Programmable organoids are emerging as a powerful new class of engineered developmental systems in which genetic circuits, epigenetic memory architectures, synthetic organizers, and closed-loop control frameworks converge to enable precise regulation of morphogenesis. Traditional organoids rely on spontaneous self-organization, but this intrinsic variability limits reproducibility, causal inference, and translational relevance. Recent advances in CRISPR-based transcriptional and epigenetic engineering, optogenetic and chemogenetic patterning technologies, reaction–diffusion design, and real-time biosensing now allow developmental trajectories to be scripted with increasing precision. This review synthesizes these developments into a unified framework spanning genetic circuit construction, epigenetic programming, synthetic morphogenesis, multi-scale sensing, adaptive regulation, and AI-guided design. Applications across human developmental biology, disease modeling, and regenerative medicine are highlighted, alongside the technical, biosafety, and ethical considerations associated with building increasingly autonomous, self-regulating developmental systems. Collectively, these advances establish programmable organoids as a foundation for developmental synthetic biology and outline a roadmap toward fully engineered human developmental architectures.