Submitted:
23 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sampling
2.3. Extraction Protocol
2.4. 1H-NMR Spectral Analysis
2.5. Decay Tests
2.6. Statistical Analysis
2.6.1. Simple Linear Regression Model
2.6.2. Multiple Linear Regression Model
3. Results
3.1. Simple Regression Model
3.2. Multiple Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 1H-NMR | Proton Nuclear Magnetic Resonance |
| WL | Weight Loss |
| TAE | Total Acetone Extractive |
| P | Pinosylvin |
| PMME | Pinosylvin Mono Methyl Ether |
| PDME | Pinosylvin Di-Methyl Ether |
| AA | Abietic Acid |
| DAA | Dehydro-Abietic Acid |
| NAA | Neoabietic Acid |
| PLA | Palustric Acid |
| LPA | Levopimaric Acid |
| PMA | Pimaric Acid |
| SPA | Sandaracopimaric Acid |
| IPA | Isopimaric Acid |
References
- Råberg, U.; Edlund, M.-L.; Terziev, N.; Land, C.J. Testing and Evaluation of Natural Durability of Wood in above Ground Conditions in Europe – an Overview. J Wood Sci 2005, 51, 429–440. [Google Scholar] [CrossRef]
- Petersen, D.; Link, R.; Carll, C.; Highley, T. Decay of Wood and Wood-Based Products Above Ground in Buildings. J. Test. Eval. 1999, 27, 150. [Google Scholar] [CrossRef]
- Eaton, R.A.; Hale, M.D.C. Wood : Decay, Pests, and Protection; Chapman & Hall: London UK, 1993; ISBN 978-0-41253-120-0. [Google Scholar]
- Hillis, W.E. Heartwood and Tree Exudates; Springer: Berlin, Heidelberg, 1987; ISBN 978-3-642-72534-0. [Google Scholar]
- Taylor, A.M.; Gartner, B.L.; Morre, J.I. Heartwood Formation and Natural Durability - A Review. Wood and Fiber Science 2002, 34, 587–611. [Google Scholar]
- Bamber, R.K.; Fukazawa, K. Sapwood and Heartwood: A Review. Forestry Abstr. 1985, 46, 567–580. [Google Scholar]
- Scheffer, T.C.; Cowling, E.B. Natural Resistance of Wood to Microbial Deterioration. Annu. Rev. Phytopathol. 1966, 4, 147–168. [Google Scholar] [CrossRef]
- Hawley, L.F.; Fleck, L.C.; Richards, C.A. The Relation between Durability and Chemical Composition in Wood. Ind. Eng. Chem. 1924, 16, 699–700. [Google Scholar] [CrossRef]
- Celimene, C.C.; Micales, J.A.; Ferge, L.; Young, R.A. Efficacy of Pinosylvins against White-Rot and Brown-Rot Fungi. Holzforschung 1999, 53. [Google Scholar] [CrossRef]
- DeBelll, J.D.; Morrell, J.J. Tropolone Content of Increment Cores as an Indicator of Decay Resistance in Western Redcedar. Wood and Fiber Science 1997, 29, 364–369. [Google Scholar]
- Reyes-Chilpa, R.; Gómez-Garibay, F.; Moreno-Torres, G.; Jiménez-Estrada, M.; Quiroz-Vásquez, R.I. Flavonoids and Isoflavonoids with Antifungal Properties from Platymiscium Yucatanum Heartwood. Holzforschung 1998, 52, 459–462. [Google Scholar] [CrossRef]
- Rudman, P. The Causes of Natural Durability in Timber - Part XI. Some Tests on the Fungi Toxicity of Wood Extractives and Related Compounds. Holzforschung 1963, 17, 54–57. [Google Scholar] [CrossRef]
- Schultz, T.P.; Harms, W.B.; Fisher, T.H.; McMurtrey, K.D.; Minn, J.; Nicholas, D.D. Durability of Angiosperm Heartwood: The Importance of Extractives. Holzforschung 1995, 49, 29–34. [Google Scholar] [CrossRef]
- Schultz, T.P.; Hubbard, T.F.; Jin, L.H.; Fisher, T.H.; Nicholas, D.D. Role of Stilbenes in the Natural Durability of Wood: Fungicidal Structure-Activity Relationships. Phytochemistry 1990, 29, 1501–1507. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications, 2nd ed.; Academic Press: San Diego, 1993; ISBN 978-0-12-647481-7. [Google Scholar]
- Mohareb, A.; Sirmah, P.; Desharnais, L.; Dumarçay, S.; Pétrissans, M.; Gérardin, P. Effect of Extractives on Conferred and Natural Durability of Cupressus Lusitanica Heartwood. Ann. For. Sci. 2010, 67, 504–504. [Google Scholar] [CrossRef]
- Beckman, C.H. Phenolic-Storing Cells: Keys to Programmed Cell Death and Periderm Formation in Wilt Disease Resistance and in General Defence Responses in Plants? Physiological and Molecular Plant Pathology 2000, 57, 101–110. [Google Scholar] [CrossRef]
- Gierlinger, N.; Jacques, D.; Schwanninger, M.; Wimmer, R.; Pâques, L.E. Heartwood Extractives and Lignin Content of Different Larch Species (Larix Sp.) and Relationships to Brown-Rot Decay-Resistance. Trees 2004, 18, 230–236. [Google Scholar] [CrossRef]
- Wong, A.H.H.; Wilkes, J.; Heather, W.A. Influence of Wood Density and Extractives Content on the Decay Resistance of the Heartwood of Eucalyptus Delegatensis R.T. Baker. J. Inst. Wood Sci. 1983, 54, 261–263. [Google Scholar]
- Fries, A.; Ericsson, T.; Gref, R. High Heritability of Wood Extractives in Pinus Sylvestris Progeny Tests. Can. J. For. Res. 2000, 30, 1707–1713. [Google Scholar] [CrossRef]
- Partanen, J.; Harju, A.M.; Venäläinen, M.; Kärkkäinen, K. Highly Heritable Heartwood Properties of Scots Pine: Possibilities for Selective Seed Harvest in Seed Orchards. Can. J. For. Res. 2011, 41, 1993–2000. [Google Scholar] [CrossRef]
- Chiron, H. Molecular Cloning and Functional Expression of a Stress-Induced Multifunctional O-Methyltransferase with Pinosylvin Methyltransferase Activity from Scots Pine (Pinus Sylvestris L.). Plant Molecular Biology 2000, 44, 733–745. [Google Scholar] [CrossRef]
- Chiron, H.; Drouet, A.; Lieutier, F.; Payer, H.-D.; Ernst, D.; Sandermann, H. Gene Induction of Stilbene Biosynthesis in Scots Pine in Response to Ozone Treatment, Wounding, and Fungal Infection. Plant Physiol. 2000, 124, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Ebel, J. Phytoalexin Synthesis: The Biochemical Analysis of the Induction Process. Annu. Rev. Phytopathol. 1986, 24, 235–264. [Google Scholar] [CrossRef]
- Kodan, A.; Kuroda, H.; Sakai, F. A Stilbene Synthase from Japanese Red Pine (Pinus Densiflora): Implications for Phytoalexin Accumulation and down-Regulation of Flavonoid Biosynthesis. Proc. Natl. Acad. Sci. USA 2002, 99, 3335–3339. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.I.; Bohlmann, J. Diterpene Resin Acids in Conifers. Phytochemistry 2006, 67, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.; McCarthy, K.; Meder, R. Genetic Variation of Natural Durability Traits in Eucalyptus Cladocalyx (Sugar Gum). Annals of Forest Science 2011, 68, 1057–1066. [Google Scholar] [CrossRef]
- Ericsson, T.; Fries, A. High Heritability for Heartwood in North Swedish. Theor Appl Genet 1999, 98, 732–735. [Google Scholar] [CrossRef]
- Harju, A.M.; Venäläinen, M.; Anttonen, S.; Viitanen, H.; Kainulainen, P.; Saranpää, P.; Vapaavuori, E. Chemical Factors Affecting the Brown-Rot Decay Resistance of Scots Pine Heartwood. 2003, 17, 263–268. [Google Scholar] [CrossRef]
- Harju, A.M.; Venäläinen, M. Genetic Parameters Regarding the Resistance of Pinus Sylvestris Heartwood to Decay Caused by Coniophora Puteana. Scandinavian Journal of Forest Research 2002, 17, 199–205. [Google Scholar] [CrossRef]
- Venäläinen, M.; Velling, P.; Harju, A.M.; Saranpä, P.; Kainulainen, P.; Tiitta, M. The Concentration of Phenolics in Brown-Rot Decay Resistant and Susceptible Scots Pine Heartwood. Wood Science and Technology 2004, 38, 109–118. [Google Scholar] [CrossRef]
- Venäläinen, M.; Harju, A.M.; Kainulainen, P.; Viitanen, H.; Nikulainen, H. Variation in the Decay Resistance and Its Relationship with Other Wood Characteristics in Old Scots Pines. Ann. For. Sci. 2003, 60, 409–417. [Google Scholar] [CrossRef]
- Schmidtling, R.C.; Amburgey, T.L. Genetic Variation in Decay Susceptibility and Its Relationship to Growth and Specific Gravity in Loblolly Pine. Holzforschung 1982, 36, 159–161. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical Composition and Resistance of Italian Stone Pine ( Pinus Pinea L.) Wood against Fungal Decay and Wetting. Industrial Crops and Products 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Puentes Rodriguez, Y.; Zubizarreta Gerendiain, A.; Pappinen, A.; Peltola, H.; Pulkkinen, P. Differences in Wood Decay by Heterobasidion Parviporum in Cloned Norway Spruce (Picea Abies). Can. J. For. Res. 2009, 39, 26–35. [Google Scholar] [CrossRef]
- Yu, Q.; Yang, D.-Q.; Zhang, S.Y.; Beaulieu, J.; Duchesne, I. Genetic Variation in Decay Resistance and Its Correlation to Wood Density and Growth in White Spruce. Can. J. For. Res. 2003, 33, 2177–2183. [Google Scholar] [CrossRef]
- Venäläinen, M.; M. Harju, A.; Terziev, N.; Laakso, T.; Saranpää, P. Decay Resistance, Extractive Content, and Water Sorption Capacity of Siberian Larch (Larix Sibirica Lebed.) Heartwood Timber. Holzforschung 2006, 60, 99–103. [Google Scholar] [CrossRef]
- Venäläinen, M.; Harju, A.M.; Nikkanen, T.; Paajanen, L.; Velling, P.; Viitanen, H. Genetic Variation in the Decay Resistance of Siberian Larch (Larix Sibirica Ledeb.) Wood. Holzforschung 2001, 55, 1–6. [Google Scholar] [CrossRef]
- Ioannidis, K.; Melliou, E.; Alizoti, P.; Magiatis, P. Identification of Black Pine (Pinus Nigra Arn.) Heartwood as a Rich Source of Bioactive Stilbenes by qNMR. Journal of the Science of Food and Agriculture 2017, 97, 1708–1716. [Google Scholar] [CrossRef]
- Ioannidis, K.; Melliou, E.; Magiatis, P. High-Throughput 1H-Nuclear Magnetic Resonance-Based Screening for the Identification and Quantification of Heartwood Diterpenic Acids in Four Black Pine (Pinus Nigra Arn.) Marginal Provenances in Greece. Molecules 2019, 24, 3603. [Google Scholar] [CrossRef]
- Ioannidis, K.; Koropouli, P. Quantitative Genetic Parameters of Heartwood and Its Chemical Traits in a Black Pine (Pinus Nigra JF Arnold) Clonal Seed Orchard Established in Greece. New Zealand Journal of Forestry Science 2023, 53. [Google Scholar] [CrossRef]
- Ioannidis, K.; Koropouli, P. Quantitative Genetic Parameters of Heartwood and Its Chemical Traits in a Black Pine (Pinus Nigra J.F.Arnold) Clonal Seed Orchard Established in Greece. NZJFS 2023, 53. [Google Scholar] [CrossRef]
- Matziris, D. Variation in Cone Production in a Clonal Seed Orchard of Black Pine. Silvae Genet. 1993, 42, 136–141. [Google Scholar]
- Viitanen, H.; Metsä-Kortelainen, S.; Laakso, T. Resistance of Pine and Spruce Heartwood against Decay-the Effect of Wood Chemical Composition and Coating with Water-Borne Wood Oil Product. In Proceedings of the 37th Annual Meeting of the International Research Group on Wood Preservation, Tromso, Norway, 18-22 June 2006. Document No IRG/WP-10597. [Google Scholar]
- EN, T. TS. EN 113.; Wood Preservatives-Test Method for Determining the Protective Effectiveness against Wood Destroying Basidiomycetes-Determination of the Toxic Values. 1996.
