Submitted:
22 December 2025
Posted:
23 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Meteorologial and Climate Dataset
2.2. Raindrop Size Measurements
2.3. Wind TURBINE Model
2.4. Impingement Model for Incubation Time Calculations
2.5. Damage Calculation Based on CRIEPI-RCM-Era2

3. Results
3.1. Comparison of Meteorological Data at Two Weather Stations


3.2. Rain Erosion Atlas Based on CRIEPI-RCM-Era2


3.3. Raindrop Size and Rainfall Intensity Contributing Rain Erosion Progression



3.4. Monthly Erosion Progression


3.5. Effect of UV Radiation on Incubation Time Reduction


3.6. Effectiveness of Erosion-Safe Mode Operation



4. Discussion
5. Conclusions
- Larger wind turbines with higher blade tip speeds exhibit a markedly reduced incubation time for rain erosion initiation: approximately 3–12 years for the NREL 5 MW turbine, 1–4 years for the DTU 10 MW turbine, and 0.5–2 years for the IEA 15 MW turbine.
- Rain erosion tends to progress more rapidly on the Pacific Ocean side than on the Sea of Japan side or Hokkaido, owing to its higher annual precipitation.
- On the Pacific Ocean side, rain erosion primarily progresses during the rainy season and autumn rain/typhoon season, whereas on the Sea of Japan side, it tends to occur in winter. However, in order to accurately assess rain erosion progression during winter on the Sea of Japan side, it is essential to employ a reliable technique for differentiating between rainfall and snowfall.
- One year of ultraviolet exposure is estimated to reduce the incubation time by 20–25 % in Hokkaido, approximately 30 % in northern Japan, and around 35 % along the Pacific Ocean side.
- Erosion-safe mode operation is considered feasible in Japan, particularly along the Pacific coast, where infrequent but intense rainfall events account for a substantial portion of the annual rain erosion progression. This operational strategy demonstrates the potential to alleviate rain erosion with only a relatively minor reduction in annual power output.
Author Contributions
Conflicts of Interest
References
- Bech, J.I.; Hasager, C.B.; Bak, C. Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events. Wind Energy 2018, 3, 729–748. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Hasager, C.B.; Bak, C.; Tilg, A-.M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: understanding, prevention and protection. Renewable Energy 169, 953–969. [CrossRef]
- Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; Heide, E. Leading edge erosion of coated wind turbines: Review of coating life models. Renewable Energy 80, 837–848. [CrossRef]
- Rad, S. D.; Mishnaevsky, L., Jr. Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation. Mecanicca 55, 725–743.
- Pugh, K.; Stack, M.M. Rain erosion maps for wind turbines based on geographical locations: A case study in Ireland and Britain. Journal of Bio- and Tribo-Corrosion 7, 34. [CrossRef]
- Verma, A.S.; Jiang, Z.; Ren, Z.; Caboni, M.; Verhoel, H.; Mijle-Meijer, H.V.D; Castro, S.G.P.; Teuwen, J.J.E. A probabilistic long-term framework for situ-specific erosion analysis of wind turbine blades: A case study of 31 Dutch sites. Wind Energy 24, 1315–1336. [CrossRef]
- Hannesdottir, A.; Kral, S.T.; Reuder, J.; Hasager, C.B. Rain erosion atlas for wind turbine blades based on ERA5 and NORA3 for Scandinavia. Results in Engineering 22, 102010. [CrossRef]
- Pryor, S.; Coburn, J.J.; Barthelmie, R.J. Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion. Energies 2025, 18, 425–***. [Google Scholar] [CrossRef]
- Nash, J.W.K.; Zekos, I.; Stack, M.M. Mapping of meteorological observations over the Island of Ireland to enhance the understanding and prediction of rain erosion in wind turbine blades. Energies 14, 4555. [CrossRef]
- Keegan, M. H. Wind Turbine Blade Leading Edge Erosion: An investigation of rain droplet and hailstone impact induced damage mechanisms. PhD thesis, University of Strathclyde, UK, 2014. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; Rosnay, P.; Rozum, I.; Vamborg, F.; Villaume, S. The ERA 5 global reanalysis. Q. J. R. Meteorol/ Soc. 146(730), 1999–2049. [CrossRef]
- Haakenstad, H.; Breivik, Ø.; Furevik, B.R.; Reistad, M.; Bohlinger, P.; Aarnes, O.J. NORA3: a nonhydrostatic high-resolution hindcast of the North Sea, the Norwegian Sea, and the Barents Sea. J. Appl. Meteorol. Climatol. 60(10), 1443–1464. [CrossRef]
- NEDO wind map. Available online: https://appraw1.infoc.nedo.go.jp/nedo/index.html (accessed on 8 December 2025).
- Lightning library in Japan. Available online: https://www.franklinjapan.jp/raiburari/data/ (accessed on 8 December 2025).
- Hashimoto, A.; Hiraguchi, H.; Tamura, H.; Hattori, Y.; Matsunashi, S. A 53-year reproduction run over Japan using a regional climate mode. CRIEPI report (in Japanese). N13004.
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Technical Report NREL/TP-500-38060; Definition of a 5-MW Reference Wind Turbine for Offshore System Development.
- DTU 10MW reference wind turbine. Available online: https://nrel.github.io/turbine-models/DTU_10MW_178_RWT_v1.html (accessed on 8 December 2025).
- Gaertner, E. Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine. IEA Wind TCP Task 37 Technical Report.
- Bech, J.I.; Johansen, N.F-J.; Madsen, M.B.; Hannesdottir, A.; Hasager, C.B. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades. Renewable Energy 197, 776–789. [CrossRef]
- Hashimoto, A.; Hiraguchi, H.; Toyoda, Y.; Nakaya, K. Prediction of regional climate change over Japan due to global warming (Part 1)- Evaluation of Numerical Weather Forecasting and Analysis System (NuWFAS) applied to a long-term climate simulation -. CRIEPI report (in Japanese). N10044.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O. NCAR Technical note 2008, NCAR/TN-475+STR; A description of the advanced research WRF version 3.
- ERA40 atlas. Available online: https://sites.ecmwf.int/era/40-atlas/docs/ (accessed on 8 December 2025).
- ERA interium. Available online: https://cds.climate.copernicus.eu/stac-browser/collections/reanalysis-era-interim?.language=en (accessed on 8 December 2025).
- Nanko, K.; Hotta, N.; Suzuki, M. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J. Hydrology 329, 422–431. [CrossRef]
- Best, A.C. The size of distribution of raindrops. Quart. J. R. Met. Soc. 1950, 76, 16. [Google Scholar] [CrossRef]
- for natural resources and energy (METI). Available online: https://www.enecho.meti.go.jp/category/saving_and_new/saiene/yojo_furyoku/dl/saiene_kaiiki_gaiyou.pdf (accessed on 26 Nov 2025).
- Yamaji, M. 4-year climatology of global drop size distribution and its seasonal variability observed by spaceborne dual-frequency precipitation radar. J. Meteorological Soc. Japan. Ser. II 98-4, 755–773. [CrossRef]
- Iino, T.; Tanaka, M.; Baba, Y.; Nishida, Y.; Kawagoe, M.; Hinata, A.; Aihara, A.; Tanaka, H. Evaluation of ultraviolet radiation effects on the erosion resistance of wind turbine blade coatings. The 46th Symposium on Wind Energy Utilization., (in Japanese). 2024; pp. A2–03. [Google Scholar]
- Solar spectrum. Available online: https://solarphys.com/observation/line/ (accessed on 8 December 2025).
- TNO news. Available online: https://www.tno.nl/en/newsroom/2025/03/damage-prediction-wind-turbine-blades/ (accessed on 9 Nov 2025).
- Hasager, C.B.; Vejen, F.; Skrzypinski, W.R.; Tilg, A.-M. E. Rain erosion load and its effect on leading-edge lifetime and potential of erosion-safe mode at wind turbines in the North Sea and Baltic Sea. Energies 14, 1959. [CrossRef]
- Tilg, A.-M.; Hasager, C.B.; Kirtzel, H.-J.; Hummelshoj, P. Brief communication: Nowcasting of precipitation for leading-edge-erosion-safe mode. Wind Energ. Sci. 2020, 5, 977–981. [Google Scholar] [CrossRef]
- Han, W.; Kim, J.; Kim, B. Effects pf contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 2018, 115. [Google Scholar]
- Law, H.; Koutsos, V. Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms. Wind Energy 2020, 23, 10–1955. [Google Scholar] [CrossRef]
- Sareen, A; Sapre, C.A.; Selig, M.S. Effects of leading edge erosion on wind turbine blade performance: Effects of leading edge erosion. Wind Energy 2014, 17, 1531–1542. [Google Scholar] [CrossRef]
- Major, D.; Palacious, J.; Maughmer, M.; Schmitz, S. Aerodynamics of leading-edge protection tapes for wind turbine blades. Wind Engineering 2021, 45(5), 1296–131. [Google Scholar] [CrossRef]
- Leston, F.; Barthelmie, R.J.; Pryor, S.C. Rader-derived precipitation climatology for wind turbine blade leading edge erosion. Wind Energy Sci. 2020, 5, 331–347. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
