Submitted:
15 December 2025
Posted:
18 December 2025
You are already at the latest version
Abstract
Forests provide biodiversity to the planet and other forest ecosystem services – the es-sential benefits of humans from forests. The resilience of forest ecosystems and individual trees to stressors has always interested scientists and practitioners. Scientists have fo-cused on the mechanisms of tree resistance. Practitioners have sought ways to reduce forest productivity losses. This work aimed to review the modern knowledge regarding forest ecosystem resilience, forest health, tree resistance, mutual adaptations of plants and phytophagous insects, and breeding trees for disease resistance. As a case study, the resistance of European ash (Fraxinus excelsior L.) to ash dieback and emerald ash borer Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae): mechanisms, evidence, and future perspectives is presented. Breeding tree species for resistance to pests should play an important role in preventing their spread. Since each tree species is susceptible to some pests and resistant to others, to ensure maximum resilience, it is advisable to create mixed-age and multi-species stands, despite potential productivity losses.
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Resilience of the Forest Ecosystem
3.2. Paul Manion’s Concept of Forest Health
3.3. Phytophagous Insects
3.4. R.H. Painter’s Factors of Plant Resistance
3.5. Mutual Adaptations of Plants and Phytophagous Insects
3.6. A Case Study: Resistance of European Ash (Fraxinus excelsior) to Ash Dieback (ADB) and Emerald Ash Borer (EAB): Mechanisms, Evidence, and Future Perspectives
3.7. Breeding Trees for Disease Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment, 2025, 29p. [CrossRef]
- Lībiete, Z.; Jansons, Ā.; Ruņis, D.; Donis, J. Forest resources and sustainable management. In Forest Microbiology, Editor(s): Fred O. Asiegbu, Andriy Kovalchuk, Academic Press, 2023, pp 3-31. [CrossRef]
- Nolander, C.; Lundmark, R. A Review of Forest Ecosystem Services and Their Spatial Value Characteristics. Forests 2024, 15, 919. [Google Scholar] [CrossRef]
- Walling, L.L. The myriad plant responses to herbivores. J Plant Growth Regul 2000, 19, 195–216. [Google Scholar] [CrossRef]
- Wainhouse, D., Ecological Methods in Forest Pest Management (Oxford, 2004; online edn, Oxford Academic, 1 Apr. 2010), https://doi.org/10.1093/acprof:oso/9780198505648.001.0001, accessed 2 Dec. 2025. [CrossRef]
- Franceschi, V.R.; Krokene, P.; Christiansen, E.; Krekling, T. Anatomical and chemical defences of conifer bark against bark beetles and other pests. New Phytol 2005, 167, 353–376. [Google Scholar] [CrossRef]
- Krokene, P. Conifer defense and resistance to bark beetles. In: Vega FE (ed) Bark beetles: biology and ecology of native and invasive species. Hofstetter RW. Elsevier Academic Press, San Diego, USA, 2015. pp 177–207.
- Asiegbu, F. O.; Kovalchuk, A. (Eds.). Forest Microbiology: Volume 1: Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere. Academic Press. 2021.
- Asiegbu, F. O.; Kovalchuk, A. (Eds.). Forest microbiology: volume 2: Forest tree health. Academic Press. 2022.
- Asiegbu, F. O.; Kovalchuk, A. (Eds.). Forest Microbiology: Vol. 3: Tree Diseases and Pests. Elsevier. 2022.
- Whitehill, J. G.; Bohlmann, J.; Krokene, P. Forest insect—plant interactions. In Forest Entomology and Pathology: Volume 1: Entomology (pp. 169-204). Cham: Springer International Publishing. 2023.
- Allison, J.D.; Paine, T. D.; Slippers, B.; Wingfield, M. J. Forest entomology and pathology: volume 1: Entomology (p. 810). Springer Nature. 2023.