- Brischke, C.; Alfredsen, G. Biological Durability of Pine Wood. Wood Material Science & Engineering 2023, 18, 1050–1064. [Google Scholar] [CrossRef]
- Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. The Role of Extractives in Naturally Durable Wood Species. International Biodeterioration & Biodegradation 2013, 82, 53–58. [Google Scholar] [CrossRef]
- Macchioni, N.; Palanti, S.; Rozenberg, P. Measurements of Fungal Wood Decay on Scots Pine and Beech by Means of X-Ray Microdensitometry. Wood Sci Technol 2007, 41, 417–426. [Google Scholar] [CrossRef]
- Sehlstedt-Persson, M.; Karlsson, O. Natural Durability and Phenolic Content in Dried Scots Pine Heartwood. BioResources 2010, 5, 1126–1142. [Google Scholar] [CrossRef]
- Vek, V.; Balzano, A.; Poljanšek, I.; Humar, M.; Oven, P. Improving Fungal Decay Resistance of Less Durable Sapwood by Impregnation with Scots Pine Knotwood and Black Locust Heartwood Hydrophilic Extractives with Antifungal or Antioxidant Properties. Forests 2020, 11. [Google Scholar] [CrossRef]
- Harju, A.M.; Venäläinen, M. Measuring the Decay Resistance of Scots Pine Heartwood Indirectly by the Folin-Ciocalteu Assay. Can. J. For. Res. 2006, 36, 1797–1804. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Bandyopadhyay, P.S., Forster, M.R., Eds.; North-Holland: Amsterdam, 2011; Vol. 7, pp. 583–605. ISSN ISBN 18789846. [Google Scholar]
- Cohen, J. Quantitative Methods in Psychology: A Power Primer. Psychol. Bull. 1992, 112, 1155–1159. [Google Scholar] [CrossRef]
- Hart, J.H. The Role of Wood Exudates and Extractives in Protecting Wood from Decay. In Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall; Rowe, J.W., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1989; pp. 861–880. ISBN 978-3-642-74075-6. [Google Scholar]
- Hart, J.H.; Shrimpton, D. Role of Stilbenes in Resistance of Wood to Decay. Phytopathology 1979, 69, 1138–1143. [Google Scholar] [CrossRef]
- Windeisen, E.; Wegener, G.; Lesnino, G.; Schumacher, P. Investigation of the Correlation between Extractives Content and Natural Durability in 20 Cultivated Larch Trees. Holz als Roh- und Werkstoff 2002, 60, 373–374. [Google Scholar] [CrossRef]
- Smith, A.L.; Campbell, C.L.; Walker, D.B.; Hanover, J.W. Extracts from Black Locust as Wood Preservatives: Extraction of Decay Resistance from Black Locust Heartwood. 1989, 43, 293–296. [Google Scholar] [CrossRef]
- Kamdem, D.P. Fungal Decay Resistance of Aspen Blocks Treated with Heartwood Extracts. Forest products journal 1994, 44, 30. [Google Scholar]
- Onuorah, E.O. Relative Efficacy of Heartwood Extracts and Proprietory Wood Preservatives as Wood Protectants. Journal of Forestry Research 2002, 13, 183–190. [Google Scholar] [CrossRef]
- Belt, T.; Keplinger, T.; Hänninen, T.; Rautkari, L. Cellular Level Distributions of Scots Pine Heartwood and Knot Heartwood Extractives Revealed by Raman Spectroscopy Imaging. Industrial Crops and Products 2017, 108, 327–335. [Google Scholar] [CrossRef]
- Prior, C. Resistance by Corsican Pine to Attack by Heterobasidion Annosum. Annals of Botany 1976, 40, 261–279. [Google Scholar] [CrossRef]
- Belt, T.; Harju, A.; Kilpeläinen, P.; Venäläinen, M. Fungal Degradation of Extractives Plays an Important Role in the Brown Rot Decay of Scots Pine Heartwood. Front. Plant Sci. 2022, 13, 912555. [Google Scholar] [CrossRef]
- Belt, T.; Altgen, M.; Mäkelä, M.; Hänninen, T.; Rautkari, L. Cellular Level Chemical Changes in Scots Pine Heartwood during Incipient Brown Rot Decay. Scientific Reports 2019, 9, 5188. [Google Scholar] [CrossRef]
- Wijayanto, A.; Dumarçay, S.; Gérardin-Charbonnier, C.; Sari, R.K.; Syafii, W.; Gérardin, P. Phenolic and Lipophilic Extractives in Pinus Merkusii Jungh. et de Vries Knots and Stemwood. Industrial Crops and Products 2015, 69, 466–471. [Google Scholar] [CrossRef]
- Gref, R.; Hakansson, C.; Henningsson, B.; Hemming, J. Influence of Wood Extractives on Brown and White Rot Decay in Scots Pine Heart-, Light-and Sapwood. Material und Organismen 1999, 33, 119–128. [Google Scholar]
- Eberhardt, T.L.; Han, J.S.; Micales, J.A.; Young, R.A. Decay Resistance in Conifer Seed Cones: Role of Resin Acids as Inhibitors of Decomposition by White-Rot Fungi. Holzforschung journal 1994, 48, 278–284. [Google Scholar] [CrossRef]
- Schultz, T.P.; Nicholas, D.D.; Ingram, L.L. Laboratory and Outdoor Water Repellency and Dimensional Stability of Southern Pine Sapwood Treated with a Waterborne Water Repellent Made from Resin Acids. 2007, 61, 317–322. [Google Scholar] [CrossRef]
- Shain, L. Stem Defense against Pathogens. In Plant stems; Physiology and Functional Morphology; Academic Press: San Diego, 1995; pp. 383–406. [Google Scholar]
- Yamada, T. Biochemistry of Gymnosperm Xylem Responses to Fungal Invasion. In Defense mechanisms of woody plants against fungi; Springer Series in Wood Science; Springer Berlin: Heidelberg, 1992; pp. 147–164. [Google Scholar]
- Harju, A.M.; Kainulainen, P.; Venäläinen, M.; Tiitta, M.; Viitanen, H. Differences in Resin Acid Concentration between Brown-Rot Resistant and Susceptible Scots Pine Heartwood. Holzforschung 2002, 56. [Google Scholar] [CrossRef]
- Micales, J.A.; Han, J.S.; Davis, J.L.; Young, R.A. Chemical Composition and Fungitoxic Activities of Pine Cone Extractives. In Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration; Llewellyn, G.C., Dashek, W.V., O’Rear, C.E., Eds.; Springer US: Boston, MA, 1994; pp. 317–332. ISBN 978-1-4757-9452-6. [Google Scholar]
- Brischke, C.; von Boch-Galhau, N.; Bollmus, S. Impact of Different Sterilization Techniques and Mass Loss Measurements on the Durability of Wood against Wood-Destroying Fungi. European Journal of Wood and Wood Products 2022, 80, 35–44. [Google Scholar] [CrossRef]
- Karppanen, O.; Venäläinen, M.; Harju, A.M.; Laakso, T. The Effect of Brown-Rot Decay on Water Adsorption and Chemical Composition of Scots Pine Heartwood. Annals of Forest Science 2008, 65, 610–610. [Google Scholar] [CrossRef]
