Submitted:
18 December 2025
Posted:
22 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Development of a Prognosis Tool
2.1. Standard Methodology

2.2. Failure Modes of SiC MOSFETs
2.3. Accelerated Aging and Typical Drift of Degradation Indicators
3. Prognosis Methods
3.1. Physics-Based Methods
3.1.1. General Considerations
3.1.2. Physical Lifetime Model
3.1.3. Analytical Lifetime Model
3.1.2. Other Physics Approaches
3.2. Data-Based Methods
3.2.1. General Considerations
3.2.2. Algorithmic Approaches
3.2.3. Implementation
3.2.4. Advanced Optimization Concepts
3.3. Hybrid Methods
3.3.1. General Considerations
3.3.2. Light Hybridization
3.3.3. Strong Hybridization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CNN | Convolutional Neural Network |
| CTE | Coefficient of Thermal Expansion |
| CTGAN | Conditional Tabular Generative Adversarial Network |
| DBC | Direct Bounded Copper |
| EKF | Extended Kalman Filter |
| ELM | Extreme Learning Machine |
| FEM | Finite Element Modeling |
| FNN | Feedforward Neural Network |
| GM | Grey Model |
| GPR | Gaussian Process Regressor |
| GRU | Gate Recurrent Unit |
| IGBT | Insulated Gate Bipolar Transistor |
| KF | Kalman Filter |
| LSTM | Long Short-Term Memory |
| MDNN | Mixture Density Neural Network |
| MLE | Maximum Likelihood Estimation |
| MOSFET | Metal Oxide Semiconductor Field Effect Transistor |
| PCA | Principal Component Analysis |
| PCoE | Prognostics Center of Excellence |
| PF | Particle Filter |
| PINN | Physic Informed Neural Network |
| PoF | Physics of Failure |
| RNN | Recurrent Neural Network |
| RUL | Remaining Useful Life |
| SCADA | Supervision Control And Data Acquisition |
| SOA | Safe Operating Area |
| SVM | Support Vector Machine |
| TSEP | Thermo Sensitive Electrical Parameter |
| WBG | Wide Band Gap |
| WSAT | Weakly Supervised Adversarial Training |
| WSDA | Weakly Supervised Domain Adaptation |
References
- IPCC Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In; Team, C.W., Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 35–115. [CrossRef]
- Sochor, P.; Igarashi, H. IEC 62093 Ed.2 BOS Components for PV Systems – Design Qualification PV Inverter Reliability. In Proceedings of the Proceedings of the IEC TC82 WG6 Meeting; Tokyo, Japan, May 2015.
- Golnas, A. PV System Reliability: An Operator’s Perspective. IEEE J. Photovolt. 2013, 3, 416–421. [CrossRef]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic Converters. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition; 2009; pp. 3151–3157. [CrossRef]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [CrossRef]
- Pu, S.; Yang, F.; Vankayalapati, B.T.; Akin, B. Aging Mechanisms and Accelerated Lifetime Tests for SiC MOSFETs: An Overview. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1232–1254. [CrossRef]
- Ni, Z.; Lyu, X.; Yadav, O.P.; Singh, B.N.; Zheng, S.; Cao, D. Overview of Real-Time Lifetime Prediction and Extension for SiC Power Converters. IEEE Trans. Power Electron. 2020, 35, 7765–7794. [CrossRef]
- Wang, J.; Jiang, X. Review and Analysis of SiC MOSFETs’ Ruggedness and Reliability. IET Power Electron. 2020, 13, 445–455. [CrossRef]
- Galar, D.; Goebel, K.; Kumar, U. Prognostics and Remaining Useful Life (RUL) Estimation: Predicting with Confidence; 2021; ISBN 978-1-003-09724-2.
- Sung, W.; Baliga, B. Design and Economic Considerations to Achieve the Price Parity of SiC MOSFETs with Silicon IGBTs. Mater. Sci. Forum 2016, 858, 889–893. [CrossRef]
- Huber, J.; Imperiali, L.; Menzi, D.; Musil, F.; Kolar, J.W. Energy Efficiency Is Not Enough! IEEE Power Electron. Mag. 2024, 11, 18–31. [CrossRef]
- Bhat, D.; Muench, S.; Roellig, M. Application of Machine Learning Algorithms in Prognostics and Health Monitoring of Electronic Systems: A Review. E-Prime - Adv. Electr. Eng. Electron. Energy 2023, 4, 100166. [CrossRef]
- Cruz, Y.J.; Castano, F.; Villalonga, A.; Mishra, M.; Haber, R.E. A Data-Driven Approach for Predicting Remaining Useful Life of Semiconductor Devices Based on Machine Learning and Synthetic Data Generation: A Review and Case Study on SiC MOSFETs. IEEE Access 2025, 13, 138834–138850. [CrossRef]
- Fang, X.; Lin, S.; Huang, X.; Lin, F.; Yang, Z.; Igarashi, S. A Review of Data-Driven Prognostic for IGBT Remaining Useful Life. Chin. J. Electr. Eng. 2018, 4, 73–79. [CrossRef]
- Ni, Z.; Lyu, X.; Yadav, O.P.; Cao, D. Review of SiC MOSFET Based Three-Phase Inverter Lifetime Prediction. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC); 2017; pp. 1007–1014. [CrossRef]
- Sonnenfeld, G.; Goebel, K.; Celaya, J.R. An Agile Accelerated Aging, Characterization and Scenario Simulation System for Gate Controlled Power Transistors. In Proceedings of the 2008 IEEE AUTOTESTCON; 2008; pp. 208–215. [CrossRef]
- Celaya, J.R.; Saxena, A.; Saha, S.; Goebel, K.F. Prognostics of Power MOSFETs under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies. In Proceedings of the Annual conference of the PHM society; 2011; Vol. 3.
- Abuelnaga, A.; Narimani, M.; Bahman, A.S. A Review on IGBT Module Failure Modes and Lifetime Testing. IEEE Access 2021, 9, 9643–9663. [CrossRef]
- Wolfspeed Gen 4 Silicon Carbide Technology: Redefining Performance and Durability in High-Power Applications Available online: https://www.wolfspeed.com/knowledge-center/article/gen-4-silicon-carbide-technology-redefining-performance-and-durability-in-high-power-applications/ (accessed on 27 October 2025).
- Bouarroudj-Berkani, M. Etude de La Fatigue Thermo-Mécanique de Modules Électroniques de Puissance En Ambiance de Températures Élevées Pour Des Applications de Traction de Véhicules Électriques et Hybrides. Theses, École normale supérieure de Cachan - ENS Cachan, 2008.
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John wiley & sons, 2006;
- Yu, L.; Cheung, K.P.; Campbell, J.; Suehle, J.S.; Sheng, K. Oxide Reliability of SiC MOS Devices. In Proceedings of the 2008 IEEE International Integrated Reliability Workshop Final Report; 2008; pp. 141–144. [CrossRef]
- Fayyaz, A.; Romano, G.; Castellazzi, A. Body Diode Reliability Investigation of SiC Power MOSFETs. Microelectron. Reliab. 2016, 64, 530–534. [CrossRef]
- Tan, W.; Zhao, L.; Lu, C.; Nie, W.; Gu, X. An In-Depth Investigation of Gate Leakage Current Degradation Mechanisms in 1.2 kV 4H-SiC Power MOSFETs. Microelectron. Reliab. 2023, 142, 114907. [CrossRef]
- Liu, T.; Zhu, S.; White, M.; Salemi, A.; Sheridan, D.; Agarwal, A. Time-Dependent Dielectric Breakdown of Commercial 1.2 kV 4H-SiC Power MOSFETs. IEEE J. Electron Devices Soc. 2021, PP, 1–1. [CrossRef]
- Chang, K.; Nuhfer, N.; Porter, L.; Wahab, Q. High-Carbon Concentrations at the Silicon Dioxide–Silicon Carbide Interface Identified by Electron Energy Loss Spectroscopy. Appl. Phys. Lett. - APPL PHYS LETT 2000, 77. [CrossRef]
- Zhang, C.X.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; Dhar, S.; Ryu, S.-H.; Shen, X.; Pantelides, S.T. Origins of Low-Frequency Noise and Interface Traps in 4H-SiC MOSFETs. IEEE Electron Device Lett. 2013, 34, 117–119. [CrossRef]
- Singh, R. Reliability and Performance Limitations in SiC Power Devices. Microelectron. Reliab. 2006, 46, 713–730. [CrossRef]
- Kodigala, S.R.; Chattopadhyay, S.; Overton, C.; Ardoin, I. Fowler–Nordheim Electron Tunneling Mechanism in Ni/SiO2/n-4H SiC MOS Devices. Solid-State Electron. 2015, 114, 104–110. [CrossRef]
- Nguyen, T.-T.; Ahmed, A.; Thang, T.V.; Park, J.-H. Gate Oxide Reliability Issues of SiC MOSFETs Under Short-Circuit Operation. IEEE Trans. Power Electron. 2015, 30, 2445–2455. [CrossRef]
- Baliga, B.J. Gallium Nitride and Silicon Carbide Power Devices; WORLD SCIENTIFIC, 2017;
- Ishigaki, T.; Murata, T.; Kinoshita, K.; Morikawa, T.; Oda, T.; Fujita, R.; Konishi, K.; Mori, Y.; Shima, A. Analysis of Degradation Phenomena in Bipolar Degradation Screening Process for SiC-MOSFETs. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD); 2019; pp. 259–262. [CrossRef]
- Skowronski, M. Degradation of Hexagonal Silicon Carbide-Based Bipolar Devices. In Proceedings of the 2005 International Semiconductor Device Research Symposium; 2005; pp. 138–138. [CrossRef]
- Schmidt, R.; Scheuermann, U. Separating Failure Modes in Power Cycling Tests. In Proceedings of the 2012 7th International Conference on Integrated Power Electronics Systems (CIPS); 2012; pp. 1–6.
- Xie, L.; Deng, E.; Yang, S.; Zhang, Y.; Zhong, Y.; Wang, Y.; Huang, Y. State-of-the-Art of the Bond Wire Failure Mechanism and Power Cycling Lifetime in Power Electronics. Microelectron. Reliab. 2023, 147, 115060. [CrossRef]
- Yang, X.; Ye, J.; Wu, X.; Heng, K.; He, Y.; Liu, G. Lifetime Prediction for Lift-off of Bond Wires in IGBTs Using Paris Law With Analytical Calculation of Crack Length. IEEE Trans. Power Electron. 2023, 38, 13099–13110. [CrossRef]
- Yamada, Y.; Takaku, Y.; Yagi, Y.; Nakagawa, I.; Atsumi, T.; Shirai, M.; Ohnuma, I.; Ishida, K. Reliability of Wire-Bonding and Solder Joint for High Temperature Operation of Power Semiconductor Device. Microelectron. Reliab. 2007, 47, 2147–2151. [CrossRef]
- Ugur, E.; Yang, F.; Pu, S.; Zhao, S.; Akin, B. Degradation Assessment and Precursor Identification for SiC MOSFETs Under High Temp Cycling. IEEE Trans. Ind. Appl. 2019, 55, 2858–2867. [CrossRef]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons, 2014;
- Yao, R.; Duan, Z.; Li, H.; Iannuzzo, F.; Lai, W.; Chen, X. Lifetime Prediction for Press Pack IGBT Device by Considering Fretting Wear Failure. Microelectron. Reliab. 2023, 145, 114984. [CrossRef]
- Li, Y.; He, Z.; Guo, W.; Hou, T.; Ji, Y.; Ma, D. FEM Simulation and Lifetime Prediction of Press-Pack IGBT: A Review. In Proceedings of the 2020 4th International Conference on HVDC (HVDC); 2020; pp. 355–361. [CrossRef]
- Sun, P.; Niu, F.; Zeng, Z.; Li, K.; Ou, K. FEA-Dominant Reliability and Lifetime Model of Double-Sided Cooling SiC Power Module. IEEE Trans. Device Mater. Reliab. 2023, 23, 178–186. [CrossRef]
- Yu, J.; Niu, P.; Ning, P.; Liu, J. Reliability Analysis and Lifetime Prediction of Low-Inductance Double-Sided Cooling SiC Power Modules. In Proceedings of the 2025 26th International Conference on Electronic Packaging Technology (ICEPT); 2025; pp. 1–6. [CrossRef]
- Liang, S.; Yang, Y.; Shu, L.; Wu, Z.; Chen, B.; Yu, H.; Liu, H.; Wang, L.; Li, T.; Deng, G.; et al. Modeling Irradiation-Induced Degradation for 4H-SiC Power MOSFETs. IEEE Trans. Electron Devices 2023, 70, 1176–1180. [CrossRef]
- Wang, Y.; Deng, E.; Wu, L.; Yan, Y.; Zhao, Y.; Huang, Y. Influence of Humidity on the Power Cycling Lifetime of SiC MOSFETs. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1781–1790. [CrossRef]
- Luo, R.; Duan, Y.; Luo, T.; Chang, Y.; Shi, W.; Xu, X.; Zhuang, J.; Zhang, G.; Fan, J. Degradation Mechanism Analysis and Modeling of SiC MOSFETs Under 60Co Gamma Ray Total Ionizing Dose Irradiation. IEEE Trans. Electron Devices 2025, 72, 3437–3444. [CrossRef]
- Principato, F.; Allegra, G.; Cappello, C.; Crepel, O.; Nicosia, N.; D′Arrigo, S.; Cantarella, V.; Di Mauro, A.; Abbene, L.; Mirabello, M.; et al. Investigation of the Impact of Neutron Irradiation on SiC Power MOSFETs Lifetime by Reliability Tests. Sensors 2021, 21. [CrossRef]
- Sønderskov, S.D.; Jørgensen, A.B.; Maarbjerg, A.E.; Frederiksen, K.L.; Munk-Nielsen, S.; Bęczkowski, S.; Uhrenfeldt, C. Test Bench for Thermal Cycling of 10 kV Silicon Carbide Power Modules. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe); 2016; pp. 1–8. [CrossRef]
- Lutz, J. Power Cycling – Methods, Measurement Accuracy, Comparability. In Proceedings of the CIPS 2020; 11th International Conference on Integrated Power Electronics Systems; 2020; pp. 1–8.
- Yu, X.; Zhou, D.; Iannuzzo, F. Comparative Analysis of Power Semiconductor Thermal Stress in DC and AC Power Cycling. In Proceedings of the 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG); 2022; pp. 1–6. [CrossRef]
- Choi, U.-M.; Jørgensen, S.; Blaabjerg, F. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules. IEEE Trans. Power Electron. 2016, 31, 8371–8386. [CrossRef]
- Uchida, K.; Hiyoshi, T.; Nishiguchi, T.; Yamamoto, H.; Furumai, M.; Tsuno, T.; Mikamura, Y. Lifetime Estimation of SiC MOSFETs under High Temperature Reverse Bias Test. Microelectron. Reliab. 2016, 64, 425–428. [CrossRef]
- Murat Sezer, M.; Akici, F.; Afshar, M.; Teja Vankayalapati, B.; Akin, B. Gate Leakage Current Characterization and Remaining Useful Lifetime Prediction in Silicon Carbide MOSFETs. IEEE Trans. Transp. Electrification 2025, 11, 8948–8958. [CrossRef]
- Hologne, M. Contribution to Condition Monitoring of Silicon Carbide MOSFET Based Power Module, Université Claude Bernanrd Lyon 1, 2018.
- Lachichi, A.; Mawby, P. Modeling of Bipolar Degradations in 4H-SiC Power MOSFET Devices by a 3C-SiC Inclusive Layer Consideration in the Drift Region. IEEE Trans. Power Electron. 2022, 37, 2959–2969. [CrossRef]
- AQG 324: Qualification of Power Modules for Use in Power Electronics Converter Units in Motor Vehicles; European Center for Power Electronics (ECPE): Nuremberg, Germany, 2017;
- Have, R. ten; Vermulst, B.; Duivenbode, J. van An Approach to Lifetime Estimation of SiC MOSFETs Subjected to Thermal Stress. In Proceedings of the Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management; 2015; pp. 1–9.
- Wang, L.; Xu, J.; Wang, G.; Zhang, Z. Lifetime Estimation of IGBT Modules for MMC-HVDC Application. Microelectron. Reliab. 2018, 82, 90–99. [CrossRef]
- Lin, S.; Fang, X.; Lin, F.; Yang, Z.; Wang, X.; Taku, T. Lifetime Prediction of IGBT Modules Based on Mission Profiles in Traction Inverter Application. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC); 2019; pp. 1–6. [CrossRef]
- Lu, Y.; Xiang, E.; Zhu, L.; Gao, H.; Yang, H.; Zhao, R. Mission Profile-Based Lifetime Estimation and Its System-Controlled Improvement Method of IGBT Modules for Electric Vehicle Converters. CPSS Trans. Power Electron. Appl. 2023, 8, 246–256. [CrossRef]
- Ceccarelli, L.; Kotecha, R.M.; Bahman, A.S.; Iannuzzo, F.; Mantooth, H.A. Mission-Profile-Based Lifetime Prediction for a SiC Mosfet Power Module Using a Multi-Step Condition-Mapping Simulation Strategy. IEEE Trans. Power Electron. 2019, 34, 9698–9708. [CrossRef]
- Barbagallo, C.; Rizzo, S.A.; Scelba, G.; Scarcella, G.; Cacciato, M. On the Lifetime Estimation of SiC Power MOSFETs for Motor Drive Applications. Electronics 2021, 10. [CrossRef]
- Cheng, H.-C.; Syu, J.-Y.; Wang, H.-H.; Liu, Y.-C.; Kao, K.-S.; Chang, T.-C. Power Cycling Modeling and Lifetime Evaluation of SiC Power MOSFET Module Using a Modified Physical Lifetime Model. IEEE Trans. Device Mater. Reliab. 2024, 24, 142–153. [CrossRef]
- Kamel, T.; Olagunju, O.; Johnson, T. Real-Time Temperature Estimation of the Machine Drive SiC Modules Consisting of Parallel Chips per Switch for Reliability Modelling and Lifetime Prediction. Machines 2025, 13. [CrossRef]
- Chen, Q.; Wang, L.; Yang, S. Reliability Prediction of SiC MOSFET Based on Actual Mission Profile of SSPC. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe); 2018; p. P.1-P.6.
- Zhang, Y.; Wang, H.; Wang, Z.; Yang, Y.; Blaabjerg, F. The Impact of Mission Profile Models on the Predicted Lifetime of IGBT Modules in the Modular Multilevel Converter. In Proceedings of the IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society; 2017; pp. 7980–7985. [CrossRef]
- Gao, B.; Yang, F.; Chen, M.; Chen, Y.; Lai, W.; Liu, C. Thermal Lifetime Estimation Method of IGBT Module Considering Solder Fatigue Damage Feedback Loop. Microelectron. Reliab. 2018, 82, 51–61. [CrossRef]
- Matsuichi, M.; Endo, T. Fatigue of Metals Subjected to Varying Stress.; 1968.
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85, 528–533.
