Preprint
Article

This version is not peer-reviewed.

Bistability of Somatic Pattern Memories: Stochastic Outcomes in Bioelectric Circuits Underlying Regeneration

Submitted:

26 November 2019

Posted:

28 November 2019

You are already at the latest version

Abstract
Nervous systems and brains’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signaling originated in cells’ communication with the outside world and with each other, in order to cooperate toward adaptive construction and repair of multicellular bodies. Here we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering, cognitive science, and even machine learning and artificial intelligence. One of the predictions of this view is that regeneration and regulative development are able to restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states - in this case, pattern memories. Based on this idea, we propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution, and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology, and biomedicine of information processing in vivo.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated