Preprint
Article

This version is not peer-reviewed.

Causal Representation Learning for Robust and Interpretable Audit Risk Identification in Financial Systems

Submitted:

20 December 2025

Posted:

22 December 2025

You are already at the latest version

Abstract
his study investigates the application of causal representation learning in financial auditing risk identification, aiming to address problems in traditional methods such as spurious correlations, limited interpretability, and unstable recognition. The proposed framework is built around causal-driven latent representations, where nonlinear mapping is used to obtain deep feature representations of financial data, and structural equation models are employed to establish causal dependencies, thereby removing the interference of non-causal features in risk modeling. On this basis, causal regularization constraints are introduced, and the joint optimization of the objective function enhances the consistency and robustness of representations, improving the reliability and interpretability of the model in complex scenarios. Furthermore, in the risk scoring stage, causal representation is combined with intervention effect calculation, which enables risk identification to provide not only outcome judgments but also insights into the underlying driving mechanisms, thereby improving traceability of risk sources. To verify effectiveness, a dataset closely related to financial auditing tasks was constructed, and comparative experiments under an alignment robustness benchmark were conducted. The results show that the proposed method outperforms existing models in ACC, Precision, Recall, and F1-Score, with notable advantages in robustness and interpretability. In addition, hyperparameter sensitivity experiments analyzed the impact of the causal regularization coefficient on model performance, and the results indicate that appropriate causal constraints can significantly improve stability while maintaining predictive accuracy. Overall, the proposed causal representation learning framework enables more precise and reliable risk identification in financial auditing and provides strong support for building intelligent and data-driven auditing systems.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated