Submitted:
17 December 2025
Posted:
19 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Literature Overview
1.2. Theoretical Background
2. Materials and Methods
2.1. Material Preparation
2.2. Cutting Experiment
2.3. Planning the Experiment
2.4. Power Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Coded factors | Modelled factors | Corresponding technological factors | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Density | Humidity | Chip thickness | Cutting edge radius | Mean cutting angle | Density | Humidity | Chip thickness | Cutting edge radius | Mean cutting angle | Density | Humidity | Feed rate | Cutting edge radius | Cutting depth | |
| STD | ρ | u | hm | rz | m | ρ (kg/m3) |
u (%) |
hm (m) |
rz (µm) |
m (rad) |
ρ (kg/m3) |
u (%) |
vf (m/min) |
rz (µm) |
a (mm) |
| 1 | -1 | -1 | -1 | -1 | -1 | 405 | 8 | 0.0001 | 5 | 0.0873 | 405 | 8 | 13.8 | 5 | 0.95 |
| 2 | 1 | -1 | -1 | -1 | -1 | 665 | 8 | 0.0001 | 5 | 0.0873 | 665 | 8 | 13.8 | 5 | 0.95 |
| 3 | -1 | 1 | -1 | -1 | -1 | 405 | 16 | 0.0001 | 5 | 0.0873 | 405 | 16 | 13.8 | 5 | 0.95 |
| 4 | 1 | 1 | -1 | -1 | -1 | 665 | 16 | 0.0001 | 5 | 0.0873 | 665 | 16 | 13.8 | 5 | 0.95 |
| 5 | -1 | -1 | 1 | -1 | -1 | 405 | 8 | 0.0004 | 5 | 0.0873 | 405 | 8 | 55.0 | 5 | 0.95 |
| 6 | 1 | -1 | 1 | -1 | -1 | 665 | 8 | 0.0004 | 5 | 0.0873 | 665 | 8 | 55.0 | 5 | 0.95 |
| 7 | -1 | 1 | 1 | -1 | -1 | 405 | 16 | 0.0004 | 5 | 0.0873 | 405 | 16 | 55.0 | 5 | 0.95 |
| 8 | 1 | 1 | 1 | -1 | -1 | 665 | 16 | 0.0004 | 5 | 0.0873 | 665 | 16 | 55.0 | 5 | 0.95 |
| 9 | -1 | -1 | -1 | 1 | -1 | 405 | 8 | 0.0001 | 35 | 0.0873 | 405 | 8 | 13.8 | 35 | 0.95 |
| 10 | 1 | -1 | -1 | 1 | -1 | 665 | 8 | 0.0001 | 35 | 0.0873 | 665 | 8 | 13.8 | 35 | 0.95 |
| 11 | -1 | 1 | -1 | 1 | -1 | 405 | 16 | 0.0001 | 35 | 0.0873 | 405 | 16 | 13.8 | 35 | 0.95 |
| 12 | 1 | 1 | -1 | 1 | -1 | 665 | 16 | 0.0001 | 35 | 0.0873 | 665 | 16 | 13.8 | 35 | 0.95 |
| 13 | -1 | -1 | 1 | 1 | -1 | 405 | 8 | 0.0004 | 35 | 0.0873 | 405 | 8 | 55.0 | 35 | 0.95 |
| 14 | 1 | -1 | 1 | 1 | -1 | 665 | 8 | 0.0004 | 35 | 0.0873 | 665 | 8 | 55.0 | 35 | 0.95 |
| 15 | -1 | 1 | 1 | 1 | -1 | 405 | 16 | 0.0004 | 35 | 0.0873 | 405 | 16 | 55.0 | 35 | 0.95 |
| 16 | 1 | 1 | 1 | 1 | -1 | 665 | 16 | 0.0004 | 35 | 0.0873 | 665 | 16 | 55.0 | 35 | 0.95 |
| 17 | -1 | -1 | -1 | -1 | 1 | 405 | 8 | 0.0001 | 5 | 0.4364 | 405 | 8 | 2.8 | 5 | 22.33 |
| 18 | 1 | -1 | -1 | -1 | 1 | 665 | 8 | 0.0001 | 5 | 0.4364 | 665 | 8 | 2.8 | 5 | 22.33 |
| 19 | -1 | 1 | -1 | -1 | 1 | 405 | 16 | 0.0001 | 5 | 0.4364 | 405 | 16 | 2.8 | 5 | 22.33 |
| 20 | 1 | 1 | -1 | -1 | 1 | 665 | 16 | 0.0001 | 5 | 0.4364 | 665 | 16 | 2.8 | 5 | 22.33 |
| 21 | -1 | -1 | 1 | -1 | 1 | 405 | 8 | 0.0004 | 5 | 0.4364 | 405 | 8 | 11.2 | 5 | 22.33 |
| 22 | 1 | -1 | 1 | -1 | 1 | 665 | 8 | 0.0004 | 5 | 0.4364 | 665 | 8 | 11.2 | 5 | 22.33 |
| 23 | -1 | 1 | 1 | -1 | 1 | 405 | 16 | 0.0004 | 5 | 0.4364 | 405 | 16 | 11.2 | 5 | 22.33 |
| 24 | 1 | 1 | 1 | -1 | 1 | 665 | 16 | 0.0004 | 5 | 0.4364 | 665 | 16 | 11.2 | 5 | 22.33 |
| 25 | -1 | -1 | -1 | 1 | 1 | 405 | 8 | 0.0001 | 35 | 0.4364 | 405 | 8 | 2.8 | 35 | 22.33 |
| 26 | 1 | -1 | -1 | 1 | 1 | 665 | 8 | 0.0001 | 35 | 0.4364 | 665 | 8 | 2.8 | 35 | 22.33 |
| 27 | -1 | 1 | -1 | 1 | 1 | 405 | 16 | 0.0001 | 35 | 0.4364 | 405 | 16 | 2.8 | 35 | 22.33 |
| 28 | 1 | 1 | -1 | 1 | 1 | 665 | 16 | 0.0001 | 35 | 0.4364 | 665 | 16 | 2.8 | 35 | 22.33 |
| 29 | -1 | -1 | 1 | 1 | 1 | 405 | 8 | 0.0004 | 35 | 0.4364 | 405 | 8 | 11.2 | 35 | 22.33 |
| 30 | 1 | -1 | 1 | 1 | 1 | 665 | 8 | 0.0004 | 35 | 0.4364 | 665 | 8 | 11.2 | 35 | 22.33 |
| 31 | -1 | 1 | 1 | 1 | 1 | 405 | 16 | 0.0004 | 35 | 0.4364 | 405 | 16 | 11.2 | 35 | 22.33 |
| 32 | 1 | 1 | 1 | 1 | 1 | 665 | 16 | 0.0004 | 35 | 0.4364 | 665 | 16 | 11.2 | 35 | 22.33 |
| 33 | -1 | 0 | 0 | 0 | 0 | 405 | 12 | 0.00025 | 20 | 0.2617 | 405 | 12 | 11.5 | 20 | 8.37 |
| 34 | 1 | 0 | 0 | 0 | 0 | 665 | 12 | 0.00025 | 20 | 0.2617 | 665 | 12 | 11.5 | 20 | 8.37 |
| 35 | 0 | -1 | 0 | 0 | 0 | 535 | 8 | 0.00025 | 20 | 0.2617 | 535 | 8 | 11.5 | 20 | 8.37 |
| 36 | 0 | 1 | 0 | 0 | 0 | 535 | 16 | 0.00025 | 20 | 0.2617 | 535 | 16 | 11.5 | 20 | 8.37 |
| 37 | 0 | 0 | -1 | 0 | 0 | 535 | 12 | 0.0001 | 20 | 0.2617 | 535 | 12 | 4.6 | 20 | 8.37 |
| 38 | 0 | 0 | 1 | 0 | 0 | 535 | 12 | 0.0004 | 20 | 0.2617 | 535 | 12 | 18.4 | 20 | 8.37 |
| 39 | 0 | 0 | 0 | -1 | 0 | 535 | 12 | 0.00025 | 5 | 0.2617 | 535 | 12 | 11.5 | 5 | 8.37 |
| 40 | 0 | 0 | 0 | 1 | 0 | 535 | 12 | 0.00025 | 35 | 0.2617 | 535 | 12 | 11.5 | 35 | 8.37 |
| 41 | 0 | 0 | 0 | 0 | -1 | 535 | 12 | 0.00025 | 20 | 0.0873 | 535 | 12 | 34.4 | 20 | 0.95 |
| 42 | 0 | 0 | 0 | 0 | 1 | 535 | 12 | 0.00025 | 20 | 0.4364 | 535 | 12 | 7.0 | 20 | 22.33 |
| 43 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 44 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 45 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 46 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 47 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 48 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 49 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
| 50 | 0 | 0 | 0 | 0 | 0 | 535 | 12 | 0.00025 | 20 | 0.2617 | 535 | 12 | 11.5 | 20 | 8.37 |
References
- Merhar, M.; Bjelić, A.; Hodžić, A. Modelling of Peripheral Wood Milling Power Using Design of Experiment Approach. Drv. Ind. 2024, 75, 395–404. [Google Scholar] [CrossRef]