- Alonso Chávez, V.; Brown, N.; van den Bosch, F.; Parnell, S.; Dyke, A.; Hall, C.; ... & Milne, A. E. Early detection strategies for invading tree pests: Targeted surveillance and stakeholder perspectives. Journal of Applied Ecology 2025, 62, 857-871. [CrossRef]
- Chen, C.; Xu, L.; Zhao, D.; Xu, T.; Lei, P. A new model for describing the urban resilience considering adaptability, resistance and recovery. Safety science 2020, 128, 104756. [Google Scholar] [CrossRef]
- Thorogood, R.; Mustonen, V.; Aleixo, A.; Aphalo, P. J.; Asiegbu, F. O.; Cabeza, M.; ... & Vanhatalo, J. Understanding and applying biological resilience, from genes to ecosystems. Biodiversity 2023, 2, 16. [CrossRef]
- Pakhira, R.; Biswas, S.; Manoj, C.; Singh, H. Biological Insights into Forest Adaptation to Climate Change: Ecosystem Resilience and Adaptation. In Urban Forests, Climate Change and Environmental Pollution: Physio-Biochemical and Molecular Perspectives to Enhance Urban Resilience (pp. 307-329). Cham: Springer Nature Switzerland. 2024.
- Manion P. D. Tree disease concepts. Prentice-Hall, Inc. 1991. No. 634.963 M278 1991. 220 р.
- Meshkova, V. Seasonal Development of Foliage Browsing Insects; Planeta-print: Kharkov, Ukraine, 2009. 382p. (In Russian).
- Buksha, I.F.; Pyvovar, T.S.; Buksha, M.I.; Pasternak, V.P.; Buksha, T.I. Modelling and forecasting the impact of climate change on forests of Ukraine for 21st century time horizon. For. Ideas 2021, 27, 470–482. [Google Scholar]
- Didukh, Y.P.; Vynokurov, D.S. Spatial-temporal changes of bioclimate factors in Europe. Hydrol. Hydrochem. Hydroecology 2021, 1, 64–75. [Google Scholar] [CrossRef]
- Didukh, Y.P. World of Plants of Ukraine in Aspect of the Climate Change; Naukova Dumka: Kyiv, Ukraine, 2023; 176p. ISBN: 978-966-00-1868-6. (In Ukrainian). [CrossRef]
- Liu, M.; Jiang, P.; Chase, J.M.; Liu, X. Global insect herbivory and its response to climate change. Curr. Biol. 2024, 34, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qui, H.; ... & Viiri, H. Living with bark beetles: impacts, outlook and management options (Vol. 8). Joensuu: EFI. 2019.
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; ... & Seidl, R. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Current Forestry Reports 2021, 7, 138-165. [CrossRef]
- Hlásny, T.; Modlinger, R.; Gohli, J.; Seidl, R.; Krokene, P.; Bernardinelli, I.; ... & Liebhold, A. M. Divergent trends in insect disturbance across Europe's temperate and boreal forests. Global change biology 2025, 31, e70580. [CrossRef] [PubMed]
- Borysenko, O.I.; Meshkova, V.L. Prediction of Fires and Insect Pests Foci Spread in the Pine Stands by Means of GIS; Planeta-Print: Kharkiv, Ukraine, 2021; 148p, ISBN 978-617-7897-67-4.
- Netherer, S.; Lehmanski, L.; Bachlehner, A.; Rosner, S.; Savi, T.; Schmidt, A.; ... & Gershenzon, J. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. New Phytologist 2024, 242, 1000-1017. [CrossRef] [PubMed]
- Zhou, Y.; Guo, S.; Wang, T.; Zong, S.; Ge, X. Modeling the pest–pathogen threats in a warming world for the red turpentine beetle (Dendroctonus valens) and its symbiotic fungus (Leptographium procerum). Pest Management Science 2024, 80, 3423–3435. [Google Scholar] [CrossRef]
- Prade, P.; Coyle, D. R. Insect pests of forest trees. In Forest Microbiology (pp. 195-211). Academic Press. 2023.
- Ugwu, J. A.; Linnakoski, R.; Asiegbu, F. O. Microbiome of forest tree insects. In Forest Microbiology (pp. 327-355). Academic Press. 2021.
