; Imanishi, M.; et al. The MBHBM★ Project - II. Molecular gas kinematics in the lenticular galaxy NGC 3593 reveal a supermassive black hole. MNRAS 2022, 509, 2920–2939. [Google Scholar] [CrossRef]
- Davis, T.A.; Nguyen, D.D.; Seth, A.C.; Greene, J.E.; Nyland, K.; Barth, A.J.; Bureau, M.; Cappellari, M.; den Brok, M.; Iguchi, S.; et al. Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations. MNRAS 2020, 496, 4061–4078. [Google Scholar] [CrossRef]
- Noyola, E.; Gebhardt, K.; Bergmann, M. Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri. ApJ 2008, 676, 1008–1015. [Google Scholar] [CrossRef]
- Noyola, E.; Gebhardt, K.; Kissler-Patig, M.; Lützgendorf, N.; Jalali, B.; de Zeeuw, P.T.; Baumgardt, H. Very Large Telescope Kinematics for Omega Centauri: Further Support for a Central Black Hole. ApJL 2010, 719, L60–L64. [Google Scholar] [CrossRef]
- Feldmeier, A.; Lützgendorf, N.; Neumayer, N.; Kissler-Patig, M.; Gebhardt, K.; Baumgardt, H.; Noyola, E.; de Zeeuw, P.T.; Jalali, B. Indication for an intermediate-mass black hole in the globular cluster NGC 5286 from kinematics. A&A 2013, 554, A63. [Google Scholar] [CrossRef]
- Kızıltan, B.; Baumgardt, H.; Loeb, A. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature 2017, 542, 203–205. [Google Scholar] [CrossRef]
- Pechetti, R.; Seth, A.; Kamann, S.; Caldwell, N.; Strader, J.; den Brok, M.; Luetzgendorf, N.; Neumayer, N.; Voggel, K. Detection of a 100,000 M ⊙ black hole in M31’s Most Massive Globular Cluster: A Tidally Stripped Nucleus. ApJ 2022, 924, 48. [Google Scholar] [CrossRef]
- Häberle, M.; Neumayer, N.; Seth, A.; Bellini, A.; Libralato, M.; Baumgardt, H.; Whitaker, M.; Dumont, A.; Alfaro Cuello, M.; Anderson, J.; et al. Fast-moving stars around an intermediate-mass black hole in Omega Centauri. arXiv e-prints 2024, arXiv:2405.06015. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. AJ 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Kormendy, J.; Richstone, D. Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei. ARA&A 1995, 33, 581. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. ApJL 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Krajnović, D.; Cappellari, M.; McDermid, R.M. Two channels of supermassive black hole growth as seen on the galaxies mass-size plane. MNRAS 2018, 473, 5237–5247. [Google Scholar] [CrossRef]
- Nguyen, D.D.; den Brok, M.; Seth, A.C.; Davis, T.A.; Greene, J.E.; Cappellari, M.; Jensen, J.B.; Thater, S.; Iguchi, S.; Imanishi, M.; et al. The MBHBM★ Project. I. Measurement of the Central Black Hole Mass in Spiral Galaxy NGC 3504 Using Molecular Gas Kinematics. ApJ 2020, 892, 68. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Izumi, T.; Thater, S.; Imanishi, M.; Kawamuro, T.; Baba, S.; Nakano, S.; Turner, J.L.; Kohno, K.; Matsushita, S.; et al. Black hole mass measurement using ALMA observations of [CI] and CO emissions in the Seyfert 1 galaxy NGC 7469. MNRAS 2021, 504, 4123–4142. [Google Scholar] [CrossRef]
- Ngo, H.N.; Nguyen, D.D.; Le, T.Q.T.; Ho, K.N.H.; Ho, T.H.T.; Gallo, E.; Nyland, K.; Imanishi, M.; Nakanishi, K.; Le, Q.T.; et al. Revisiting the Supermassive Black Hole Mass of NGC 7052 Using High Spatial Resolution Molecular Gas Observed with ALMA. ApJ 2025, 992, 211. [Google Scholar] [CrossRef]
- Ngo, H.N.; Nguyen, D.D.; Nguyen, T.N.; Dang, T.H.; Ho, T.H.T. Extending the simulations of intermediate-mass black hole mass measurements to Virgo Cluster using ELT/HARMONI high resolution integral-field stellar kinematics. arXiv e-prints 2025, arXiv:2509.03364. [Google Scholar] [CrossRef]
- Ngo, H.N.; Nguyen, D.D.; Le, T.T.Q.; Ho, T.H.T.; Nguyen, T.N.; Dang, T.H. Detecting Intermediate-Mass Black Holes out to 20 Mpc with ELT/HARMONI: The Case of FCC 119. Universe 2025, 11. [Google Scholar] [CrossRef]
- Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. MNRAS 2008, 390, 71–86, [0806.0042. [Google Scholar] [CrossRef]
- Cappellari, M. Efficient solution of the anisotropic spherically aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics. MNRAS 2020, 494, 4819–4837. [Google Scholar] [CrossRef]
- Zieleniewski, S.; Thatte, N.; Kendrew, S.; Houghton, R.C.W.; Swinbank, A.M.; Tecza, M.; Clarke, F.; Fusco, T. HSIM: a simulation pipeline for the HARMONI integral field spectrograph on the European ELT. MNRAS 2015, 453, 3754–3765. [Google Scholar] [CrossRef]
- Davies, R.; Ageorges, N.; Barl, L.; Bedin, L.R.; Bender, R.; Bernardi, P.; Chapron, F.; Clenet, Y.; Deep, A.; Deul, E.; et al. MICADO: the E-ELT adaptive optics imaging camera. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy III; McLean, I.S.; Ramsay, S.K.; Takami, H., Eds., July 2010, Vol. 7735, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 77352A. July. [CrossRef]
- Davies, R.; Hörmann, V.; Rabien, S.; Sturm, E.; Alves, J.; Clénet, Y.; Kotilainen, J.; Lang-Bardl, F.; Nicklas, H.; Pott, J.U.; et al. MICADO: The Multi-Adaptive Optics Camera for Deep Observations. The Messenger 2021, 182, 17–21. [Google Scholar] [CrossRef]
- Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J.U.; Ragazzoni, R.; Tolstoy, E.; et al. MICADO: first light imager for the E-ELT. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VI; Evans, C.J.; Simard, L.; Takami, H., Eds., August 2016, Vol. 9908, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 99081Z. August. [CrossRef]
- Leschinski, K.; Czoske, O.; Köhler, R.; Mach, M.; Zeilinger, W.; Verdoes Kleijn, G.; Alves, J.; Kausch, W.; Przybilla, N. SimCADO: an instrument data simulator package for MICADO at the E-ELT. In Proceedings of the Modeling, Systems Engineering, and Project Management for Astronomy VI; Angeli, G.Z.; Dierickx, P., Eds., August 2016, Vol. 9911, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 991124. August. [CrossRef]
- Graham, A.W.; Erwin, P.; Trujillo, I.; Asensio Ramos, A. A New Empirical Model for the Structural Analysis of Early-Type Galaxies, and A Critical Review of the Nuker Model. AJ 2003, 125, 2951–2963. [Google Scholar] [CrossRef]
- Trujillo, I.; Erwin, P.; Asensio Ramos, A.; Graham, A.W. Evidence for a New Elliptical-Galaxy Paradigm: Sérsic and Core Galaxies. AJ 2004, 127, 1917–1942. [Google Scholar] [CrossRef]
- Sersic, J.L. Atlas de galaxias australes; Obs. Astron. Univ. Nacional de Córdoba: Córdoba, 1968.
- Ciotti, L.; Bertin, G. Analytical properties of the R1/m law. A&A 1999, 352, 447–451. [Google Scholar] [CrossRef]
- Tremaine, S.; Richstone, D.O.; Byun, Y.I.; Dressler, A.; Faber, S.M.; Grillmair, C.; Kormendy, J.; Lauer, T.R. A family of models for spherical stellar systems. AJ 1994, 107, 634–644. [Google Scholar] [CrossRef]
- Cappellari, M. Efficient multi-Gaussian expansion of galaxies. MNRAS 2002, 333, 400–410. [Google Scholar] [CrossRef]
- Jedrzejewski, R.I. CCD surface photometry of elliptical galaxies - I. Observations, reduction and results. MNRAS 1987, 226, 747–768. [Google Scholar] [CrossRef]
- Neumayer, N.; Walcher, C.J. Are Nuclear Star Clusters the Precursors of Massive Black Holes? Advances in Astronomy 2012, 2012, 709038. [Google Scholar] [CrossRef]
- Pechetti, R.; Seth, A.; Neumayer, N.; Georgiev, I.; Kacharov, N.; den Brok, M. Luminosity Models and Density Profiles for Nuclear Star Clusters for a Nearby Volume-limited Sample of 29 Galaxies. ApJ 2020, 900, 32. [Google Scholar] [CrossRef]
- Binney, J. The radius-dependence of velocity dispersion in elliptical galaxies. MNRAS 1980, 190, 873–880. [Google Scholar] [CrossRef]
- Haario, H.; Saksman, E.; Tamminen, J. An adaptive Metropolis algorithm. Bernoulli 2001, 7, 223–242. [Google Scholar] [CrossRef]
- Cappellari, M.; Scott, N.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.F.; Davies, R.L.; Davis, T.A.; et al. The ATLAS3D project - XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane. MNRAS 2013, 432, 1709–1741. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, 2009.
- Hunter, J.D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Bradley, L.; Sipocz, B.; Robitaille, T.; Tollerud, E.; Vinícius, Z.; Deil, C.; Barbary, K.; Wilson, T.J.; Busko, I.; Donath, A.; et al. astropy/photutils: 2.0.2, 2024. [CrossRef]
- Astropy Collaboration.; Price-Whelan, A.M.; Lim, P.L.; Earl, N.; Starkman, N.; Bradley, L.; Shupe, D.L.; Patil, A.A.; Corrales, L.; Brasseur, C.E.; et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. ApJ 2022, 935, 167. [CrossRef]





| (″) | (″) | |||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| j | NGC 300 | NGC 300 | NGC 300 | NGC 3115 dw01 | NGC 3115 dw01 | NGC 3115 dw01 |
| – | ||||||
| 1 | 4.344 | 0.122 | 0.999 | 4.343 | 0.134 | 0.999 |
| 2 | 3.469 | 0.126 | 0.999 | 3.469 | 0.286 | 0.999 |
| 3 | 1.902 | 0.238 | 0.999 | 1.902 | 0.719 | 0.999 |
| 4 | 1.048 | 0.249 | 0.999 | 1.048 | 0.830 | 0.90 |
| 5 | 1.072 | 0.562 | 0.999 | 1.072 | 1.626 | 0.90 |
| 6 | – | – | – | −0.021 | 2.318 | 0.90 |
| 7 | – | – | – | 0.172 | 3.909 | 0.90 |
| 8 | – | – | – | 0.213 | 6.944 | 0.90 |
| 9 | – | – | – | −0.096 | 11.015 | 0.90 |
| – | ||||||
| 1 | 3.648 | 0.005 | 0.999 | 4.177 | 0.006 | 0.999 |
| 2 | 3.351 | 0.017 | 0.999 | 3.313 | 0.113 | 0.999 |
| 3 | 2.841 | 0.027 | 0.999 | 2.911 | 0.108 | 0.999 |
| 4 | 4.247 | 0.036 | 0.999 | 4.362 | 0.125 | 0.999 |
| 5 | 4.081 | 0.088 | 0.999 | 2.958 | 0.273 | 0.999 |
| 6 | 2.623 | 0.110 | 0.999 | 2.315 | 0.732 | 0.90 |
| 7 | 3.565 | 0.177 | 0.999 | 1.048 | 0.830 | 0.90 |
| 8 | 3.330 | 0.503 | 0.999 | 1.072 | 1.626 | 0.90 |
| 9 | – | – | – | −0.021 | 2.318 | 0.90 |
| 10 | – | – | – | 0.172 | 3.909 | 0.90 |
| 11 | – | – | – | 0.213 | 6.944 | 0.90 |
| 12 | – | – | – | −0.096 | 11.015 | 0.90 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| j | NGC 300 | NGC 300 | NGC 300 | NGC 3115 dw01 | NGC 3115 dw01 | NGC 3115 dw01 |
| – | ||||||
| 1 | 4.218 | 0.005 | 0.999 | 3.954 | 0.004 | 0.999 |
| 2 | 3.848 | 0.017 | 0.999 | 3.890 | 0.012 | 0.999 |
| 3 | 3.443 | 0.035 | 0.999 | 4.374 | 0.111 | 0.999 |
| 4 | 3.927 | 0.080 | 0.999 | 3.517 | 0.231 | 0.999 |
| 5 | 3.921 | 0.101 | 0.999 | 2.315 | 0.732 | 0.90 |
| 6 | 3.876 | 0.128 | 0.999 | 1.048 | 0.830 | 0.90 |
| 7 | 2.829 | 0.135 | 0.999 | 1.072 | 1.626 | 0.90 |
| 8 | 3.850 | 0.176 | 0.999 | −0.021 | 2.318 | 0.90 |
| 9 | 3.600 | 0.285 | 0.999 | 0.172 | 3.909 | 0.90 |
| 10 | 3.341 | 0.562 | 0.999 | 0.213 | 6.944 | 0.90 |
| 11 | – | – | – | −0.096 | 11.015 | 0.90 |
| – | ||||||
| 1 | 5.574 | 0.005 | 0.999 | 4.823 | 0.005 | 0.999 |
| 2 | 4.664 | 0.017 | 0.999 | 4.425 | 0.017 | 0.999 |
| 3 | 4.116 | 0.046 | 0.999 | 4.281 | 0.073 | 0.999 |
| 4 | 3.179 | 0.059 | 0.999 | 4.408 | 0.101 | 0.999 |
| 5 | 4.193 | 0.089 | 0.999 | 2.456 | 0.103 | 0.999 |
| 6 | 3.804 | 0.117 | 0.999 | 3.468 | 0.250 | 0.999 |
| 7 | 3.993 | 0.167 | 0.999 | 2.315 | 0.732 | 0.90 |
| 8 | 2.077 | 0.332 | 0.999 | 1.048 | 0.830 | 0.90 |
| Slope | Parameters | input M⊙ | input M⊙ | input M⊙ | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| (inner | (JAM) | Best-fit | 1 error | 3 error | Best-fit | 1 error | 3 error | Best-fit | 1 error | 3 error |
| power law) | model | (16–84%) | (0.14–99.86%) | model | (0.14–99.86%) | (16–84%) | model | (16–84%) | (0.14–99.86%) | |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
| lg(/) | 0.007 | 0.056 | 3.916 | |||||||
| I (/) | 0.667 | 0.682 | 0.681 | |||||||
| 85.35 | 71.89 | 80.0 | ||||||||
| −0.039 | −0.020 | −0.010 | ||||||||
| lg(/) | 0.01 | 3.639 | 3.978 | |||||||
| I (/) | 0.654 | 0.639 | 0.681 | |||||||
| 79.34 | 84.87 | 74.61 | ||||||||
| −0.026 | −0.028 | −0.011 | ||||||||
| lg(/) | 0.009 | 3.816 | 4.052 | |||||||
| I (/) | 0.640 | 0.617 | 0.647 | |||||||
| 78.36 | 84.5 | 88.73 | ||||||||
| −0.016 | −0.013 | −0.011 | ||||||||
| lg(/) | 0.017 | 3.717 | 3.892 | |||||||
| I (/) | 0.618 | 0.560 | 0.636 | |||||||
| 80.43 | 79.98 | 80.1 | ||||||||
| −0.024 | −0.03 | −0.017 | ||||||||
| lg(/) | 0.001 | 0.001 | 0.005 | |||||||
| I (/) | 0.427 | 0.444 | 0.465 | |||||||
| 77.28 | 77.78 | 88.04 | ||||||||
| −0.090 | −0.076 | −0.058 | ||||||||
| Slope | Parameters | input M⊙ | input M⊙ | input M⊙ | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| (inner | (JAM) | Best-fit | 1 error | 3 error | Best-fit | 1 error | 3 error | Best-fit | 1 error | 3 error |
| power law) | model | (16–84%) | (0.14–99.86%) | model | (0.14–99.86%) | (16–84%) | model | (16–84%) | (0.14–99.86%) | |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
| lg(/) | 0.181 | 4.14 | 4.321 | |||||||
| I (/) | 1.569 | 1.56 | 1.556 | |||||||
| 30 | 39.25 | 76.05 | ||||||||
| −0.1 | −0.068 | −0.026 | ||||||||
| lg(/) | 0.393 | 4.331 | 4.875 | |||||||
| I (/) | 1.472 | 1.475 | 1.481 | |||||||
| 87.35 | 81.01 | 79.99 | ||||||||
| −0.001 | −0.004 | −0.004 | ||||||||
| lg(/) | 0.374 | 4.506 | 4.81 | |||||||
| I (/) | 1.454 | 1.455 | 1.503 | |||||||
| 74.87 | 77.68 | 87.94 | ||||||||
| −0.005 | −0.007 | −0.0006 | ||||||||
| lg(/) | 0.08 | 0.127 | 4.208 | |||||||
| I (/) | 1.121 | 1.133 | 1.16 | |||||||
| 82.77 | 88.81 | 86.43 | ||||||||
| −0.002 | −0.001 | −0.001 | ||||||||
| lg(/) | 0.042 | 0.026 | 0.135 | |||||||
| I (/) | 0.830 | 0.841 | 0.868 | |||||||
| 79.98 | 88.33 | 80.81 | ||||||||
| −0.004 | −0.007 | −0.006 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