- Ettelt, B. Sägen, Fräsen, Hobeln, Bohren: die Spanung von Holz und ihre Werkzeuge, 3rd ed.; DRW-Verlag: Stuttgart, 2004. [Google Scholar]
- Kivimaa, E. Die Schnittkraft in der Holzbearbeitung. Holz als Roh- und Werkstoff: European Journal of Wood and Wood Industries 1952, 10, 94–108. [Google Scholar] [CrossRef]
- Wellenreiter, P.; Hernández, R.E.; Cáceres, C.B.; Blais, C. Cutting forces and noise in helical planing black spruce wood as affected by the helix angle and feed per knife. Wood Material Science & Engineering 2023, 18, 549–558. [Google Scholar] [CrossRef]
- Li, R.R.; He, C.J.; Xu, W.; Wang, X.D. Modeling and optimizing the specific cutting energy of medium density fiberboard during the helical up-milling process. Wood Material Science & Engineering 2023, 18, 464–471. [Google Scholar] [CrossRef]
- Yaghoubi, S.; Rabiei, F.; Seidi, M. A comprehensive assessment on surface quality of machined wooden products via Box-Behnken design method. Wood Material Science & Engineering 2024, 19, 896–905. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Z.; Lu, W.; Yu, Y.; Wang, J.; Zhu, Z.; Wang, X. Investigation on Cutting Power of Wood–Plastic Composite Using Response Surface Methodology. Forests 2022, 13. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Buck, D.; Song, M.Q.; Tang, Q.; Guan, J.; Zhou, X.L.; Guo, X.L. Enhancing face-milling efficiency of wood-plastic composites through the application of genetic algorithm-back propagation neural network. Wood Material Science & Engineering 2024. [Google Scholar] [CrossRef]
- Blackman, B.R.K.; Hoult, T.R.; Patel, Y.; Williams, J.G. Tool sharpness as a factor in machining tests to determine toughness. Engineering Fracture Mechanics 2013, 101, 47–58. [Google Scholar] [CrossRef]
- Merhar, M.; Bucar, B. Friction in linear orthogonal cutting of beech wood (fagus sylvatica) considering ploughing effect forces due to cutting tool tip bluntness. Wood Res. 2013, 58, 319–328. [Google Scholar]
- Li, W.G.; Zhu, Z.; Zhang, B. Simulation analysis and experimental research of friction performance between wood and cemented carbide surface with different micro-textures. Wood Material Science & Engineering 2024. [Google Scholar] [CrossRef]
- Merhar, M.; Bucar, B. Cutting force variability as a consequence of exchangeable cleavage fracture and compressive breakdown of wood tissue. Wood Sci. Technol. 2012, 46, 965–977. [Google Scholar] [CrossRef]
- Matsuda, Y.; Fujiwara, Y.; Fujii, Y. Observation of machined surface and subsurface structure of hinoki (Chamaecyparis obtusa) produced in slow-speed orthogonal cutting using X-ray computed tomography. J. Wood Sci. 2015, 61, 128–135. [Google Scholar] [CrossRef]
- Koch, P. Utilization of the Southern Pines, 1st ed.; U.S. Southern Forest Experiment Station: New Orleans, 1972. [Google Scholar]
- Elloumi, I.; Hernández, R.E.; Cáceres, C.B.; Blais, C. Effects of log temperature, moisture content, and cutting width on energy requirements for processing logs by a chipper-canter. Wood Material Science & Engineering 2023, 18, 394–401. [Google Scholar] [CrossRef]
- Minagawa, M.; Matsuda, Y.; Fujiwara, Y.; Fujii, Y. Relationship between crack propagation and the stress intensity factor in cutting parallel to the grain of hinoki (Chamaecyparis obtusa). J. Wood Sci. 2018, 64, 758–766. [Google Scholar] [CrossRef]
- Aboussafy, C.; Guilbault, R. Chip formation in machining of anisotropic plastic materials—a finite element modeling strategy applied to wood. International Journal of Advanced Manufacturing Technology 2021, 114, 1471–1486. [Google Scholar] [CrossRef]
- Su, Q.; Yu, Z.; Zhang, J.; Liu, W.; Ma, X.; Liu, Z. Mechanisms and influencing factors of branch fracture in Caragana korshinskii: a numerical simulation using XFEM. Wood Sci. Technol. 2025, 59. [Google Scholar] [CrossRef]
- Matsuda, Y.; Fujiwara, Y.; Murata, K.; Fujii, Y. Residual strain analysis with digital image correlation method for subsurface damage evaluation of hinoki (Chamaecyparis obtusa) finished by slow-speed orthogonal cutting. J. Wood Sci. 2017, 63, 615–624. [Google Scholar] [CrossRef]
- Chuchala, D.; Huang, Y.; Orlowski, K.A.; Buck, D.; Stenka, D.; Fredriksson, M.; Svensson, M. Fracture toughness and shear yield stress determination from quasi-linear cutting tests of Scots pine (Pinus sylvestris L.) with a normalisation process by local density aided by X-ray computed tomography. Eur. J. Wood Wood Prod. 2025, 83. [Google Scholar] [CrossRef]
- Hlásková, L.; Procházka, J.; Novák, V.; Čermák, P.; Kopecký, Z. Interaction between thermal modification temperature of spruce wood and the cutting and fracture parameters. Materials 2021, 14. [Google Scholar] [CrossRef]
- Yang, C.; Liu, T.; Ma, Y.; Qu, W.; Ding, Y.; Zhang, T.; Song, W. Study of the Movement of Chips during Pine Wood Milling. Forests 2023, 14. [Google Scholar] [CrossRef]
- Kubík, P.; Šebek, F.; Krejčí, P.; Brabec, M.; Tippner, J.; Dvořáček, O.; Lechowicz, D.; Frybort, S. Linear woodcutting of European beech: experiments and computations. Wood Sci. Technol. 2023, 57, 51–74. [Google Scholar] [CrossRef]
- Radmanovic, K.; Dukic, I.; Merhar, M.; Safran, B.; Jug, M.; Lucic, R.B. Longitudinal and Tangential Coefficients of Chip Compression in Orthogonal Wood Cutting. Bioresources 2018, 13, 7998–8011. [Google Scholar] [CrossRef]
- Liao, Z.; Axinte, D.A. On chip formation mechanism in orthogonal cutting of bone. International Journal of Machine Tools and Manufacture 2016, 102, 41–55. [Google Scholar] [CrossRef]
- Wang, H.; Satake, U.; Enomoto, T. Serrated chip formation mechanism in orthogonal cutting of cortical bone at small depths of cut. Journal of Materials Processing Technology 2023, 319. [Google Scholar] [CrossRef]
- Kollmann, F.F.P.; Côte, W.A. Principles of Wood Science and Technology. Solid Wood.; Springer-Verlag: Berlin, Germany, 1975; p. pp. 592. [Google Scholar]
- Jiang, S.; Buck, D.; Tang, Q.; Guan, J.; Wu, Z.; Guo, X.; Zhu, Z.; Wang, X. Cutting Force and Surface Roughness during Straight-Tooth Milling of Walnut Wood. Forests 2022, 13. [Google Scholar] [CrossRef]
- Pinkowski, G.; Piernik, M.; Wołpiuk, M.; Krauss, A. Effect of Chip Thickness and Tool Wear on Surface Roughness and Cutting Power during Up-Milling Wood of Different Density. BioResources 2024, 19, 9234–9248. [Google Scholar] [CrossRef]
- Homkhiew, C.; Cheewawuttipong, W.; Srivabut, C.; Boonchouytan, W.; Rawangwong, S. Machinability of wood-plastic composites from the CNC milling process using the Box-Behnken design and response surface methodology for building applications. Journal of Thermoplastic Composite Materials 2025, 38, 161–187. [Google Scholar] [CrossRef]
- Dvoracek, O.; Lechowicz, D.; Haas, F.; Frybort, S. Cutting force analysis of oak for the development of a cutting force model. Wood Mat. Sci. Eng. 2022, 17, 771–782. [Google Scholar] [CrossRef]
- Jin, D.; Wei, K. Machinability of Scots Pine during Peripheral Milling with Helical Cutters. Bioresources 2021, 16, 8172–8183. [Google Scholar] [CrossRef]
- Li, R.; Yang, F.; Wang, X. Modeling and Predicting the Machined Surface Roughness and Milling Power in Scot’s Pine Helical Milling Process. Machines 2022, 10. [Google Scholar] [CrossRef]
- Porankiewicz, B.; Axelsson, B.; Grönlund, A.; Marklund, B. Main and normal cutting forces by machining wood of Pinus sylvestris. BioResources 2011, 6, 3687–3713. [Google Scholar] [CrossRef]
- Derbas, M.; Young, T.M.; Frömel-Frybort, S.; Möhring, H.C.; Riegler, M. Predicting wood moisture classes by sound frequency spectra and Explainable Machine Learning during milling. Wood Mat. Sci. Eng. 2024. [Google Scholar] [CrossRef]
- Chuchala, D.; Orlowski, K.A.; Sinn, G.; Konopka, A. Comparison of the fracture toughness of pine wood determined on the basis of orthogonal linear cutting and frame sawing. Acta Facultatis Xylologiae Zvolen 2021, 63, 75–83. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, W.; Xu, L.; Jin, S.; Cui, W.; Xue, J.; Zhou, H. Linear Cutting Performance Tests and Parameter Optimization of Poplar Branches Based on RSM and NSGA-II. Forests 2024, 15. [Google Scholar] [CrossRef]
- Yang, C.; Ma, Y.; Liu, T.; Ding, Y.; Qu, W. Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling. Forests 2023, 14. [Google Scholar] [CrossRef]
- Goli, G.; Fioravanti, M.; Marchal, R.; Uzielli, L.; Busoni, S. Up-milling and down-milling wood with different grain orientations-the cutting forces behaviour. Eur. J. Wood Wood Prod. 2010, 68, 385–395. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: Arizona State University, 2013. [Google Scholar]
- Brémaud, I.; Gril, J. Moisture content dependence of anisotropic vibrational properties of wood at quasi equilibrium: Analytical review and multi-trajectories experiments. Holzforschung 2021, 75, 313–327. [Google Scholar] [CrossRef]





| Real values | |||
|---|---|---|---|
| min | mean | max | |
| Mean chip thickness, hm (mm) | 0.1 | 0.25 | 0.4 |
| Mean cutting angle, φm (°) | 5 | 15 | 25 |
| Tool tip radius, rz (µm) | 5.2 | 19.1 | 34.9 |
| Wood moisture content, u (%) | 8.1 | 11.9 | 16.2 |
| Wood density, ρ (kg/m3) | 404.8 | 537.1 | 662.2 |
| Modeled values | |||
| -1 | 0 | 1 | |
| Mean chip thickness, hm (m) | 0.0001 | 0.0003 | 0.0004 |
| Mean cutting angle, φm (rad) | 0.08727 | 0.2618 | 0.436332 |
| Tool tip radius, rz (µm) | 5 | 20 | 35 |
| Wood moisture content, u (%) | 8 | 12 | 16 |
| Wood density, ρ (kg/m3) | 405 | 535 | 665 |
| Response1 | Response2 | Response3 | Average value | Coefficient of variation (power) | Mean force per chip | Normalized mean force per chip | |
|---|---|---|---|---|---|---|---|
| P1 | P2 | P3 | P | COV | Fm | Fmb | |
| STD | (W) | (W) | (W) | (W) | (%) | (N) | (N/m) |
| 1 | 79 | 83 | 75 | 79 | 4.13 | 73 | 2807 |
| 2 | 120 | 124 | 103 | 116 | 7.87 | 107 | 4111 |
| 3 | 127 | 113 | 103 | 114 | 8.61 | 106 | 4064 |
| 4 | 135 | 118 | 144 | 132 | 8.15 | 122 | 4706 |
| 5 | 213 | 181 | 181 | 192 | 7.87 | 177 | 6824 |
| 6 | 255 | 278 | 313 | 282 | 8.46 | 261 | 10045 |
| 7 | 196 | 222 | 243 | 220 | 8.72 | 204 | 7859 |
| 8 | 309 | 269 | 283 | 287 | 5.77 | 266 | 10238 |
| 9 | 96 | 113 | 117 | 109 | 8.38 | 100 | 3864 |
| 10 | 180 | 179 | 136 | 165 | 12.43 | 153 | 5871 |
| 11 | 126 | 168 | 148 | 147 | 11.64 | 136 | 5242 |
| 12 | 162 | 175 | 193 | 177 | 7.19 | 163 | 6287 |
| 13 | 236 | 213 | 218 | 222 | 4.44 | 206 | 7919 |
| 14 | 293 | 331 | 387 | 337 | 11.46 | 312 | 12010 |
| 15 | 249 | 287 | 239 | 258 | 8.00 | 239 | 9178 |
| 16 | 313 | 305 | 290 | 303 | 3.15 | 280 | 10772 |
| 17 | 578 | 624 | 671 | 624 | 6.08 | 116 | 4453 |
| 18 | 858 | 749 | 815 | 807 | 5.55 | 150 | 5762 |
| 19 | 616 | 604 | 677 | 632 | 5.05 | 117 | 4511 |
| 20 | 972 | 972 | 864 | 936 | 5.44 | 174 | 6687 |
