Remote sensing image super-resolution (RSISR) aims to reconstruct high-resolution images from low-resolution observations of remote sensing data to enhance the visual quality and usability of remote sensors. Real world RSISR is challenging owing to the diverse degradations like blur, noise, compression, and atmospheric distortions. We propose hierarchical multi-task super- resolution framework including degradation-aware modeling, dual-decoder reconstruction, and static regularization-guided generation. Speciffcally, the degradation-wise module adaptively characterizes multiple types of degradation and provides effective conditional priors for reconstruction. The dual-doder platform incorporates both convolutional and Transformer branches to match local detail preservation as well as global structural consistency. Moreover, the static regularizing guided generation introduces prior constraints such as total variation and gradient consistency to improve robustness to varying degradation levels. Extensive experiments on two public remote sensing datasets show that our method achieves performance that is robust against varying degradation conditions.