- Coffin Jr, L.F. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal. Trans. Am. Soc. Mech. Eng. 1954, 76, 931–949. [CrossRef]
- Morrow, J.D.; International, A.; Testing, A.S. for; Materials Cyclic Plastic Strain Energy and Fatigue of Metals; ASTM International, 1965;
- Engelmaier, W.; Attarwala, A.I. Surface-Mount Attachment Reliability of Clip-Leaded Ceramic Chip Carriers on FR-4 Circuit Boards. IEEE Trans. Compon. Hybrids Manuf. Technol. 2002, 12, 284–296. [CrossRef]
- Manson, S.S.; Dolan, T.J. Thermal Stress and Low Cycle Fatigue. J. Appl. Mech. 1966, 33, 957–957. [CrossRef]
- Norris, K.C.; Landzberg, A.H. Reliability of Controlled Collapse Interconnections. IBM J. Res. Dev. 1969, 13, 266–271. [CrossRef]
- Bayerer, R.; Herrmann, T.; Licht, T.; Lutz, J.; Feller, M. Model for Power Cycling Lifetime of IGBT Modules - Various Factors Influencing Lifetime. In Proceedings of the 5th International Conference on Integrated Power Electronics Systems; 2008; pp. 1–6.
- Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast Power Cycling Test of IGBT Modules in Traction Application. In Proceedings of the Proceedings of Second International Conference on Power Electronics and Drive Systems; 1997; Vol. 1, pp. 425–430 vol.1. [CrossRef]
- Su, S.; Akkara, F.J.; Thaper, R.; Alkhazali, A.; Hamasha, M.; Hamasha, S. A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint. J. Electron. Packag. 2019, 141, 040802. [CrossRef]
- Lee, J.; Jeong, H.-Y. Fatigue Life Prediction of Solder Joints with Consideration of Frequency, Temperature and Cracking Energy Density. Int. J. Fatigue 2014, 61, 264–270. [CrossRef]
- Mathew, A.; Rzepka, S.; Heimler, P.; Xie, D.; Alaluss, M.; Basler, T. Digital Twin-Based Lifetime Estimation of Sic Power Modules. In Proceedings of the 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD); IEEE, 2024; pp. 478–481. [CrossRef]
- Yin, C.; Lu, H.; Musallam, M.; Bailey, C.; Johnson, C. A Physics-of-Failure Based Prognostic Method for Power Modules. In Proceedings of the 2008 10th Electronics Packaging Technology Conference; IEEE, 2008; pp. 1190–1195. [CrossRef]
- Cheng, H.-C.; Syu, J.-Y.; Wang, H.-H.; Liu, Y.-C.; Kao, K.-S.; Chang, T.-C. Power Cycling Modeling and Lifetime Evaluation of SiC Power MOSFET Module Using a Modified Physical Lifetime Model. IEEE Trans. Device Mater. Reliab. 2024, 24, 142–153. [CrossRef]
- Wu, X.; Yang, X.; Dai, X.; Tu, C.; Liu, G. A Physical Lifetime Prediction Methodology for IGBT Module by Explicit Emulation of Solder Layer Degradation. Microelectron. Reliab. 2021, 127, 114384. [CrossRef]
- Long, L.; Tu, C.; Xiao, B.; Xu, H.; Liu, S. Improved Lifetime Prediction Model of IGBT Module Considering Aging Effect of Solder Layer. In Proceedings of the 2021 11th International Conference on Power and Energy Systems (ICPES); IEEE, 2021; pp. 79–85. [CrossRef]
- Shi, Y.; Liu, J.; Ai, Y.; Chen, S.; Pei, C. Lifetime Prediction Method of the Traction Converter IGBT Based on Plastic Strain Energy Density. IEEE Trans. Transp. Electrification 2023, 10, 1286–1298. [CrossRef]
- Yang, X.; Wu, X.; Heng, K.; Liu, G. A Computationally Efficient IGBT Lifetime Prediction Method Based on Successive Initiation Technique by Iteratively Using Clech Algorithm. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3468–3479. [CrossRef]
- Lu, H.; Bailey, C. Approximate Methods for IGBT Solder Joint Stress and Fatigue Prediction. In Proceedings of the 2016 6th Electronic System-Integration Technology Conference (ESTC); IEEE, 2016; pp. 1–6. [CrossRef]
- Lu, H.; Bailey, C. Reliability Prediction for IGBT Solder Joints Using Clech Algorithm. In Proceedings of the 2016 17th International Conference on Electronic Packaging Technology (ICEPT); IEEE, 2016; pp. 1059–1063. [CrossRef]
- Syed, A. Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joints. In Proceedings of the 2004 Proceedings. 54th electronic components and technology conference (IEEE Cat. No. 04CH37546); IEEE, 2004; Vol. 1, pp. 737–746. [CrossRef]
- Zhang, D.; Huang, X.; Cheng, B.; Zhang, N. Numerical Analysis and Thermal Fatigue Life Prediction of Solder Layer in a SiC-IGBT Power Module. Fract. Struct. Integr. 2021, 15, 316–326. [CrossRef]
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85, 528–533. [CrossRef]
- Wu, X.; Yang, X.; Ye, J.; Liu, G. Novel Prognostics for IGBTs Using Wire-Bond Contact Degradation Model Considering On-Chip Temperature Distribution. IEEE Trans. Power Electron. 2024. [CrossRef]
- Yang, X.; Ye, J.; Wu, X.; Heng, K.; He, Y.; Liu, G. Lifetime Prediction for Lift-off of Bond Wires in IGBTs Using Paris Law with Analytical Calculation of Crack Length. IEEE Trans. Power Electron. 2023, 38, 13099–13110. [CrossRef]
- Grams, A.; Prewitz, T.; Wittler, O.; Schmitz, S.; Middendorf, A.; Lang, K.-D. Modelling the Lifetime of Aluminum Heavy Wire Bond Joints with a Crack Propagation Law. In Proceedings of the 2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE); IEEE, 2014; pp. 1–6. [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhao, S.; Yao, B.; Wang, H. Physics-Based Modeling of Packaging-Related Degradation of IGBT Modules. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC); IEEE, 2023; pp. 2463–2468. [CrossRef]
- Busca, C.; Teodorescu, R.; Blaabjerg, F.; Munk-Nielsen, S.; Helle, L.; Abeyasekera, T.; Rodríguez, P. An Overview of the Reliability Prediction Related Aspects of High Power IGBTs in Wind Power Applications. Microelectron. Reliab. 2011, 51, 1903–1907. [CrossRef]
- Velazco Navarro, D.A. Du Diagnostic Au Pronostic de l’état de Santé Des IGBT Dans Un Convertisseur Modulaire Multiniveaux Pour Les Réseaux HVDC. PhD Thesis, 2023.
- Manson, S.S.; Dolan, T.J. Thermal Stress and Low Cycle Fatigue. J. Appl. Mech. 1966, 33, 957–957. [CrossRef]
- Norris, K.C.; Landzberg, A.H. Reliability of Controlled Collapse Interconnections. IBM J. Res. Dev. 1969, 13, 266–271. [CrossRef]
- Lutz, J.; Schwabe, C.; Zeng, G.; Hein, L. Validity of Power Cycling Lifetime Models for Modules and Extension to Low Temperature Swings. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe); 2020; p. P.1-P.9. [CrossRef]
- Hoffmann, F.; Schmitt, S.; Kaminski, N. Lifetime Modeling of SiC MOSFET Power Modules During Power Cycling Tests at Low Temperature Swings. In Proceedings of the 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD); 2023; pp. 294–297. [CrossRef]
- Salmen, P.; Feil, M.W.; Waschneck, K.; Reisinger, H.; Rescher, G.; Aichinger, T. A New Test Procedure to Realistically Estimate End-of-Life Electrical Parameter Stability of SiC MOSFETs in Switching Operation. In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS); IEEE, 2021; pp. 1–7. [CrossRef]
- Garcia-Mere, J.R.; Gomez, A.A.; Roig-Guitart, J.; Rodriguez, J.; Rodriguez, A. Aging Modeling and Simulation of the Gate Switching Instability Degradation in SiC MOSFETs. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC); IEEE, 2024; pp. 653–658. [CrossRef]
- Salmen, P.; Feil, M.; Waschneck, K.; Reisinger, H.; Rescher, G.; Voss, I.; Sievers, M.; Aichinger, T. Gate-Switching-Stress Test: Electrical Parameter Stability of SiC MOSFETs in Switching Operation. Microelectron. Reliab. 2022, 135, 114575. [CrossRef]
- Wu, Q.; Xu, B.; Xiao, L.; Wang, Q. A Remaining Useful Life Prediction Method of SiC MOSFET Considering Failure Threshold Uncertainty. IET Power Electron. 2024, 17, 1594–1606. [CrossRef]
- Hua, A.; Che, Y.; Li, P.; Zheng, M. A Lifetime Prediction Method of IGBT Based on Phased Nonlinear Wiener Process. IEEE Trans. Device Mater. Reliab. 2025, 25, 545–556. [CrossRef]
- Liu, H.; Zhang, H.; Tang, Y. Hybrid Method for Remaining Useful Life Prediction of Power IGBT Modules in High-Speed Trains. IEEE Trans. Power Electron. 2024. [CrossRef]
- Yu, P.; Dai, Y.; Qin, F. A Machine Learning Framework to Predict the Thermal Fatigue Lifetime of SiC Module with Sintered Silver Layer. In Proceedings of the 2024 25th International Conference on Electronic Packaging Technology (ICEPT); 2024; pp. 1–6. [CrossRef]
- Zhang, J.; Hu, J.; You, H.; Jia, R.; Wang, X.; Zhang, X. A Remaining Useful Life Prediction Method of IGBT Based on Online Status Data. Microelectron. Reliab. 2021, 121, 114124. [CrossRef]
- Murat Sezer, M.; Akici, F.; Afshar, M.; Teja Vankayalapati, B.; Akin, B. Gate Leakage Current Characterization and Remaining Useful Lifetime Prediction in Silicon Carbide MOSFETs. IEEE Trans. Transp. Electrification 2025, 11, 8948–8958. [CrossRef]
- Moniruzzaman, M.; Okilly, A.H.; Choi, S.; Baek, J. GPU-Based Multivariate IGBT Lifetime Prediction. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE); 2023; pp. 3510–3517. [CrossRef]
- An, X.; Huang, Z.; Dou, Z.; Lu, F.; Wang, Q. Predicting Aging of IGBT Solder Layer Using Saturation Voltage Approach with CPO-SVR Data Modeling. Microelectron. Reliab. 2025, 164, 115553. [CrossRef]
- Hao, X.; Wang, Q.; Yang, Y.; Ma, H.; Wang, X.; Chen, G. A Multi-Source Data-Driven Approach to IGBT Remaining Useful Life Prediction. In Proceedings of the 2024 6th International Conference on Natural Language Processing (ICNLP); 2024; pp. 733–737. [CrossRef]
- Ahsan, M.; Stoyanov, S.; Bailey, C. Data Driven Prognostics for Predicting Remaining Useful Life of IGBT. In Proceedings of the 2016 39th International Spring Seminar on Electronics Technology (ISSE); 2016; pp. 273–278. [CrossRef]
- Dai, P.; Bao, J.; Gong, Z.; Gao, M.; Xu, Q. Lifetime Prediction of IGBT by BPNN Based on Improved Dung Beetle Optimization Algorithm. IEEE Trans. Device Mater. Reliab. 2025, 25, 341–351. [CrossRef]
- Hologne-Carpentier, M.; Allard, B.; Clerc, G.; Razik, H. Discussion on Classification Methods for Lifetime Evaluation of a Lab-Scale SiC MOSFET Power Module. In Proceedings of the International Conference of the IMACS TC1 Committee; Springer, 2021; pp. 153–166. [CrossRef]
- Hologne-Carpentier, M.; Guy, C.; Allard, B.; Razik, H. Determination of Parameters for Lifetime Evaluation of SiC MOSFETs Based Power Modules.; October 2018.
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network. Electronics 2020, 9. [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Power IGBT Remaining Useful Life Estimation Using Neural Networks Based Feature Reduction. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon); 2020; pp. 137–142. [CrossRef]
- Shterev, V.A.; Dimitrov, K.L.; Nenova, M.V. Comparative Analysis of Life Expectancy Prediction for IGBT with Neural Network and Noise Data. In Proceedings of the 2023 Eight Junior Conference on Lighting (Lighting); 2023; pp. 1–3. [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. ArXiv Prepr. ArXiv14061078 2014. [CrossRef]
- Cruz, Y.J.; Castano, F.; Villalonga, A.; Mishra, M.; Haber, R.E. A Data-Driven Approach for Predicting Remaining Useful Life of Semiconductor Devices Based on Machine Learning and Synthetic Data Generation: A Review and Case Study on SiC MOSFETs. IEEE Access 2025, 13, 138834–138850. [CrossRef]
- Kang, W.; Tan, S.; Vasquez, J.C.; Guerrero, J.M.; Hertle, T.; Gietzold, T.; Benn, A.; Wei, B. A Data-Driven Lifetime Prediction Method for Thermally Aged SiC MOSFET Applications. In Proceedings of the 2024 Prognostics and System Health Management Conference (PHM); 2024; pp. 281–286. [CrossRef]
- Yi, J.; Ma, C.; Wang, H. A Data-Driven Remaining Useful Life Prediction Method for Power MOSFETs Considering Nonlinear Dynamical Behaviors. IEEE Trans. Electron Devices 2025. [CrossRef]
- Chen, G.; Hao, X.; Huang, J.; Ma, H.; Wang, X.; Kong, X. A Remaining Useful Life Prediction Method for Insulated-Gate Bipolar Transistor Based on Deep Fusion of Nonlinear Features From Multisource Data. IEEE Sens. J. 2024, 24, 37531–37543. [CrossRef]
- Söderkvist Vermelin, W.; Lövberg, A.; Misiorny, M.; Eng, M.P.; Brinkfeldt, K. Data-Driven Remaining Useful Life Estimation of Discrete Power Electronic Devices. In Proceedings of the 33rd European Safety and Reliability Conference, Southampton, September 3-8, 2023; 2023; p. 2595.
- Ding, X.; Wang, B.; Yang, Y. DC Power Cycling Test and Lifetime Prediction for SiC MOSFETs. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS); 2023; pp. 4638–4643. [CrossRef]
- Bai, L.; Huang, M.; Pan, S.; Li, K.; Zha, X. Degradation Prediction of IGBT Module Based on CNN-LSTM Network. Microelectron. Reliab. 2025, 168, 115639. [CrossRef]
- Hasan, M.Z.; Choi, S.; Aider, Y.; Singh, P.; Liu, C.-H. Dynamic Environment-Aware Lifetime Prediction of SiC MOSFET Modules Through LSTM. In Proceedings of the 2025 IEEE Applied Power Electronics Conference and Exposition (APEC); 2025; pp. 1026–1033. [CrossRef]
- Xie, S.; Luo, W.; Li, L.; Hou, T.; Tang, X.; Huang, Y. Enhanced Estimation of IGBT Remaining Useful Life Using an Optimized LSTM Model. In Proceedings of the 2024 International Conference on HVDC (HVDC); 2024; pp. 726–731. [CrossRef]
- Li, W.; Wang, B.; Liu, J.; Zhang, G.; Wang, J. IGBT Aging Monitoring and Remaining Lifetime Prediction Based on Long Short-Term Memory (LSTM) Networks. Microelectron. Reliab. 2020, 114, 113902. [CrossRef]
- Li, C. IGBT Fault Prediction Combining Terminal Characteristics and Artificial Intelligence Neural Network. Comput. Math. Methods Med. 2022, 2022, 7459354. [CrossRef]
- Wang, Z.; Du, X. IGBT Lifetime Prediction Based on EMD-LSTM. J. Phys. Conf. Ser. 2021, 2010, 012143. [CrossRef]
- Ma, L.; Huang, J.; Chai, X.; He, S. Life Prediction for IGBT Based on Improved Long Short-Term Memory Network. In Proceedings of the 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA); 2023; pp. 868–873. [CrossRef]
- Cruz, Y.J.; Castaño, F.; Haber, R.E. Long Short-Term Memory Mixture Density Network for Remaining Useful Life Prediction of IGBTs. Technologies 2025, 13. [CrossRef]
- Kong, J.; Zhang, Y.; Zhang, Y.; Wick, L.; Hansen, F.L.; Zhou, D.; Wang, H. Physics-Informed Neural Network Approach for Early Degradation Trajectory Prediction of Power Semiconductor Modules. In Proceedings of the 2025 IEEE Applied Power Electronics Conference and Exposition (APEC); IEEE, 2025; pp. 2380–2386. [CrossRef]
- Lu, Z.; Guo, C.; Liu, M.; Shi, R. Remaining Useful Lifetime Estimation for Discrete Power Electronic Devices Using Physics-Informed Neural Network. Sci. Rep. 2023, 13, 10167. [CrossRef]
- Dou, H.; Wu, Z. Research on IGBT Lifespan Prediction Method Based on LSTM. In Proceedings of the 2024 3rd International Conference on Electronics and Information Technology (EIT); 2024; pp. 721–724. [CrossRef]
- Wang, Y.; Li, N.; Zhao, W.; Guo, S.; Shen, M.; Li, X. Research on Life Prediction of Inverter IGBT Based on WOA Optimized LSTM Model. In Proceedings of the 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT); 2023; pp. 1475–1479. [CrossRef]
- Ge, J.; Huang, Y.; Tao, Z.; Li, B.; Xiao, D.; Li, Y.; Liu, C. RUL Predict of IGBT Based on DeepAR Using Transient Switch Features. In Proceedings of the PHM Society European Conference; 2020; Vol. 5, pp. 11–11.
- Feng, X.; Xin, T.; Haolan, S.; Yifei, L. A GRU-Based Method of IGBT Module Degradation Prediction Under Changing Working Conditions. In Proceedings of the 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai); 2022; pp. 1–6. [CrossRef]
- Li, Y.; Tan, B.; Zhang, Y.; Wang, S.; Lian, B.; Li, Y.; Tan, Z. A Novel GRU-Augmented Time-Frequency Estimator for IGBT Remaining Useful Life Prediction. IEEE Access 2025, 13, 129074–129086. [CrossRef]
- Lv, S.; Liu, S.; Li, H.; Wang, Y.; Liu, G.; Dai, W. A Novel Method for Predicting the Remaining Useful Life of MOSFETs Based on a Linear Multi-Fractional Lévy Stable Motion Driven by a GRU Similarity Transfer Network. Reliab. Eng. Syst. Saf. 2025, 257, 110818. [CrossRef]
- Wang, W.; Wen, X.; Zhang, M.; Wang, Y.; Zheng, Y.; Gong, M.; Liu, D. A Gate-Aware GRU Model with Trend-Residual Decomposition and Quantile Regression for Remaining Useful Life Prediction of IGBT. Microelectron. J. 2025, 165, 106852. [CrossRef]
- Yang, P.; Li, H.; Han, X.; Sun, Y.; Zhou, Z.; She, M. Fault Prediction Algorithm of IGBT Devices Based on Bidirectional GRU Network Model. In Proceedings of the 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI); 2024; pp. 306–309. [CrossRef]
- Deng, K.; Xu, X.; Yuan, F.; Zhang, T.; Xu, Y.; Xie, T.; Song, Y.; Zhao, R. An Analytical Approach for IGBT Life Prediction Using Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Networks. Electronics 2024, 13. [CrossRef]
- Fassi, Y.; Heiries, V.; Boutet, J.; Boisseau, S. Physics-Informed Machine Learning for Robust Remaining Useful Life Estimation of Power MOSFETs. In Proceedings of the 2024 IEEE International Conference on Prognostics and Health Management (ICPHM); IEEE, 2024; pp. 399–406. [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30.
