Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Formulations of the Constitutive Model
2.1. Yield and Plastic Potential Functions
2.1.1. Plastic Potential Function
2.1.2. Yield Function
2.2. Dilatancy Equation
2.3. Bounding Surface
2.4. Hardening Law and Plastic Modulus

3. Elastoplastic Constitutive Relations
3.1. Transformed Stress Tensor
3.2. Stress–Strain Modelling for Elastoplastic Constitutive Model
4. Model Verifications and Discussions
4.1. Undrained Analysis
4.2. Drained Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bo, M.W.; Arulrajah, A.; Sukmak, P.; Horpibulsuk, S. Mineralogy and geotechnical properties of Singapore marine clay at Changi. Soils Found. 2015, 55, 600–613. [Google Scholar] [CrossRef]
- Bo, M.W.; Arulrajah, A.; Leong, M.; Horpibulsuk, S.; Disfani, M.M. Evaluating the in-situ hydraulic conductivity of soft soil under land reclamation fills with the BAT Eng. Geol. 2014, 168, 98–103. [Google Scholar]
- He, P.; Newson, T. Undrained capacity of circular shallow foundations on two-layer clays under combined VHMT loading. Wind Eng 2023, 46, 579–96. [Google Scholar] [CrossRef]
- DeGroot, D.J.; Landon, M.E.; Poirier, S.E. Geology and engineering properties of sensitive Boston Blue Clay at Newbury, Massachusetts. AIMS Geosci 2019, 5, 412–447. [Google Scholar] [CrossRef]
- Lutenegger, A.J. Geotechnical Behavior of Overconsolidated Surficial Clay Crusts. Transp. Res. Rec. 1995, 1479, 61–74. [Google Scholar]
- Mesri, G.; Ali, S. Undrained shear strength of a glacial clay overconsolidated by desiccation. Geotechnique 1999, 49, 181–198. [Google Scholar] [CrossRef]
- Chang, M.F. Interpretation of overconsolidation ratio from in situ tests in Recent clay deposits in Singapore and Malaysia. Can. Geotech. J. 1991, 28, 210–225. [Google Scholar] [CrossRef]
- Agaiby, S.S.; Mayne, P.W. Analytical CPTU Solutions Applied to Boston Blue Clay. In Proceedings of the Geo-Congress 2022, Charlotte, North Carolina, 20–23 March 2022. [Google Scholar]
- Roscoe, K.H.; Schofield, A.N.; Wroth, C.P. On the Yielding of Soils. Geotechnique 1963, 13, 211–246. [Google Scholar] [CrossRef]
- Roscoe, K.H.; Burland, J.B. On the generalized stress–strain behaviour of ‘wet’ clay. In Engineering Plasticity; Heyman, J., Leckie, F.A., Eds.; Cambridge University Press: Cambridge, UK, 1968; pp. 535–609. [Google Scholar]
- Miura, N.; Murata, H.; Yasufuku, N. Stress-strain characteristics of sand in a particle-crushing region. Soils Found. 1984, 24, 77–89. [Google Scholar] [CrossRef]
- Wong, T.T.; Morgenstern, N.R.; Sego, D.C. A constitutive model for broken ice. Cold Reg Sci Technol 1990, 17, 241–252. [Google Scholar] [CrossRef]
- Matsuoka, H.; Yao, Y.P.; Sun, D.A. The Cam-Clay Models Revised by the SMP Criterion. Soils Found. 1999, 39, 81–95. [Google Scholar] [CrossRef]
- Yao, Y.P.; Sun, D.A.; Luo, T. A Critical state model for sands dependent on stress and density. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 323–337. [Google Scholar] [CrossRef]
- Yao, Y.P.; Sun, D.A.; Matsuoka, H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput. Geotech. 2008, 35, 210–222. [Google Scholar] [CrossRef]
- Suebsuk, J.; Horpibulsuk, S.; Liu, M.D. A critical state model for overconsolidated structured clays. Comput. Geotech. 2011, 38, 648–658. [Google Scholar] [CrossRef]
- Cao, L.F.; Teh, C.I.; Chang, M.F. Undrained cavity expansion in modified Cam clay I: Theoretical analysis. Geotechnique 2001, 51, 323–334. [Google Scholar] [CrossRef]
- Grimstad, G.; Degago, S.A.; Nordal, S. Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotech. 2010, 5, 69–81. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Xu, Q.; Hicher, P.Y. A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech. 2013, 8, 509–523. [Google Scholar] [CrossRef]
- Miranda, P.A.M.N.; Vargas, E.A.; Moraes, A. Evaluation of the Modified Cam Clay model in basin and petroleum system modeling (BPSM) loading conditions. Mar. Pet. Geol. 2019, 112, 104–112. [Google Scholar] [CrossRef]
- Ou, C.Y.; Liu, C.C.; Chin, C.K. Anisotropic viscoplastic modeling of rate-dependent behavior of clay. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1189–1206. [Google Scholar] [CrossRef]
- Kaewhanam, N.; Chaimoon, K. A Simplified Silty Sand Model. Appl. Sci. 2023, 13, 8241. [Google Scholar] [CrossRef]
- Gens, A.; Potts, D.M. Critical State Models in Computational Geomechanics. Eng. Comput. 1988, 5, 178–197. [Google Scholar] [CrossRef]
- Yao, Y.P.; Hou, W.; Zhou, A.N. UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 2009, 59, 451–69. [Google Scholar] [CrossRef]
- Mita, K.A.; Dasari, G.R.; Lo, K.W. Performance of a Three-Dimensional Hvorslev-Modified Cam Clay Model for Overconsolidated Clay. Int. J. Geomech 2004, 4, 296–309. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, Z.; Zhao, J.; Wan, Z. Modified UH Model: Constitutive Modeling of Overconsolidated Clays Based on a Parabolic Hvorslev Envelope. J. Geotech. Geoenviron. Eng. 2012, 138, 860–868. [Google Scholar] [CrossRef]
- Tsiampousi, A.; Zdravković, L.; Potts, D.M. A New Hvorslev Surface for Critical State Type Unsaturated and Saturated Constitutive Models. Comput. Geotech. 2013, 48, 156–166. [Google Scholar] [CrossRef]
- Hvorslev, M.J. Über die Festigkeitseigenschaften Gestörter Bindiger Böden: With an Abstract in English; Danmarks Naturvidenskabelige Samfund: Copenhagen, Denmark, 1937; No. 45.