- Nakadai, R. Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity. Ecological Research 2017, 32, 811–819. [Google Scholar] [CrossRef]
- Meshkova, V.; Stankevych, S.; Koshelyaeva, Y.; Korsovetskyi, V.; Borysenko, O. Climate-Induced Shift in the Population Dynamics of Tortrix viridana L. In Ukraine. Forests 2025, 16, 1005. [Google Scholar] [CrossRef]
- Meshkova, V. The Lessons of Scots Pine Forest Decline in Ukraine. Environmental Sciences Proceedings 2021, 3, 28. [Google Scholar] [CrossRef]
- Davydenko, K. Occurrence and pathogenicity of tree-pathogenic fungi vectored by bark beetles (No. 2021: 25). Doctoral Thesis No. 2021:25 Faculty of Forest Sciences/ SLU/ Uppsala 2021 ISBN (electronic version) 978-91-7760-729-8.
- Davydenko, K.; Vasaitis, R.; Menkis, A. Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. European Journal of Entomology 2017, 114. [Google Scholar] [CrossRef]
- Davydenko, K.; Vasaitis, R.; Elfstrand, M.; Baturkin, D.; Meshkova, V.; Menkis, A. Fungal communities vectored by Ips sexdentatus in declining Pinus sylvestris in Ukraine: Focus on occurrence and pathogenicity of ophiostomatoid species. Insects 2021, 12, 1119. [Google Scholar] [CrossRef]
- Davydenko, K.; Baturkin, D.; Dyshko, V.; Lazarević, J.; Marčiulynas, A.; Elfstrand, M.; ... & Menkis, A. Fungal Pathogens Associated with Tomicus Species in European Forests: Regional Variations and Impacts on Forest Health. Insects 2025, 16, 277. [CrossRef]
- Kandasamy, D.; Gershenzon, J.; Andersson, M.N.; Hammerbacher, A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J 2019, 13, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Kandasamy, D.; Krokene, P.; Chen, J.; Gershenzon, J; Hammerbacher, A. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol 2019, 38, 71–79. [Google Scholar] [CrossRef]
- Zhao, T.; Ganji, S.; Schiebe, C.; Bohman, B.; Weinstein, P.; Krokene, P.; Borg-Karlson, A.K.; Unelius, C.R. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. ISME J 2019, 13, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Berryman, A.A. Forest Insects: Principles and Practice of Population Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Feeny, P.P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 1970, 51, 565–581. [Google Scholar] [CrossRef]
- van Asch, M.; Van Tienderen, P.H.; Holleman, L.J.M.; Visser, M. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 2007, 13, 1596–1604. [Google Scholar] [CrossRef]
- van Asch, M.; Visser, M.E. Phenology of forest caterpillars and their host trees: The importance of synchrony. Annu. Rev. Entomol. 2007, 52, 37–55. [Google Scholar] [CrossRef]
- van Dis, N.E.; Sieperda, G.-J.; Bansal, V.; van Lith, B.; Wertheim, B.; Visser, M.E. Phenological mismatch affects individual fitness and population growth in the winter moth. Proc. R. Soc. B 2023, 290, 414. [Google Scholar] [CrossRef]
- Visser, M.E.; Holleman, L.J.M. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 2001, 268, 89–94. [Google Scholar] [CrossRef]
- Visser, M.E.; Lindner, M.; Gienapp, P.; Long, M.C.; Jenouvrier, S. Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits (Parus major). Proc. R. Soc. B 2021, 288, 20211337. [Google Scholar] [CrossRef]
- Painter, R.H. Insect resistance in crop plants. Soil Sci 1951, 72, 481. [Google Scholar] [CrossRef]
- Meshkova, V.; Zinchenko, O.; Us, V.; Skrylnyk, Y. Emerald Ash Borer in the Park with a Long-Time History of Black Ash Sawfly Defoliation. Environ. Sci. Proc. 2024, 31, 4. [Google Scholar] [CrossRef]
- Marquis, R. J.; Moura, R. F. Escape as a mechanism of plant resistance against herbivores. In Plant-Animal Interactions: Source of Biodiversity (pp. 39-57). Cham: Springer International Publishing. 2021.
- Grossman, J. J. Phenological physiology: seasonal patterns of plant stress tolerance in a changing climate. New Phytologist 2023, 237, 1508–1524. [Google Scholar] [CrossRef]
- Renner, S.S.; Zohner, C.M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 165–182. [Google Scholar] [CrossRef]
- Gaytán, A.; Gotthard, K.; Tack, A. J. Spring phenology and pathogen infection affect multigenerational plant attackers throughout the growing season. Journal of Animal Ecology 2022, 91, 2235–2247. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Humair, L.; Maire, A. L.; Moreno-Aguilar, M. F.; Godschalx, A.; Catalán, P.; Rasmann, S. Tritrophic interactions follow phylogenetic escalation and climatic adaptation. Scientific reports 2020, 10, 2074. [Google Scholar] [CrossRef]
- Whitehill, J.G.A.; Bohlmann, J. A molecular and genomic reference system for conifer defence against insects. Plant, Cell Environ 2019, 10, 2844–2859. [Google Scholar] [CrossRef]
- Whitehill, J.G.A.; Yuen, M.M.S.; Henderson, H.; Madilao, L; Kshatriya, K.; Bryan, J.; Jaquish, B.; Bohlmann, J. Function of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytol 2019, 221, 1503–1517. [Google Scholar] [CrossRef]
- Strauss, S.Y.; Agrawal, A.A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 1999, 14, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Celedon, J.M.; Bohlmann, J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol 2019, 224, 1444–1463. [Google Scholar] [CrossRef]
- Celedon, J.M.; Yuen, M.M.S.; Chiang, A.; Henderson, H.; Reid, K.E.; Bohlmann, J. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. Plant J 2017, 92, 710–726. [Google Scholar] [CrossRef]
- Whitehill, J.G.A.; Henderson, H.; Schuetz, M.; Skyba, O.; Yuen, M.M.S.; King, J.; Samuels, A.L., … Bohlmann, J. (2016a) Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant, Cell Environ 39:1646–1661. [CrossRef] [PubMed]
- Whitehill, J.G.A.; Henderson, H.; Strong, W.; Jaquish, B.; Bohlmann, J. (2016b) Function of Sitka spruce stone cells as a physical defense against white pine weevil. Plant, Cell Environ 39:2545–2556. [CrossRef]
- Whitehill, J.G.A.; Opiyo, S.O.; Koch, J.L.; Herms, D.A.; Cipollini, D.F.; Bonello, P. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals ompounds unique to Manchurian ash, a species resistant to emerald ash borer. J Chem Ecol 2012, 38, 499–511. [Google Scholar] [CrossRef]
- Whitehill, J.G.A.; Popova-Butler, A.; Green-Church, K.B.; Koch, J.L.; Herms, D.A.; Bonello, P. Inter-specific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. PLoS ONE 2011, 6, e24863. [Google Scholar] [CrossRef]
- Whitehill, J.G.A.; Rigsby, C.; Cipollini, D.; Herms, D.A.; Bonello, P. Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 2014, 176, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Godschalx, A. L.; Rodríguez-Castañeda, G.; Rasmann, S. Contribution of different predator guilds to tritrophic interactions along ecological clines. Current Opinion in Insect Science 2019, 32, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Zeneli, G.; Krokene, P.; Christiansen, E.; Krekling, T.; Gershenzon, J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 2006, 26, 977–988. [Google Scholar] [CrossRef]
- Mageroy, M.H.; Christiansen, E.; Solheim, H.; Borg Karlsson, A.-K.; Zhao, T.; Björklund, N.; … Krokene, P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. Plant Cell Environ 2020, 43, 420–430. [CrossRef]
- Mageroy, M.H.; Wilkinson, S.W.; Tengs, T.; Cross, H.; Almvik, M.; Pétriacq, P.; … Krokene, P. Molecular underpinnings of methyl jasmonate-induced resistance in Norway spruce. Plant, Cell Environ 2020, 43, 1827–1843. [CrossRef] [PubMed]