- Luo, W.; Liu, Y.; Pan, Y.; Bai, L. Remaining Useful Life Prediction of SiC MOSFETs Using the Autoformer-RELM Model. IEEE Trans. Instrum. Meas. 2025, 74, 1–11. [CrossRef]
- Chen, B.; Xie, D.; Huang, R.; Zhang, Y.; Chi, J.; Guo, X.; Li, Q. Research on IGBT Aging Prediction Method Based on Adaptive VMD Decomposition and GRU-AT Model. Energy Rep. 2023, 9, 1432–1446. [CrossRef]
- Du, X.; Li, Y. Remaining Useful Life Prediction for IGBT Based on SO-Bi- ALSTM. In Proceedings of the 2023 IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS); 2023; pp. 193–198. [CrossRef]
- Xiao, D.; Qin, C.; Ge, J.; Xia, P.; Huang, Y.; Liu, C. Self-Attention-Based Adaptive Remaining Useful Life Prediction for IGBT with Monte Carlo Dropout. Knowl.-Based Syst. 2022, 239, 107902. [CrossRef]
- Xiao, Y.; Wang, F. Performer-KAN-Based Failure Prediction for IGBT with BO-CEEMDAN. Micromachines 2025, 16. [CrossRef]
- Zhu, S.; Jian, M.; Yang, X.; Chen, L.; Deng, L.; Yang, L. Life Prediction of IGBT Across Working Condition via a CNN-Transformer Network. IEEE Trans. Device Mater. Reliab. 2025, 25, 195–202. [CrossRef]
- Zhang, Z.; Chen, X. A Knowledge-Driven Method for IGBT Remaining Useful Life Prediction Using Bidirectional Learning and Physics-Enhanced Pathformer Networks. J. Comput. Des. Eng. 2025, 12, 327–344. [CrossRef]
- Deng, S.; Lan, H.; Chen, Z.; Zhang, X.; He, G.; Li, W. A Physics-Informed Unsupervised Domain Adaptation Regression Network for Lifetime Prediction of IGBTs. In Proceedings of the 2024 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD); 2024; pp. 1–6. [CrossRef]
- Xie, Y.; Zhang, Y.; Miao, Q. Remaining Useful Life Prediction of Power MOSFETs Based on Deep Reinforcement Learning. IEEE Sens. J. 2025. [CrossRef]
- An, X.; Chen, J.; Dou, Y. Whale Optimization Algorithm for Optimizing Extreme Learning Machine in IGBT Aging Fault Prediction. In Proceedings of the 2024 Fourth International Conference on Digital Data Processing (DDP); 2024; pp. 162–167. [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [CrossRef]
- Jiang, X.; Fan, T.; Qiu, Z.; Zheng, D.; He, G.; Ning, P.; Wen, X. Lifetime Prediction of High-Current IGBT Modules Considering Bond Wire Degradation under Non-Constant Stress. IEEE J. Emerg. Sel. Top. Power Electron. 2025. [CrossRef]
- Meng, L.; Chen, Y.; Zhou, Z. Segmental Degradation RUL Prediction of IGBT Based on Combinatorial Prediction Algorithms. IEEE Access 2022, 10, 127845–127852. [CrossRef]
- Yu, B.; Wang, L. Online Short-Term Aging Status Prediction of SiC MOSFETs for DC Solid-State Power Controller Using Adaptive Variable Time-Steps Metabolic Gray Model. IEEE Trans. Power Electron. 2024, 39, 12456–12469. [CrossRef]
- Hasan, M.Z.; Amin, A.; Moniruzzaman, M.; Choi, S.; Singh, P.; Liu, C.-H. Impact of Environmental Conditions on the Remaining Useful Lifetime of SiC MOSFET. In Proceedings of the 2024 IEEE Energy Conversion Congress and Exposition (ECCE); 2024; pp. 4496–4503. [CrossRef]
- Sakhare, H.S.; Gargama, H. Comparative Analysis of Regression with ARIMA and PI-RNN Models for Predicting IGBT Remaining Useful Life Using Switch Health Index Embedding Feature Reconstruction Approach. Meas. Sci. Technol. 2025, 36, 106126. [CrossRef]
- Al-Sqour, A.-M.B.; Ibrahim, A.; Khatir, Z.; Cornet, S. A Stochastic Model-Based Prognostic for IGBT Power Module Remaining Useful Life Estimation Using a Physical Model-Based Shape Function. In Proceedings of the 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE); 2024; pp. 1–6. [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Remaining Useful Life Estimation for Thermally Aged Power Insulated Gate Bipolar Transistors Based on a Modified Maximum Likelihood Estimator. Int. Trans. Electr. Energy Syst. 2020, 30, e12358. [CrossRef]
- Qaedi, R.; Farjah, E.; Ghanbari, T.; Mehraban, A.; Avenas, Y. Online Monitoring for Aging Detection and Remaining Useful Life Estimation of IGBTs, Considering Main Aging Mechanisms. In Proceedings of the 2025 16th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC); 2025; pp. 1–8. [CrossRef]
- Shi, Y.; Ai, Y.; Chen, S.; Zhang, C.; Liu, J. A Health State Prediction Method of Traction Converter IGBT Based on Optimized Particle Filter. Microelectron. Reliab. 2022, 139, 114840. [CrossRef]
- Wu, W.; Gu, Y.; Yu, M.; Gao, C.; Chen, Y. Remaining Useful Lifetime Prediction Based on Extended Kalman Particle Filter for Power SiC MOSFETs. Micromachines 2023, 14. [CrossRef]
- Haque, M.S.; Choi, S.; Baek, J. Auxiliary Particle Filtering-Based Estimation of Remaining Useful Life of IGBT. IEEE Trans. Ind. Electron. 2018, 65, 2693–2703. [CrossRef]
- Jiang, M.; Lv, Q.; Li, P.; Gu, H.; Gu, C.; Zhang, W.; Fu, G. Remaining Useful Life Prediction of IGBT Module Based on Particle Filter Combining with Particle Swarm Optimization. In Proceedings of the 2022 Prognostics and Health Management Conference (PHM-2022 London); 2022; pp. 132–135. [CrossRef]
- Jiang, T.; Guo, K.; Zhang, X.; Zhao, Y.; Zhang, X.; Li, L. Lamarckian Particle Filter for IGBT Remaining Useful Life Prediction in Smart Grids. In Proceedings of the 2024 5th International Conference on Smart Grid and Energy Engineering (SGEE); 2024; pp. 329–333. [CrossRef]
- Li, X.; Yao, R.; Chen, S.; Lai, W.; Wang, F.; Duan, Z.; Yuan, W.; Ji, Y. State Estimation and Life Prediction of IGBT Devices Based on Particle Filtering Algorithm. In Proceedings of the 2025 IEEE International Conference on Electrical Energy Conversion Systems and Control (IEECSC); 2025; pp. 719–725. [CrossRef]
- Yang, J.; Zhang, H.; Li, L.; Miao, Q. IGBT Modules Fault Prediction Based on Particle Filter with an Improved Nonlinear Characteristics Representation of State-Space Model. Microelectron. Reliab. 2022, 139, 114795. [CrossRef]
- Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Gaussian Process Regression Remaining Useful Lifetime Prediction of Thermally Aged Power IGBT. In Proceedings of the IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society; 2019; Vol. 1, pp. 6004–6009. [CrossRef]
- Ali, S.H.; Heydarzadeh, M.; Dusmez, S.; Li, X.; Kamath, A.S.; Akin, B. Lifetime Estimation of Discrete IGBT Devices Based on Gaussian Process. IEEE Trans. Ind. Appl. 2018, 54, 395–403. [CrossRef]
- Li, L.-L.; Zhang, X.-B.; Tseng, M.-L.; Zhou, Y.-T. Optimal Scale Gaussian Process Regression Model in Insulated Gate Bipolar Transistor Remaining Life Prediction. Appl. Soft Comput. 2019, 78, 261–273. [CrossRef]
- Wen, R.; Xin, Z.; Liu, C.; Wang, X. Predicting Failure Precursor Parameters of SiC MOSFETs Based on the RTNET Neural Network. In Proceedings of the 2023 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS); 2023; pp. 1238–1241. [CrossRef]
- Deng, S.; Chen, Z.; Lan, H.; Yue, K.; Huang, Z.; Li, W. Remaining Useful Life Prediction with Spatio-Temporal Graph Transform and Weakly Supervised Adversarial Network: An Application in Power Components. Energy 2024, 313, 133599. [CrossRef]
- Ghrabli, M.; Bouarroudj, M.; Chamoin, L.; Aldea, E. Physics-Informed Markov Chains for Remaining Useful Life Prediction of Wire Bonds in Power Electronic Modules. Microelectron. Reliab. 2025, 167, 115644. [CrossRef]
- Avenas, Y.; Dupont, L.; Khatir, Z. Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review. IEEE Trans. Power Electron. 2012, 27, 3081–3092. [CrossRef]
- Schulz, M.; Ma, X. Correlating NTC-Reading and Chip-Temperature in Power Electronic Modules.; May 2015.
- Tamdogan, E.; Pavlidis, G.; Graham, S.; Arik, M. A Comparative Study on the Junction Temperature Measurements of LEDs With Raman Spectroscopy, Microinfrared (IR) Imaging, and Forward Voltage Methods. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1914–1922. [CrossRef]
- Baker, N.; Dupont, L.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current. IEEE Trans. Power Electron. 2017, 32, 3099–3111. [CrossRef]
- Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P.A. An Investigation of Temperature-Sensitive Electrical Parameters for SiC Power MOSFETs. IEEE Trans. Power Electron. 2017, 32, 7954–7966. [CrossRef]
- Yu, H.; Jiang, X.; Chen, J.; Shen, Z.J.; Wang, J. Comparative Study of Temperature Sensitive Electrical Parameters for Junction Temperature Monitoring in SiC MOSFET and Si IGBT. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia); 2020; pp. 905–909. [CrossRef]
- Barbagallo, C.; Rizzo, S.A.; Scelba, G.; Scarcella, G.; Cacciato, M. On the Lifetime Estimation of SiC Power MOSFETs for Motor Drive Applications. Electronics 2021, 10. [CrossRef]
- Ceccarelli, L.; Kotecha, R.M.; Bahman, A.S.; Iannuzzo, F.; Mantooth, H.A. Mission-Profile-Based Lifetime Prediction for a SiC Mosfet Power Module Using a Multi-Step Condition-Mapping Simulation Strategy. IEEE Trans. Power Electron. 2019, 34, 9698–9708. [CrossRef]
- Wang, R.; Zhu, X. An Online Junction Temperature Detection Circuit for SiC MOSFETs Considering Threshold Voltage Drift Compensation. Microelectron. Reliab. 2024, 163, 115548. [CrossRef]
- Peng, Y.; Wang, Q.; Wang, H.; Wang, H. An On-Line Calibration Method for TSEP-Based Junction Temperature Estimation. IEEE Trans. Ind. Electron. 2022, 69, 13616–13624. [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on Delay Based Real-Time Junction Temperature Measurement for SiC MOSFETs With Aging Compensation. IEEE Trans. Power Electron. 2021, 36, 1280–1294. [CrossRef]
- Chen, H.; Ji, B.; Pickert, V.; Cao, W. Real-Time Temperature Estimation for Power MOSFETs Considering Thermal Aging Effects. IEEE Trans. Device Mater. Reliab. 2014, 14, 220–228. [CrossRef]
- Halouani, A.; Khatir, Z.; Lallemand, R.; Ibrahim, A.; Ingrosso, D. Effect of Load Sequence Interaction for Low ∆Tj’s on the Reliability of Bonded Aluminum Wires in IGBTs. Microelectron. Reliab. 2025, 171, 115793. [CrossRef]
- Khatir, Z.; Tran, S.-H.; Ibrahim, A.; Lallemand, R.; Degrenne, N. Effect of Load Sequence Interaction on Bond-Wire Lifetime Due to Power Cycling. Sci. Rep. 2021, 11, 5601. [CrossRef]
- Xie, F.; Xiao, F.; Tang, X.; Luo, Y.; Shen, H.; Shi, Z. Degradation State Assessment of IGBT Module Based on Interpretable LSTM-AE Modeling Under Changing Working Conditions. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 5544–5557. [CrossRef]
- Sankararaman, S.; Goebel, K. Uncertainty in Prognostics and Systems Health Management. Int. J. Progn. Health Manag. 2015, 6. [CrossRef]










| Failure location | Cause | Acceleration Factors | Failure indicators |
|---|---|---|---|
| Gate Oxide | Carrier tunneling | High Electric Field, High Temperature |
: Threshold voltage |
| : Gate leakage current | |||
| : on state resistance, voltage | |||
| : Plateau Miller voltage | |||
| : turn on, off duration | |||
| Body Diode | Energy released by the carrier recombination at PN junction | Forward current | : forward body diode voltage |
| : Drain leakage current | |||
| Bond Wires | Thermomechanical stress | Fast temperature cycling | : on state resistance, voltage |
| : forward body diode voltage | |||
| Solder Layers | Slow temperature cycling | : thermal resistance junction to baseplate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
