Submitted:
23 December 2025
Posted:
23 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathology of Alzheimer’s Disease
3. Motor Impairments in Alzheimer’s Disease
4. Noradrenergic and Dopaminergic Dysfunction in Alzheimer’s Disease
5. Gait Issues in Alzheimer’s Disease
6. Alzheimer’s Disease Motor Pathology Beyond Supratentorial Structures
7. Conclusions
Acknowledgments
References
- Tarawneh, R.; Holtzman, DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012, 2(5), a006148. [Google Scholar] [CrossRef]
- Gail, CR; Huang, WC; Choi, H; Wang, J; Ashley, WL; Yao, CG; Abdurrob, F; Bousleiman, SM; Young, JZ; Bennett, DA; Delalle, I; Chung, K; Tsai, LH. 3D mapping reveals network-specific amyloid progression and subcortical susceptibility in mice. Commun Biol. 2019, 2, 360. [Google Scholar] [CrossRef]
- Kelly, SC; He, B; Perez, SE; Ginsberg, SD; Mufson, EJ; Counts, SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017, 5, 8. [Google Scholar] [CrossRef]
- Reitz, C; Rogaeva, E; Beecham, GW. Late-onset vs nonmendelian early-onset Alzheimer disease. Neurol Genet. 2020, 6(5), e512. [Google Scholar] [CrossRef] [PubMed]
- Awada, AA. Early and late-onset Alzheimer’s disease: What are the differences? J Neurosci Rural Pract. 2015, 6(3), 455–456. [Google Scholar] [CrossRef]
- Dai, MH; Zheng, H; Zeng, LD; Zhang, Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget 2018, 9(19), 15132–15143. [Google Scholar] [CrossRef] [PubMed]
- Tudorache, IF; Trusca, GV; Gafencu, AV. Apolipoprotein E- a multifunctional protein with implications in various pathologies as a result of its structural features. Comput Struct Biotechnol J 2017, 15, 359–365. [Google Scholar] [CrossRef]
- Govindpani, K; McNamara, LG; Smith, NR; Vinnakota, C; Waldvogel, HJ; Faull, RLM; Kwakowsky, A. Vascular dysfunction in Alzheimer’s disease: A prelude to the pathological process or a consequence of it? J Clin Med. 2019, 8(5), 651. [Google Scholar] [CrossRef]
- Cavazzoni, P. FDA’s decision to approve new treatment for Alzheimer’s disease. FDA Center for Drug Evaluation and Research. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease.
- Yiannopoulou, KG; Papageorgiou, S. Current and Future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef] [PubMed]
- Sander, R. Exercise is associated with a delayed onset of dementia. Nurs Older People 2007, 18(12), 39. [Google Scholar] [CrossRef]
- O’ Connell, KMS; Ouellette, AR; Neuner, SM; Dunn, AR; Kaczorowski, CC. Genetic background modifies CNS-mediated sensorimotor decline in the AD-BXD mouse model of genetic diversity in Alzheimer’s disease. Genes Brain Behav. 2019, 18(8), e12603. [Google Scholar] [CrossRef]
- Maccioni, RB; Munoz, JP; Barbeito, L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res. 2001, 32(5), 367–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y; Necus, J; Kaiser, M; Mota, B. Universality in human cortical folding in health and disease. Proc Natl Acad Sci USA 2016, 113(45), 12820–12825. [Google Scholar] [CrossRef]
- Sjogren, M; Davidsson, P; Tulberg, M; Minthon, L; Wallin, A; Wikkelso, C; Granerus, AK; Vanderstichele, H; Vanmechelen, E; Blennow, K. Both total and phosphylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Pscyhiatry 2001, 70(5), 624–30. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C; Mena, E; Subramaniam, RM. Brain PET in the diagnosis of Alzheimer’s disease. Clin Nucl Med. 2014, 39(10), e413–e426. [Google Scholar] [CrossRef]
- Mosconi, L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin Transl Imaging 2013, 1(4). [Google Scholar] [CrossRef] [PubMed]
- Marino, S; Bonanno, L; Buono, VL; Ciurleo, R; Corallo, F; Morabito, R; Chirico, G; Marra, A; Bramanti, P. Longitudinal analysis of brain atrophy in Alzheimer’s disease and frontotemporal dementia. J Int Med Res. 2019, 47(10), 5019–5027. [Google Scholar] [CrossRef]
- Persson, K; Eldholm, RS; Barca, ML; Cavallin, L; Ferreira, D; Knapskog, AB; Selbaek, G; Braekhus, A; Saltvedt, I; Westman, E; Engedal, K. MRI- assessed atrophy subtypes in Alzheimer’s disease and the cognitive reserve hypothesis. PLoS One 2017, 12(10), e0186595. [Google Scholar] [CrossRef]
- Singh, SK; Srivastav, S; Yadav, AK; Srikrishna, S; Perry, G. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev. 2015, 2016, 7361613. [Google Scholar] [CrossRef]
- Alzheimer’s disease diagnostic guidelines. National Institute on Aging. Available online: https://www.nia.nih.gov/health/alzheimers-disease-diagnostic-guidelines.
- Croisile, B. Agraphia in Alzheimer’s disease. Dement Geriatr Cogn Disord 1999, 10(3), 226–30. [Google Scholar] [CrossRef]
- Lambert, J.; Giffard, B; Nore, F; de la Sayette, V; Pasquier, F; Eustache, F. Central and peripheral agraphia in Alzheimer’s disease: from the case of Auguste D. to a cognitive neuropsychology approach. Cortex 2007, 43(7), 935–51. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, P. Alzheimer’s diagnostic guidelines updated for the first time in decades. April 2011. Available online: https://www.nia.nih.gov/news/alzheimers-diagnostic-guidelines-updated-first-time-decades.
- Buchman, AS; Boyle, PA; Wilson, RS; Beck, TL; Kelly, JF; Bennett, DA. Apolipoprotein E e4 allele is associated with more rapid motor decline in older persons. Alzheimer Dis Assoc Disord. 2009, 23(1), 63–9. [Google Scholar] [CrossRef]
- Boyle, PA; Buchman, AS; Wilson, RS; Leurgans, SE; Bennett, DA. Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol. 2009, 66(11), 1339–1344. [Google Scholar] [CrossRef]
- Buchman, A; Bennett, D. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev Neurother. 2011, 11(5), 665–676. [Google Scholar] [CrossRef]
- Kang, SY; Kim, YJ; Jang, W; Son, KY; Park, HS; Kim, YS. Body mass index trajectories and the risk for Alzheimer’s disease among older adults. Sci Rep. 2021, (11), 3087. [Google Scholar] [CrossRef]
- Braun, TP; Zhu, X; Szumowski, M; Scott, GD; Grossberg, AJ; Levasseur, PR; graham, K; Khan, S; Damaraju, S; Colmers, WF; Baracos, VE; Marks, DL. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med. 2011, 208(12), 2449–2463. [Google Scholar] [CrossRef]
- Ebersbach, T; Roediger, A; Steinbach, R; Appelfeller, M; Tuemmler, A; Stubendorff, B; Schuster, S; Herdick, M; Axer, H; Witte, OW; Grosskreutz, J. Motor unit number index (MUNIX) in the D50 disease progression model reflects disease accumulation independently of disease aggressiveness in ALS. Sci Rep. 2022, 12, 15997. [Google Scholar] [CrossRef] [PubMed]
- Hussain, LS; Reddy, V; Maani, CV. Physiology, Noradrenergic Synapse. In Statpearls Publishing.; May 2022; Available online: https://www.ncbi.nlm.nih.gov/books/NBK540977.
- Liu, Y; Zhao, J; Fan, X; Guo, W. Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders. Front Psych. 2019, 10, 286. [Google Scholar] [CrossRef] [PubMed]
- Atzori, M; Cuevas-Olguin, R; Esquivel-Rendon, E; Garcia-Oscos, F; Salgado-Delgado, RC; Saderi, N; Miranda-Morales, M; Treviño, M; Pineda, JC; Salgado, H. Locus coeruleus norepinephrine release: A central regulator of CNS Spatio-temporal activation? Front Synaptic Neurosci 2016, 8, 25. [Google Scholar] [CrossRef]
- Liu, KY; Acosta-Cabronero, J; Hong, YT; Yi, YJ; Hammerer, D; Howard, R. Alzheimer’s Disease Neuroimaging Initiative. FDG-PET assessment of the locus coeruleus in Alzheimer’s Disease. Neuroimage Rep. 2021, 1(1), 100002. [Google Scholar] [CrossRef]
- Beauchet, O; Allalli, G; Berrut, G; Hommet, C; Dubost, V; Assal, F. Gait Analysis in demented subjects: Interests and perspectives. Neuropsychiatr Dis Treat. 2008, 4(1), 155–160. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G; Hausdorff, JM; Giladi, N. The role of executive function and attention in gait. Mov Disord. 2008, 23(3), 329–342. [Google Scholar] [CrossRef]
- Peterson, AC.; Li, CSR. Noradrenergic Dysfunction in Alzheimer’s and Parkinson’s Diseases- An Overview of Imaging Studies. Front Aging Neurosci 2018, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Albers, MW; Gilmore, GC; Kaye, J; Murphy, C; Wingfield, A; Bennett, DA; Boxer, AL; Buchman, AS; Cruickshanks, KJ; Devanand, DP; Duffy, CJ; Gall, CM; Gates, GA; Granholm, AC; Hensch, T; Holtzer, R; Hyman, BT; Lin FR< McKee, AC; Morris, JC; Peterson, RC; Silbert, LC; Struble, RG; Trojanowski, JQ; Verghese, J; Wilson, DA; Xu, S; Zhang, LI. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer’s Dement. 2015, 11(1), 70–98. [Google Scholar] [CrossRef] [PubMed]
- Dagan, M; Herman, T; Harrison, R; Zhou, J; Giladi, N; Ruffini, G; Manor, B; Hausdorff, JM. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord. 2018, 33(4), 642–646. [Google Scholar] [CrossRef] [PubMed]
- Azim, E; Seki, K. Gain control in the sensorimotor system. Curt Open Physical 2019, 8, 177–187. [Google Scholar] [CrossRef]
- Chandra, SR; Issac, TG; Abbas, MM. Apraxias in neurodegenerative dementias. Indian J Psychol Med. 2015, 37(1), 42–47. [Google Scholar] [CrossRef]
- Lambert, J; GIffard, B; Nore, F; de la Sayette, V; Pasquier, F; Eustache, F. Central and peripheral agraphia in Alzheimer’s disease: from the case of Auguste D. to a cognitive neuropsychology approach. Cortex 2007, 43(7), 935–951. [Google Scholar] [CrossRef]
- Tiu, JB; Carter, AR. Agraphia. StatPearls. Jan 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560722/.