- Huynh, N. B.; Krokene, P.; Puentes, A.; Mageroy, M. H. Over 20 years of treating conifers with methyl jasmonate: Meta-analysis of effects on growth and resistance. Forest Ecology and Management. 2024, 561, 121893. [Google Scholar] [CrossRef]
- Periyannan, S. Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases. New Phytol. 2018, 219, 45–51. [Google Scholar] [CrossRef]
- Showalter, D.N.; Saville, R.J.; Orton, E.S.; Buggs, R.J.; Bonello, P.; Brown, J.K. Resistance of European ash (Fraxinus excelsior) saplings to larval feeding by the emerald ash borer (Agrilus planipennis). Plants People Planet 2020, 2, 41–46. [Google Scholar] [CrossRef]
- Enderle, R.; Stenlid, J.; Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CABI Rev. 2019, 1–12. [Google Scholar] [CrossRef]
- McKinney, L.V.; Nielsen, L.R.; Hansen, J.K.; Kjær, E.D. Presence of natural genetic resistance in Fraxinus excelsior (Oleaceae) to Chalara fraxinea (Ascomycota): An emerging infectious disease. Heredity 2011, 106, 788–797. [Google Scholar] [CrossRef]
- Doonan, J.M.; Budde, K.B.; Kosawang, C.; Lobo, A.; Verbylaite, R.; Brealey, J.C.; Nielsen, L.R. Multiple single-trait GWAS and supervised machine learning reveal the genetic architecture of Fraxinus excelsior tolerance to ash dieback in Europe. Plant Cell Environ. 2025, 48, 3793–3809. [Google Scholar] [CrossRef]
- Stocks, J.J.; Metheringham, C.L.; Plumb, W.J.; Lee, S.J.; Kelly, L.J.; Nichols, R.A.; Buggs, R.J.A. Genomic basis of resistance to ash dieback in European ash. Nat. Ecol. Evol. 2019, 3, 1686–1696. [Google Scholar] [CrossRef]
- Kelly, L.J.; Plumb, W.J.; Carey, D.W.; Mason, M.E.; Cooper, E.D.; Crowther, W.; Whittemore, A.T.; Rossiter, S.J.; Koch, J.L.; Buggs, R.J.A. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 2020, 4, 1116–1128. [Google Scholar] [CrossRef]
- Schertler, E.; Queloz, V.; Monteleone, F.; Eisenring, M.; Heinzelmann, R. Resistance and tolerance mechanisms of common ash (Fraxinus excelsior) against the ash dieback pathogen Hymenoscyphus fraxineus: Latest advances and knowledge gaps. Forestry 2025, 1–15. [Google Scholar] [CrossRef]
- Huff, M.; Seaman, J.; Wu, D.; Zhebentyayeva, T.; Kelly, L.J.; Faridi, N.; Nelson, C.D.; Cooper, E.; Best, T.; Steiner, K.; Koch, J.; Romero-Severson, J.; Carlson, J.E.; Buggs, R.; Staton, M. A high-quality reference genome for Fraxinus pennsylvanica for ash species restoration and research. Mol. Ecol. Resour. 2022, 22, 1284–1302. [Google Scholar] [CrossRef] [PubMed]
- Villari, C.; Herms, D.A.; Whitehill, J.G.; Cipollini, D.; Bonello, P. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. New Phytol. 2016, 209, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Alvarez Gonzales, M.A.; Poland, T.M.; Mittapalli, O. Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis). J. Insect Physiol. 2015, 72, 70–78. [Google Scholar] [CrossRef]
- Gossner, M.M.; Perret-Gentil, A.; Britt, E.; Queloz, V.; Glauser, G.; Ladd, T.; Roe, A.D.; Cleary, M.; Liziniewicz, M.; Nielsen, L.R.; Ghosh, S.K.; Bonello, P.; Eisenring, M. A glimmer of hope—Ash genotypes with increased resistance to ash dieback show cross-resistance to emerald ash borer. New Phytol. 2023, 240, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Sniezko, R. A.; Nelson, C. D. Resistance breeding against tree pathogens. In Forest microbiology (pp. 159-175). Academic Press. 2022.
- Naidoo, S.; Slippers, B.; Plett, J.M.; Coles, D.; Oates, C.N. The Road to Resistance in Forest Trees. Front. Plant Sci. 2019, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, B.; Zhao, W.; Jiang, J.; Tang, J. Forest tree breeding under the global environmental change: Challenges and opportunities. Trees, Forests and People 2025, 100867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
