Submitted:
11 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Ex vivo functional testing for multiple myeloma is rapidly evolving, yet no single assay has reached the level of reliability and clinical utility needed for routine decision-making. Existing approaches generally fall into three categories comprising 2D cultures, 3D models, and dynamic systems. Each contributes valuable but incomplete insight into therapeutic response. Among these, 2D assays remain the most mature, with the most extensive clinical correlations to date, though their simplified architecture limits their ability to reflect the full complexity of the marrow microenvironment. 3D systems, including spheroids and matrix-based organoids, offer improved preservation of tumor heterogeneity and microenvironmental cues. These platforms show emerging clinical relevance and may hold advantages over traditional 2D formats, and validation efforts are developing. Dynamic systems including microfluidic models and perfused bone-marrow mimetics represent the most physiologically ambitious category, yet their technical intricacy and early stage of development have so far limited broad clinical correlation. Altogether, the current landscape highlights substantial progress but lacks an optimal assay. In this review, we take the unique approach of examining published ex vivo tests that have demonstrated a level of clinical correlation. We evaluate their respective formats, strengths and limitations, and discuss considerations for what an ideal future assay may encompass.
Keywords:
1. Introduction
2. 2D Suspension and ‘Lower Complexity’ Systems
3. 3D Embedded Systems
4. Dynamic Systems
5. Discussion
6. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
| MM | Multiple myeloma |
| BM | Bone marrow |
| IMWG | International Myeloma Working Group |
| IMiDs | Immunomodulatory drugs |
| PIs | Proteasome inhibitors |
| Mabs | Monoclonal antibodies |
| BSAbs | Bispecific antibodies |
| ADCs | Antibody-drug conjugates |
| CAR-T | Chimeric Antigen Receptor T-cell |
| ASCT | Autologous stem cell transplantation |
| LOT | Lines of therapy |
| BMM | Bone marrow microenvironment |
| BMA | Bone marrow aspirate |
| ND | Newly diagnosed |
| RR | Relapsed / Refractory |
| LDT | Laboratory-developed test |
| CLIA | Clinical laboratory improvement amendments |
| EMMA | Ex vivo Mathematical Myeloma Advisor |
| My-DST | Myeloma Drug Sensitivity Testing |
| EFS | Event-free survival |
| HTS | High throughput screening |
| CTG | CellTiter-Glo |
| IC50 | Half maximal inhibitory concentration |
| AUC | Area under the curve |
| PFS | Progression-free survival |
| BMMCs | Bone marrow mononuclear cells |
| DSS | Drug sensitivity score |
| R-ISS | Revised multiple myeloma international staging system |
| rEnd | Reconstructed endosteal |
| rBM | Reconstructed bone marrow |
| MSCs | Mesenchymal stem cells |
| EPCs | Endothelial progenitor cells |
| 3DTEBM® | 3D tissue-engineered bone marrow |
| Css | Steady state plasma drug concentration |
| CR | Complete response |
| PR | Partial response |
| VGPR | Very good partial response |
| SD | Stable disease |
| PD | Progressive disease |
| MNCs | Mononuclear cells |
| OS | Overall survival |
References
- Hemminki, K.; Försti, A.; Houlston, R.; Sud, A. Epidemiology, Genetics and Treatment of Multiple Myeloma and Precursor Diseases. Int. J. Cancer 2021, 149, 1980–1996. [Google Scholar] [CrossRef]
- Forster, S.; Radpour, R. Molecular Impact of the Tumor Microenvironment on Multiple Myeloma Dissemination and Extramedullary Disease. Front. Oncol. 2022, 12, 941437. [Google Scholar] [CrossRef]
- Bhatt, P.; Kloock, C.; Comenzo, R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr. Oncol. 2023, 30, 2322–2347. [Google Scholar] [CrossRef]
- Hou, Q.; Li, X.; Ma, H.; Fu, D.; Liao, A. A Systematic Epidemiological Trends Analysis Study in Global Burden of Multiple Myeloma and 29 Years Forecast. Sci. Rep. 2025, 15. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, S.; Joseph, N.; He, J.; Crivera, C.; Fu, A.Z.; Garret, A.; Shah, N. Healthcare Costs Incurred by Patients with Multiple Myeloma Following Triple Class Exposure (TCE) in the US. Oncol. Ther. 2021, 9, 659–669. [Google Scholar] [CrossRef]