- Tindle, J; Tadi, P. Neuroanatomy, Parasympathetic Nervous System. StatPearls. Oct 2022. Available online: https://www.pubmed.ncbi.nlm.nih.gov/31985934/.
- Allan, LM. Diagnosis and Management of Autonomic Dysfunction in Dementia Syndromes. Currently Treat Options Neurol 2019, 21(8), 38. [Google Scholar] [CrossRef]
- Chen, ZR; Huang, JB; Yang, SL; Hong, FF. Role of Cholinergic Signaling in Alzheimer’s disease. Molecules 2022, 27(6), 1816. [Google Scholar] [CrossRef]
- Kar, S; Slowikowski, SPM; Westaway, D; Mount, HTJ. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci. 2004, 29(6), 427–441. [Google Scholar] [CrossRef] [PubMed]
- John, A; Reddy, PH. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, p-tau, and mitochondria. Aging Res Rev. 2021, 65, 101208. [Google Scholar] [CrossRef]
- Zou, HL; Li, J; Zhou, JL; Yi, X; Can, S. Effects of norepinephrine on microglial neuroinflammation and neuropathic pain. Ibrain 2021, 7(4), 309–317. [Google Scholar] [CrossRef]
- Rodriguez, EP; Suarez, SV; Herreras, TM; Deurwaerdere, PD; Miguelez, C. The noradrenergic system in Parkinson’s disease. Front Pharmacy 2020, 11, 435. [Google Scholar] [CrossRef]
- Scarmeas, N; Albert, M; Brandt, J; Blacker, D; Hadjigeorgiou, G; Papadimitriou, A; Dubois, B; Sarazin, M; Wegesin, D; Marder, K; Bell, K; Honig, L; Stern, Y. Motor signs predict poor outcomes in Alzheimer disease. Neurology 2005, 64(10), 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F; Gannon, M; Chen, Y; Yan, S; Zhang, S; Feng, W; Tao, J; Sha, B; Liu, Z; Saito, T; Saido, T; Keene, CD; Jiao, K; Roberson, ED; Xu, H; Wang, Q. Amyloid β redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med. 2020, 12(526), eaay6931. [Google Scholar] [CrossRef]
- Beardmore, R; Hou, R; Drakkar, A; Holmes, C; Boche, D. The locus coeruleus in aging and Alzheimer’s disease: A postmortem and brain imaging review. J Alzheimers Dis. 2021, 83(1), 5–22. [Google Scholar] [CrossRef]
- Dugger, BN; Hidalgo, JA; Chiarolanza, G; Mariner, M; Watson, JH; Sue, LI; Beach, TG. The distribution of phosphorylated tay in spinal cords of Alzheimer’s and non-demented individuals. J Alzheimers Dis. 2013, 34(2), 529–536. [Google Scholar] [CrossRef]
- Delatour, B; Epelbaum, S; Petiet, A; Dhenian, M. In vivo imaging biomarkers in mouse models of Alzheimer’s disease: are we lost in translation or breaking through? Int J Alzheimers Dis. 2010, 2010, 604853. [Google Scholar] [CrossRef]
- Yuan, Q; Su, H; Zhang, Y; Chau, WH; Ng, CT; Song, YQ; Huang, JD; Wu, W; Lin, ZX. Amyloid pathology in spinal cord of the transgenic Alzheimer’s disease mice is correlated to the corticospinal tract pathway. J Alzheimers Dis. 2013, 35(4), 675–85. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, M; Nakamura, A; Ebashi, M; Hirokawa, K; Takahashi, R; Ichihara, T. Brainstem tau pathology in Alzheimer’s disease is characterized by increase of three repeat tau and independent of amyloid β. Acta Neuropathol Commun. 2018, 6(1), 1. [Google Scholar] [CrossRef]
- Khroud, NK; Reddy, V; Saadabadi, A. Neuroanatomy, Locus Ceruleus. StatPearls. Oct 2022. Available online: https://www.pubmed.ncbi.nlm.nih.gov/30020642/.