| 21 | 1199 | 1138 | 1257 | 1198 | 4.06 | 223 | 8569 |
| 22 | 1509 | 2082 | 2492 | 2028 | 19.88 | 378 | 14557 |
| 23 | 1323 | 1390 | 1487 | 1400 | 4.81 | 260 | 10017 |
| 24 | 2726 | 2685 | 2844 | 2752 | 2.45 | 515 | 19825 |
| 25 | 849 | 1012 | 1002 | 954 | 7.82 | 177 | 6815 |
| 26 | 1141 | 1091 | 1195 | 1142 | 3.72 | 212 | 8158 |
| 27 | 1145 | 874 | 871 | 963 | 13.34 | 179 | 6875 |
| 28 | 1343 | 1342 | 1350 | 1345 | 0.26 | 250 | 9618 |
| 29 | 1434 | 1782 | 1245 | 1487 | 14.96 | 277 | 10651 |
| 30 | 2008 | 1633 | 2055 | 1899 | 9.95 | 354 | 13627 |
| 31 | 2327 | 1773 | 2086 | 2062 | 11.00 | 385 | 14813 |
| 32 | 2550 | 3121 | 2675 | 2782 | 8.81 | 521 | 20023 |
| 33 | 610 | 678 | 479 | 589 | 14.02 | 182 | 7000 |
| 34 | 756 | 856 | 986 | 866 | 10.87 | 268 | 10310 |
| 35 | 656 | 772 | 709 | 712 | 6.66 | 220 | 8477 |
| 36 | 919 | 988 | 886 | 931 | 4.56 | 288 | 11083 |
| 37 | 651 | 650 | 619 | 640 | 2.32 | 198 | 7614 |
| 38 | 972 | 894 | 1232 | 1033 | 13.99 | 320 | 12305 |
| 39 | 626 | 633 | 676 | 645 | 3.43 | 199 | 7673 |
| 40 | 1020 | 823 | 828 | 890 | 10.30 | 276 | 10596 |
| 41 | 224 | 238 | 257 | 240 | 5.64 | 222 | 8534 |
| 42 | 1603 | 1668 | 1648 | 1640 | 1.66 | 306 | 11759 |
| 43 | 890 | 877 | 837 | 868 | 2.60 | 269 | 10335 |
| 44 | 757 | 805 | 1019 | 860 | 13.24 | 266 | 10248 |
| 45 | 833 | 885 | 908 | 875 | 3.58 | 271 | 10422 |
| 46 | 1040 | 802 | 809 | 884 | 12.51 | 274 | 10526 |
| 47 | 894 | 923 | 826 | 881 | 4.61 | 273 | 10492 |
| 48 | 841 | 774 | 1045 | 887 | 13.00 | 274 | 10557 |
| 49 | 843 | 930 | 882 | 885 | 4.02 | 274 | 10537 |
| 50 | 1035 | 743 | 863 | 880 | 13.61 | 272 | 10473 |
| Source | Sequential p-value | Lack of Fit p-value | Adjusted R² | Predicted R² | |
|---|---|---|---|---|---|
| Linear | < 0.0001 | < 0.0001 | 0.8076 | 0.7637 | |
| 2FI | 0.0057 | < 0.0001 | 0.8711 | 0.7584 | |
| Quadratic | 0.0042 | < 0.0001 | 0.914 | 0.8085 | Suggested |
| Cubic | 0.0032 | < 0.0001 | 0.9702 | 0.3511 | Aliased |
| Source | Sum of Squares | df | Mean Square | F-value | p-value |
|---|---|---|---|---|---|
| Model | 5.92 × 108 | 16 | 3.70 × 107 | 30.82 | < 0.0001 |
| A– ρ | 7.69 × 107 | 1 | 7.69 × 107 | 64.04 | < 0.0001 |
| B – u | 2.19 × 107 | 1 | 2.19 × 107 | 18.22 | 0.0002 |
| C – hm | 3.05 × 108 | 1 | 3.05 × 108 | 253.64 | < 0.0001 |
| D – r | 2.58 × 107 | 1 | 2.58 × 107 | 21.47 | < 0.0001 |
| E – φm | 9.35 × 107 | 1 | 9.35 × 107 | 77.85 | < 0.0001 |
| AB | 3.52 × 105 | 1 | 3.52 × 105 | 0.2933 | 0.5918 |
| AC | 1.61 × 107 | 1 | 1.61 × 107 | 13.4 | 0.0009 |
| AD | 1.06 × 106 | 1 | 1.06 × 106 | 0.8804 | 0.3549 |
| AE | 7.29 × 106 | 1 | 7.29 × 106 | 6.07 | 0.0192 |
| BC | 4.79 × 106 | 1 | 4.79 × 106 | 3.98 | 0.0543 |
| BD | 3.03 × 105 | 1 | 3.03 × 105 | 0.2521 | 0.6189 |