- Castañeda-Avila, M.A.; Suárez-Ramos, T.; Torres-Cintrón, C.R.; Epstein, M.M.; Gierbolini-Bermúdez, A.; Tortolero-Luna, G.; Ortiz-Ortiz, K.J. Multiple Myeloma Incidence, Mortality, and Survival Differences at the Intersection of Sex, Age, and Race/Ethnicity: A Comparison between Puerto Rico and the United States SEER Population. Cancer Epidemiol. 2024, 89, 102537. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.; Bhutani, M.; Cole, C.E. Multiple Myeloma for the Primary Care Provider: A Practical Review to Promote Earlier Diagnosis among Diverse Populations. Am. J. Med. 2023, 136, 33–41. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538-48. [Google Scholar] [CrossRef]
- Mithraprabhu, S.; Reynolds, J.; Quach, H.; Horvath, N.; Kerridge, I.; Khong, T.; Durie, B.G.; Spencer, A. Circulating Tumor DNA and Bone Marrow Minimal Residual Disease Negativity Confers Superior Outcome for Multiple Myeloma Patients. Haematologica 2024, 109, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Harandi, A.; Laber, D.A. Historical Perspective and Advances in the Treatment of Multiple Myeloma. Oncol. Rev. 2008, 2, 250–258. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; van de Donk, N.W.C.J.; Pillarisetti, K.; Cornax, I.; Vishwamitra, D.; Gray, K.; Hilder, B.; Tolbert, J.; Renaud, T.; Masterson, T.; et al. GPRC5D as a Novel Target for the Treatment of Multiple Myeloma: A Narrative Review. Blood Cancer J. 2024, 14, 24. [Google Scholar] [CrossRef]
- Cho, S.-F.; Yeh, T.-J.; Anderson, K.C.; Tai, Y.-T. Bispecific Antibodies in Multiple Myeloma Treatment: A Journey in Progress. Front. Oncol. 2022, 12, 1032775. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Landgren, O. A Look Backward and Forward in the Regulatory and Treatment History of Multiple Myeloma: Approval of Novel-Novel Agents, New Drug Development, and Longer Patient Survival. Semin. Oncol. 2016, 43, 682–689. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: Phase 2 MagnetisMM-3 Trial Results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Bumma, N.; Richter, J.; Jagannath, S.; Lee, H.C.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Baz, R.; et al. Linvoseltamab for Treatment of Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2024, 42, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.; Abouzaid, S.; Bonafede, M.; Cai, Q.; Parikh, K.; Cosler, L.; Richardson, P. Trends in Overall Survival and Costs of Multiple Myeloma, 2000–2014. Leukemia 2016, 31, 1915–1921. [Google Scholar] [CrossRef]
- Baljevic, M.; Sborov, D.W.; Kumar, S.K. Long Term Responders in Frontline Multiple Myeloma-Exception vs Expectation of the Modern Era. Blood Cancer J. 2024, 14, 115. [Google Scholar] [CrossRef]
- Jagannath, S.; Martin, T.G.; Lin, Y.; Cohen, A.D.; Raje, N.; Htut, M.; Deol, A.; Agha, M.; Berdeja, J.G.; Lesokhin, A.M.; et al. Long-Term (≥5-Year) Remission and Survival after Treatment with Ciltacabtagene Autoleucel in CARTITUDE-1 Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2025, 43, 2766–2771. [Google Scholar] [CrossRef]
- Kastritis, E.; Terpos, E.; Dimopoulos, M.A. How I Treat Relapsed Multiple Myeloma. Blood 2022, 139, 2904–2917. [Google Scholar] [CrossRef]
- Zweegman, S.; Engelhardt, M.; Larocca, A. EHA SWG on ‘Aging and Hematology’ Elderly Patients with Multiple Myeloma: Towards a Frailty Approach? Curr. Opin. Oncol. 2017, 29, 315–321. [Google Scholar] [CrossRef]
- Cooperrider, J.H.; Derman, B.A. Minimal Residual Disease Negativity as the Primary Goal of Multiple Myeloma Therapy. Drugs 2025, 85, 1231–1251. [Google Scholar] [CrossRef]
- Wallington-Beddoe, C.T.; Mynott, R.L. Prognostic and Predictive Biomarker Developments in Multiple Myeloma. J. Hematol. Oncol. 2021, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Parekh, D.; Tiger, Y.K.R.; Jamouss, K.; Hassani, J.; Bou Zerdan, M.; Raza, S. Updates on Therapeutic Strategies in the Treatment of Relapsed/Refractory Multiple Myeloma. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Kumar, S.; Lonial, S.; Mateos, M.V. Smoldering Multiple Myeloma Current Treatment Algorithms. Blood Cancer J. 2022, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Kumar, S. Multiple Myeloma Current Treatment Algorithms. Blood Cancer J. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.; Green, D.; Kwok, M.; Lee, S.S.; Coffey, D.; Holmberg, L.; Tuazon, S.; Gopal, A.; Libby, E. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022, 327, 464–477. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines Oncology (NCCN Guidelines®) Multiple Myeloma V2. 2026.
- Rajkumar, S.V. Multiple Myeloma: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Letai, A. Functional Precision Cancer Medicine—Moving beyond Pure Genomics. News@nat.,Com 2017, 23, 1028–1035. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Kostopoulos, I.V.; Tsopanidou, A.; Orologas-Stavrou, N.; Kastritis, E.; Tsitsilonis, O.; Dimopoulos, M.; Terpos, E. Ex Vivo Models Simulating the Bone Marrow Environment and Predicting Response to Therapy in Multiple Myeloma. Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef]
- Ho, M.; Xiao, A.; Yi, D.; Zanwar, S.; Bianchi, G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr. Oncol. 2022, 29, 8975–9005. [Google Scholar] [CrossRef]
- Mercier, F.E.; Ragu, C.; Scadden, D.T. The Bone Marrow at the Crossroads of Blood and Immunity. Nat. Rev. Immunol. 2011, 12, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Mattioda, C.; Voena, C.; Ciardelli, G.; Mattu, C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025, 14, 38. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ko, N.; Namgoong, S.; Ham, S.; Koo, J. Recent Advances in and Applications of Ex Vivo Drug Sensitivity Analysis for Blood Cancers. Blood Res. 2024, 59, 37. [Google Scholar] [CrossRef]
- Verbruggen, S.W.; Freeman, C.L.; Freeman, F.E. Utilizing 3D Models to Unravel the Dynamics of Myeloma Plasma Cells’ Escape from the Bone Marrow Microenvironment. Cancers (Basel) 2024, 16, 889. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, D.; Lopes, R.; Pestana, C.; Queirós, A.C.; João, C.; Carneiro, E.A. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine-Are We There Yet? Int. J. Mol. Sci. 2022, 23, 12888. [Google Scholar] [CrossRef]
- Walker, Z.J.; VanWyngarden, M.J.; Stevens, B.M.; Abbott, D.; Hammes, A.; Langouët-Astrie, C.; Smith, C.A.; Palmer, B.E.; Forsberg, P.A.; Mark, T.M.; et al. Measurement of Ex Vivo Resistance to Proteasome Inhibitors, IMiDs, and Daratumumab during Multiple Myeloma Progression. Blood Adv. 2020, 4, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Jakubikova, J.; Cholujova, D.; Hideshima, T.; Gronesova, P.; Soltysova, A.; Harada, T.; Joo, J.; Kong, S.-Y.; Szalat, R.E.; Richardson, P.G.; et al. A Novel 3D Mesenchymal Stem Cell Model of the Multiple Myeloma Bone Marrow Niche: Biologic and Clinical Applications. Oncotarget 2016, 7, 77326–77341. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, D.; Petersen, I.; Ringquist, R.; Kramer, L.; Bhatia, E.; Hu, T.; Richard, A.; Park, R.; Corbin, J.; Agarwal, S.; et al. Multi-Niche Human Bone Marrow on-a-Chip for Studying the Interactions of Adoptive CAR-T Cell Therapies with Multiple Myeloma. Biomaterials 2025, 316, 123016. [Google Scholar] [CrossRef]
- Krüger, J.; Blau, I.W.; Blau, O.; Bettelli, A.; Rocchi, L.; Bocchi, M.; Krönke, J.; Bullinger, L.; Keller, U.; Nogai, A. In Vitro Testing of Drug Response in Primary Multiple Myeloma Cells Using a Microwell-Based Technology. Leuk. Res. 2024, 147, 107599. [Google Scholar] [CrossRef]
- Giliberto, M.; Thimiri Govinda Raj, D.B.; Cremaschi, A.; Skånland, S.S.; Gade, A.; Tjønnfjord, G.E.; Schjesvold, F.; Munthe, L.A.; Taskén, K. Ex Vivo Drug Sensitivity Screening in Multiple Myeloma Identifies Drug Combinations That Act Synergistically. Mol. Oncol. 2022, 16, 1241–1258. [Google Scholar] [CrossRef]
- Alhallak, K.; Jeske, A.; de la Puente, P.; Sun, J.; Fiala, M.; Azab, F.; Muz, B.; Sahin, I.; Vij, R.; DiPersio, J.F.; et al. A Pilot Study of 3D Tissue-Engineered Bone Marrow Culture as a Tool to Predict Patient Response to Therapy in Multiple Myeloma. Sci. Rep. 2021, 11, 19343. [Google Scholar] [CrossRef]