- Chen, Y.N.; Yang, Z.X. A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Comput. Geotech. 2017, 90, 133–43. [Google Scholar] [CrossRef]
- Xu, B.; Chen, K.; Pang, R. A bounding surface model for overconsolidated clays with unified plastic potential function in triaxial and general stress state. Comput. Geotech. 2024, 172, 106429. [Google Scholar] [CrossRef]
- Phonchamni, N.; Chatwong, T.; Udomchai, A.; Sultornsanee, S.; Angkawisittpan, N.; Sangiamsak, N.; Kaewhanam, N. Refined Consolidation Settlement Based on the Oedometer Tests for Normally and Overconsolidated Clays. Appl. Sci. 2025, 15(10), 5777. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, J.; Yin, Z.Y. Dilatancy relation for overconsolidated clay. Int. J. Geomech 2017, 17, 06016035. [Google Scholar] [CrossRef]
- Ghobadi, B.; Taheri, E.; Eftakhari, M. Anisotropic bounding surface plasticity model for soils. Sci. Rep. 2025, 15, 20803. [Google Scholar] [CrossRef]
- Tong, C.X.; Liu, H.W.; Li, H.C. Constitutive modeling of normally and over-consolidated clay with a high-order yield function. Mathematics 2022, 10, 1376. [Google Scholar] [CrossRef]
- Szypcio, Z.; Dołżyk-Szypcio, K. Stress-dilatancy behaviour of remoulded Fujinomori clay. Stud. Geotech. Mech. 2023, 45, 247–252. [Google Scholar] [CrossRef]
- Wood, D.M. Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Nakai, T.; Hinokio, M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters. Soils Found. 2004, 44, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Gens, A. Stress–strain and strength of a low plasticity clay. Ph.D. Thesis, Imperial College, University of London, London, UK, 1982. [Google Scholar]
- Dafalias, Y.F.; Herrmann, L.R. Bounding surface plasticity. II: Application to isotropic cohesive soils. J. Eng. Mech. 1986, 112, 1263–1291. [Google Scholar] [CrossRef]
- Gasparre, A. Advanced Laboratory Characterisation of London Clay. Ph.D. Thesis, Imperial College London, London, UK, 2005. [Google Scholar]
- Pestana, J.M.; Whittle, A.J.; Gens, A. Evaluation of a constitutive model for clays and sands: Part II–clay behaviour. Int. J. Numer. Anal. Meth. Geomech 2002, 26, 1123–1146. [Google Scholar] [CrossRef]
- Wroth, C.P.; Loudon, P.A. The correlation of strains within a family of triaxial tests on overconsolidated samples of kaolin. In Proceedings of the Geotechnical Conference, Oslo, Norway, 1967; Volume 1, pp. 159–163. [Google Scholar]
- Sun, D.A.; Chen, B.; Zhou, K. Experimental study of compression and shear deformation characteristics of remolded Shanghai soft clay. Rock Soil Mech. 2010, 31, 1389–1394. [Google Scholar]



















| Source of Clay | Basic Parameters | Extra Parameters | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| λ | κ | ν | Mc | e0 | Ψ1 | Ω1 | χ2 | β02 | n2 | α3 | β3 | ||
| London clay [40] | 0.168 | 0.064 | 0.25 | 0.827 | 1.843 | 1.1 | 0.95 | 0.2 | 1.0 | 1.0 | 0.8 | 1.0 | |
| Lower Comer till [38] | 0.063 | 0.018 | 0.30 | 1.200 | 0.747 | 1.0 | 1.05 | 0.2 | 1.0 | 0.8 | 0.7 | 1.0 | |
| Boston blue clay [41] | 0.184 | 0.036 | 0.10 | 1.353 | 2.059 | 1.4 | 0.93 | 0.3 | 1.0 | 1.0 | 0.7 | 0.5 | |
| Kaolin clay [42] | 0.260 | 0.050 | 0.20 | 0.896 | 2.957 | 1.5 | 1.17 | 0.3 | 1.0 | 1.2 | 0.8 | 1.0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