- Cao, C; Wang, Q; Yu, H; Yang, H; Li, Y; Guo, M; Huo, H; Fan, G. Morphological changes in cortical and subcortical structures in multiple system atrophy patients with mild cognitive impairment. Front Hum Neurosci. 2021, 15, 649051. [Google Scholar] [CrossRef]
- Benedetto, GD; Burgaletto, C; Bellanca, CM; Munafo, A; Bernardini, R; Cantarella, G. Role of microglia and astrocytes in Alzheimer’s disease: From neuroinflammation to Ca2+ homeostasis dysregulation. Cells 2022, 11(17), 2728. [Google Scholar] [CrossRef]
- Salvadores, N; Olvera, CG; Court, FA. Axonal degeneration in AD: The contribution of Aβ and Tau. front Aging Neurosci. 2020, 12, 581767. [Google Scholar] [CrossRef]
- Li, Y; Cao, T; Ritzel, RM; He, J; Faden, AI; Wu, J. Dementia, depression, and associated brain inflammatory mechanisms after spinal cord injury. Cells 2020, 9(6), 1420. [Google Scholar] [CrossRef]
- Lorenzi, RM; Palesi, F; Castellazzi, G; Vitali, P; Anzalone, N; Bernini, S; Ramusino, MC; Sinforiani, E; Micieli, G; Costa, A; D’Angelo, E; Kingshott, CAMGW. Unsuspected involvement of spinal cord in Alzheimer disease. Front Cell Neurosci. 2020, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Sakayori, N; Kato, S; Sugawara, M; Setogawa, S; Fukushima, H; Ishikawa, R; Kida, S; Kobayashi, K. Motor skills mediated through cerebellothalamic tract projecting to the central lateral nucleus. Molecular Brain 2019, 12, 13. [Google Scholar] [CrossRef]
- Gellersen, HM; Guell, X; Sami, S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 2021, 30, 102605. [Google Scholar] [CrossRef]
- Koppelmans, V; Silvester, B; Duff, K. Neural mechanisms of motor dysfunction in mild cognitive impairment and Alzheimer’s disease: A systematic review. J Alzheimers Dis Rep. 2022, 6(1), 307–344. [Google Scholar] [CrossRef] [PubMed]
- Silva, MVF; Loures, CdMG; Alves, LCV; de Souza, LC; Borges, KBG; Carvalho, MdG. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Love, S; Miners, JS. Cerebrovascular disease in ageing and Alzheimer’s disease. Acta Neuropathol. 2016, 131, 645–658. [Google Scholar] [CrossRef]
- Govindpani, K; McNamara, LG; Smith, NR; Vinnakota, C; Waldvogel, HJ; Faul, RLM; Kwakowsky. Vascular dysfunction in Alzheimer’s disease: A prelude to the pathological process or a consequence of it? J Clinic Med. 2019, 8(5), 651. [Google Scholar] [CrossRef]
- Palesi, F; Rinaldis, AD; Vitali, P; Castellazzi, G; Casiraghi, L; Germani, G; Bernini, S; Anzalone, N; Ramusino, MC; Denari, FM; Sinforiani, E; Costa, A; Magenes, G; D’Angelo, E; Kingshott, CAMGW; Micieli, G. Specific patterns of white matter alterations help distinguishing Alzheimer’s and vascular dementia. Front Neurosci. 2018, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Kugler, EC; Greenwood, J; MacDonald, RB. The “neuro-glial-vascular” unit: The role of glia in neuromuscular unit formation and dysfunction. Front Cell Dev Biol. 2021, 9, 732820. [Google Scholar] [CrossRef] [PubMed]
- Jin, HK; Hwang, TY; Cho, SH. Effect of electrical stimulation on blood flow velocity and vessel size. Open Med (Wars). 2017, 12, 5–11. [Google Scholar] [CrossRef]
- Tomycz, ND. The proposed use of cervical spinal cord stimulation for the treatment and prevention of cognitive decline in dementias and neurodegenerative disorders. Med Hypotheses 2016, 96, 83–86. [Google Scholar] [CrossRef]
- Lin, A; Shay, E; Calvert, JS; Parker, SR; Borton, DA; Fridley, JS. A review of functional restoration from spinal cord stimulation in patients with spinal cord injury. Neurospine 2022, 19(3), 703–734. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