- Lu, J.; Venäläinen, M.; Julkunen-Tiitto, R.; Harju, A.M. Stilbene Impregnation Retards Brown-Rot Decay of Scots Pine Sapwood. 2016, 70, 261–266. [Google Scholar] [CrossRef]
- Leinonen, A.; Harju, A.M.; Venäläinen, M.; Saranpää, P.; Laakso, T. FT-NIR Spectroscopy in Predicting the Decay Resistance Related Characteristics of Solid Scots Pine (Pinus Sylvestris L.) Heartwood. 2008, 62, 284–288. [Google Scholar] [CrossRef]
- Heijari, J.; Nerg, A.-M.; Kainulainen, P.; Viiri, H.; Vuorinen, M.; Holopainen, J.K. Application of Methyl Jasmonate Reduces Growth but Increases Chemical Defence and Resistance against Hylobius Abietis in Scots Pine Seedlings. Entomologia Experimentalis et Applicata 2005, 115, 117–124. [Google Scholar] [CrossRef]
- Gref, R.; Hakansson, C.; Henningsson, B.; Hemming, J. Influence of Wood Extractives on Brown and White Rot Decay in Scots Pine Heart-, Light- and Sapwood. In Material und Organismen (Germany); 2000. [Google Scholar]
- Hassan, B.; Francis, L.; Hayes, R.A.; Shirmohammadi, M. Decay Resistance of Southern Pine Wood Containing Varying Amounts of Resin against Fomitopsis Ostreiformis (Berk.) T. Hatt 2024, 78, 154–166. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Gellerich, A.; Mantanis, G.; Kalaitzi, T.; Militz, H. Resistance of Pinus Leucodermis Heartwood and Sapwood against the Brown-Rot Fungus Coniophora Puteana. Wood Material Science & Engineering 2012, 7, 242–244. [Google Scholar] [CrossRef]
- DeBell, J.D.; Morrell, J.J.; Gartner, B.L. Within-Stem Variation in Tropolone Content and Decay Resistance of Second-Growth Western Redcedar. Forest Science 1999, 45, 101–107. [Google Scholar] [CrossRef]
- Harju, A.M.; Kainulainen, P.; Venäläinen, M.; Tiitta, M.; Viitanen, H. Differences in Resin Acid Concentration between Brown-Rot Resistant and Susceptible Scots Pine Heartwood. 2002, 56, 479–486. [Google Scholar] [CrossRef]
- Srinivasan, U.; Ung, T.; Taylor, A. Natural Durability and Waterborne Preservative Treatability of Tamarack. Forest Products Journal 1999, 49, 82–87. [Google Scholar]
- Schultz, T.P.; Nicholas, D.D. Naturally Durable Heartwood: Evidence for a Proposed Dual Defensive Function of the Extractives. Phytochemistry 2000, 54, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Fries, A.; Ericsson, T. Genetic Parameters in Diallel-Crossed Scots Pine Favor Heartwood Formation Breeding Objectives. Can. J. For. Res. 1998, 28, 937–941. [Google Scholar] [CrossRef]
- Zobel, B.; Jett, J. Genetics of Wood Production. In Springer Series in Wood Science; Springer, Berlin Heidelberg: New York, 1995. [Google Scholar]
| Content (mg/gdhw) | Min. | Median | Max. | Mean | Std. Err. | Std. Dev. |
| Total Acetone Extractives (TAE) | 81.79 | 310.32 | 480.28 | 304.15 | 5.8257 | 96.0163 |
| Total Stilbenes (TS) | 10.99 | 56.66 | 128.22 | 59.92 | 1.3411 | 21.7846 |
| Total Resin Acids (TRA) | 32.20 | 212.80 | 456.56 | 219.98 | 6.6369 | 102.3413 |
| (%) | Min. | Median | Max. | Mean | Std. Err. | Std. Dev. |
| TS/TAE | 4.85 | 19.95 | 58.15 | 22.31 | 0.7120 | 11.4808 |
| TRA/TAE | 14.47 | 70.96 | 97.73 | 68.26 | 1.0282 | 16.5791 |
| Other substances | 0 | 6.72 | 58.16 | 9.43 | 0.7007 | 11.2987 |
| Content (mg/gdhw) | Min. | Median | Max. | Mean | Std. Err. | Std. Dev. |
| Pinosylvin (P) | 1.19 | 16.11 | 40.23 | 17.07 | 0.4129 | 6.7582 |
| Pinosylvin Monomethyl Ether (PMME) | 8.94 | 37.88 | 94.28 | 40.32 | 0.9606 | 15.5495 |
| Pinosylvin Dimethyl Ether (PDME) | 0.21 | 2.29 | 7.91 | 2.54 | 0.0738 | 1.2194 |
| Resin type | Content (mg/gdhw) | Min. | Median | Max. | Mean | Std. Err. | Std. Dev. |
| Abietane | Abietic (AA) | 7.00 | 75.20 | 181.75 | 76.77 | 2.3102 | 37.2505 |
| Dehydroabietic (DAA) | 2.56 | 10.53 | 38.59 | 11.69 | 0.3531 | 5.6933 | |
| Neoabietic (NAA) | 2.91 | 38.04 | 101.82 | 39.34 | 1.3073 | 21.0799 | |
| Palustric (PLA) | 9.76 | 46.10 | 105.22 | 47.94 | 1.4325 | 23.0990 | |
| Levopimaric (LPA) | 0.08 | 3.33 | 64.91 | 8.07 | 0.7055 | 11.3754 | |
| Pimarane | Pimaric (PMA) | 2.20 | 21.54 | 59.42 | 22.54 | 0.6998 | 11.2838 |
| Sandaracopimaric (SPA) | 0.16 | 2.55 | 6.67 | 2.72 | 0.0922 | 1.4858 | |
| Isopimaric (IPA) | 0.50 | 9.69 | 34.09 | 10.91 | 0.0405 | 6.5335 |
| Fungus | Min. | Median | Max. | Mean | Std. Err. | Std. Dev. |
| Porodaedalea pini | 1.78 | 8.86 | 48.45 | 11.43 | 0.5649 | 9.1086 |
| Coniophora puteana | 1.01 | 3.21 | 12.59 | 3.55 | 0.1071 | 1.7265 |
| Model 1: Equation (2) | Statistics | |||||||
| Predictor variable | p | Constant | b | R2 | R2adj | f2 | AIC | BIC |
| TAE | <0.001 | 1.571 | -0.002 | 0.324 | 0.322 | 0.48 | 108.403 | 111.956 |
| TRA | <0.001 | 1.288 | -0.002 | 0.237 | 0.234 | 0.31 | 139.961 | 143.514 |
| PDME | 0.014 | 0.814 | 0.044 | 0.023 | 0.019 | 0.023 | 194.8 | 198.353 |
| Model 1: Equation (2) | Statistics | |||||||
| Predictor variable | p | Constant | b | R2 | R2adj | f2 | AIC | BIC |
| TS | <0.001 | 0.609 | -0.002 | 0.037 | 0.033 | 0.039 | -119.661 | -116.108 |
| P | <0.001 | 0.626 | -0.007 | 0.059 | 0.055 | 0.062 | -127.864 | -124.311 |
| PMME | 0.009 | 0.587 | -0.002 | 0.026 | 0.022 | 0.026 | -117.229 | -113.676 |
| Model 2: Equation (3) | Statistics | ||||||||
| Predictors | p | Constant | TS | TRA | R2 | R2adj | f2 | AIC | BIC |
| TS+TRA | <0.001 | 1.621 | -0.004 | -0.002 | 0.294 | 0.289 | 0.417 | 131.903 | 135.452 |
| VIF | 1.199 | 1.199 | |||||||
| Predictors | p | Constant | P | PDME | R2adj | R2adj | f2 | AIC | BIC |
| P+PDME | 0.004 | 0.896 | -0.009 | 0.069 | 0.042 | 0.035 | 0.044 | 198.973 | 202.522 |
| VIF | 1.389 | 1.389 | |||||||
| Predictors | p | Constant | PMME | PDME | R2 | R2adj | f2 | AIC | BIC |
| PΜΜΕ+PDME | <0.001 | 0.929 | -0.008 | 0.122 | 0.071 | 0.064 | 0.077 | 192.206 | 195.755 |
| VIF | 2.453 | 2.453 | |||||||
| Model 2: Equation (3) | Statistics | ||||||||
| Predictors | p | Constant | TS | TRA | R2 | R2adj | f2 | AIC | BIC |
| TS+TRA | 0.003 | 0.662 | -0.002 | -0.0002 | 0.043 | 0.036 | 0.045 | -105.129 | -101.58 |
| VIF | 1.199 | 1.199 | |||||||
| Predictors | p | Constant | P | PMME | R2 | R2adj | f2 | AIC | BIC |
| P+PMME | <0.001 | 0.623 | -0.007 | 0 | 0.059 | 0.052 | 0.063 | -115.978 | -112.429 |
| 1.946 | 1.946 | ||||||||
| Predictors | p | Constant | P | PDME | R2 | R2adj | f2 | AIC | BIC |
| P+PDME | <0.001 | 0.612 | -0.008 | 0.015 | 0.065 | 0.058 | 0.07 | -122.507 | -118.958 |
| VIF | 1.389 | 1.389 | |||||||
| Predictors | p | Constant | PMME | PDME | R2 | R2adj | f2 | AIC | BIC |
| PΜΜΕ+PDME | 0.009 | 0.583 | -0.003 | 0.024 | 0.035 | 0.028 | 0.037 | -113.289 | -109.74 |
| VIF | 2.453 | 2.453 | |||||||
| Model 3: Equation (4) | Statistics | |||||||||||||||||
| Predictors | p | Constant | P | PMME | PDME | R2 | R2adj | f2 | AIC | BIC | ||||||||
| P+PΜΜΕ+PDME | <0.001 | 0.939 | -0.002 | -0.007 | 0.121 | 0.072 | 0.061 | 0.077 | 201.052 | 204.597 | ||||||||
| VIF | 1.946 | 3.438 | 2.454 | |||||||||||||||
| Predictors | p | Constant | AA | DAA | NAA | PLA | LPA | PMA | SPA | IPA | R2 | R2adj | f2 | AIC | BIC | |||
| AA+DAA+NAA +PLA+LPA+PMA +SPA+IPA |
<0.001 | 1.299 | -0.005 | -0.001 | -0.001 | 0.002 | -0.001 | -0.001 | -0.005 | 0.01 | 0.289 | 0.266 | 0.406 | 183.674 | 187.199 | |||
| VIF | 7.493 | 16.483 | 3.213 | 9.146 | 2.555 | 5.803 | 2.978 | 6.338 | ||||||||||
| Predictors | p | Constant | P | PMME | PDME | AA | DAA | NAA | PLA | LPA | PMA | SPA | IPA | R2 | R2adj | f2 | AIC | BIC |
| P+PMME+PDME +AA+DAA+NAA +PLA+LPA+PMA +SPA+IPA |
<0.001 | 1.557 | -0.001 | -0.009 | 0.06 | -0.005 | -0.001 | 0.003 | 0.001 | -0.002 | -0.001 | -0.004 | 0.002 | 0.359 | 0.331 | 0.561 | 183.791 | 187.305 |
| VIF | 2.018 | 3.521 | 2.695 | 7.573 | 16.501 | 3.392 | 9.345 | 2.611 | 5.932 | 2.98 | 6.397 | |||||||
| Model 3: Equation (4) | Statistics | |||||||||||||||||
| Predictors | p | Constant | P | PMME | PDME | R2 | R2adj | f2 | AIC | BIC | ||||||||
| P+PΜΜΕ+PDME | <0.001 | 0.62 | -0.007 | -0.001 | 0.0238 | 0.068 | 0.057 | 0.077 | 201.052 | 204.597 | ||||||||
| VIF | 1.946 | 3.438 | 2.454 | |||||||||||||||
| Predictors | p | Constant | AA | DAA | NAA | PLA | LPA | PMA | SPA | IPA | R2 | R2adj | f2 | AIC | BIC | |||
| AA+DAA+NAA +PLA+LPA+PMA +SPA+IPA |
0.041 | 0.477 | 0.001 | -0.009 | -0.004 | 0.004 | 0.001 | 0.002 | 0.002 | 0.026 | 0.061 | 0.031 | 0.065 | -54.617 | -51.092 | |||
| VIF | 7.493 | 16.483 | 3.213 | 9.146 | 2.555 | 5.803 | 2.978 | 6.338 | ||||||||||
| Predictors | p | Constant | P | PMME | PDME | AA | DAA | NAA | PLA | LPA | PMA | SPA | IPA | R2 | R2adj | f2 | AIC | BIC |
| P+PMME+PDME +AA+DAA+NAA +PLA+LPA+PMA +SPA+IPA |
<0.001 | 0.63 | -0.007 | -0.001 | 0.018 | 0.001 | -0.008 | -0.002 | 0.003 | 0. 001 | 0.001 | 0.002 | 0.025 | 0.133 | 0.094 | 0.153 | -45.28 | -41.76 |
| VIF | 2.018 | 3.521 | 2.695 | 7.573 | 16.501 | 3.392 | 9.345 | 2.611 | 5.932 | 2.98 | 6.397 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