| BE | 6.92 × 106 | 1 | 6.92 × 106 | 5.76 | 0.0222 |
| CD | 6.53 × 105 | 1 | 6.53 × 105 | 0.5431 | 0.4663 |
| CE | 1.42 × 107 | 1 | 1.42 × 107 | 11.81 | 0.0016 |
| DE | 1.02 × 106 | 1 | 1.02 × 106 | 0.8485 | 0.3637 |
| B² | 1.69 × 107 | 1 | 1.69 × 107 | 14.06 | 0.0007 |
| coded factors | actual factors | |||
| Fmb | = | Fmb= | ||
| +9961.31 | –4986.22 | |||
| +1504.25 | A – ρ | –3.028 | ρ | |
| +802.31 | B – u | +1733.99 | u | |
| +2993.67 | C – hm | –1.389 × 107 | hm | |
| +870.91 | D – rz | +58.060 | rz | |
| +1658.50 | E – φm | –16104.52 | φm | |
| +709.27 | AC | +36372.87 | ρ * hm | |
| +477.19 | AE | +21.03 | ρ * φm | |
| +386.71 | BC | +6.44 × 105 | u * hm | |
| +465.17 | BE | +666.32 | u * φm | |
| +665.93 | CE | +2.54 × 107 | hm * φm | |
| -1245.99 | B² | -77.87 | u² | |
| R² | Adjusted R² | Predicted R² | Adeq Precision | Std. Dev. | Mean | C.V. % |
|---|---|---|---|---|---|---|
| 0.9319 | 0.9122 | 0.866 | 30.2287 | 1064.11 | 9114.03 | 11.68 |
| Actual values -P | Predicted values - Pc | Difference | Actual values -P | Predicted values - Pc | Difference | ||
|---|---|---|---|---|---|---|---|
| STD | (W) | (W) | (%) | STD | (W) | (W) | (%) |
| 1 | 79.0 | 101.8 | 28.9 | 26 | 1142.3 | 1131.2 | 1.0 |
| 2 | 115.7 | 119.9 | 3.6 | 27 | 963.3 | 1020.2 | 5.9 |
| 3 | 114.3 | 99.0 | 13.4 | 28 | 1345.0 | 1381.1 | 2.7 |
| 4 | 132.3 | 117.1 | 11.5 | 29 | 1487.0 | 1497.6 | 0.7 |
| 5 | 191.7 | 171.7 | 10.4 | 30 | 1898.7 | 2260.8 | 19.1 |
| 6 | 282.0 | 270.2 | 4.2 | 31 | 2062.0 | 1966.8 | 4.6 |
| 7 | 220.3 | 212.8 | 3.4 | 32 | 2782.0 | 2730.0 | 1.9 |
| 8 | 287.0 | 311.3 | 8.5 | 33 | 589.0 | 719.4 | 22.1 |
| 9 | 108.7 | 151.3 | 39.2 | 34 | 866.0 | 975.3 | 12.6 |
| 10 | 165.0 | 169.3 | 2.6 | 35 | 712.3 | 673.1 | 5.5 |
| 11 | 147.3 | 148.4 | 0.8 | 36 | 931.0 | 809.6 | 13.0 |
| 12 | 176.7 | 166.5 | 5.8 | 37 | 640.0 | 592.7 | 7.4 |
| 13 | 222.3 | 221.1 | 0.5 | 38 | 1032.7 | 1102.0 | 6.7 |
| 14 | 337.0 | 319.7 | 5.1 | 39 | 645.0 | 773.3 | 19.9 |
| 15 | 258.3 | 262.2 | 1.5 | 40 | 890.3 | 921.5 | 3.5 |
| 16 | 302.7 | 360.7 | 19.2 | 41 | 239.7 | 235.5 | 1.7 |
| 17 | 624.3 | 523.4 | 16.2 | 42 | 1639.7 | 1647.9 | 0.5 |
| 18 | 807.3 | 884.2 | 9.5 | 43 | 868.0 | 847.4 | 2.4 |
| 19 | 632.3 | 773.2 | 22.3 | 44 | 860.3 | 847.4 | 1.5 |
| 20 | 936.0 | 1134.0 | 21.2 | 45 | 875.3 | 847.4 | 3.2 |
| 21 | 1198.0 | 1250.5 | 4.4 | 46 | 883.7 | 847.4 | 4.1 |
| 22 | 2027.7 | 2013.7 | 0.7 | 47 | 881.0 | 847.4 | 3.8 |
| 23 | 1400.0 | 1719.7 | 22.8 | 48 | 886.7 | 847.4 | 4.4 |
| 24 | 2751.7 | 2482.9 | 9.8 | 49 | 885.0 | 847.4 | 4.3 |
| 25 | 954.3 | 770.4 | 19.3 | 50 | 880.3 | 847.4 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