- Braham, M.V.J.; Alblas, J.; Dhert, W.J.A.; Öner, F.C.; Minnema, M.C. Possibilities and Limitations of an in Vitro Three-Dimensional Bone Marrow Model for the Prediction of Clinical Responses in Patients with Relapsed Multiple Myeloma. Haematologica 2019, 104, e523–e526. [Google Scholar] [CrossRef]
- Silva, A.; Silva, M.C.; Sudalagunta, P.; Distler, A.; Jacobson, T.; Collins, A.; Nguyen, T.; Song, J.; Chen, D.-T.; Chen, L.; et al. An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res. 2017, 77, 3336–3351. [Google Scholar] [CrossRef]
- Pak, C.; Callander, N.S.; Young, E.W.K.; Titz, B.; Kim, K.; Saha, S.; Chng, K.; Asimakopoulos, F.; Beebe, D.J.; Miyamoto, S. MicroC(3): An Ex Vivo Microfluidic Cis-Coculture Assay to Test Chemosensitivity and Resistance of Patient Multiple Myeloma Cells. Integr. Biol. (Camb.) 2015, 7, 643–654. [Google Scholar] [CrossRef]
- Kirshner, J.; Thulien, K.J.; Martin, L.D.; Debes Marun, C.; Reiman, T.; Belch, A.R.; Pilarski, L.M. A Unique Three-Dimensional Model for Evaluating the Impact of Therapy on Multiple Myeloma. Blood 2008, 112, 2935–2945. [Google Scholar] [CrossRef] [PubMed]
- Coffey, D.G.; Cowan, A.J.; DeGraaff, B.; Martins, T.J.; Curley, N.; Green, D.J.; Libby, E.N.; Silbermann, R.; Chien, S.; Dai, J.; et al. High-Throughput Drug Screening and Multi-Omic Analysis to Guide Individualized Treatment for Multiple Myeloma. JCO Precis Oncol 2021, 5. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Nadine, S.; Gomes, M.C.; Correia, C.R.; Mano, J.F. Bioengineering the Human Bone Marrow Microenvironment in Liquefied Compartments: A Promising Approach for the Recapitulation of Osteovascular Niches. Acta Biomater. 2022, 149, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.A.; Li, E.; Weiner, L. 3D Culture Systems for Exploring Cancer Immunology. Cancers (Basel) 2020, 13. [Google Scholar] [CrossRef]
- Barbosa, M.A.G.; Xavier, C.P.R.; Pereira, R.F.; Petrikaitė, V.; Vasconcelos, M.H. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021, 14, 190. [Google Scholar] [CrossRef]
- Renatino-Canevarolo, R.; Silva, M.; Meads, M.B.; Zhao, X.; Achille, A.; Noyes, D.; Sudalagunta, P.R.; Alugubelli, R.R.; Lastorino, D.; Tordesillas, L.; et al. Ex Vivo Mathematical Myeloma Advisor (EMMA) - a Clinical, Molecular, and Phenotypic Platform to Tailor Personalized Therapeutic Strategies for Multiple Myeloma. Blood 2023, 142, 2280–2280. [Google Scholar] [CrossRef]
- Baz, R.; Meads, M.B.; Kim, J.; Grajales-Cruz, A.F.; Blue, B.; Toska, S.; Zhao, X.; Song, X.; Sudalagunta, P.R.; Achille, A.; et al. Daratumumab Based Response Adapted Therapy for Older Adults with Newly Diagnosed Multiple Myeloma: Final Results of a Phase II Study. Blood 2024, 144, 1995–1995. [Google Scholar] [CrossRef]
- Yadav, B.; Pemovska, T.; Szwajda, A.; Kulesskiy, E.; Kontro, M.; Karjalainen, R.; Majumder, M.M.; Malani, D.; Murumägi, A.; Knowles, J.; et al. Quantitative Scoring of Differential Drug Sensitivity for Individually Optimized Anticancer Therapies. Sci. Rep. 2014, 4, 5193. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.R.; Belch, A.R.; Pilarski, L.M.; Kirshner, J. A Three-Dimensional Tissue Culture Model to Study Primary Human Bone Marrow and Its Malignancies. J. Vis. Exp. 2014. [Google Scholar] [CrossRef]
- Kirshner, J.; Kirshnan, A.; Nathwani, N.; Htut, M.; Rosenzweig, M.; Karanes, C.; Firoozeh, S.; Rosen, S. Abstract 330:Reconstructed Bone(r-Bone): A Patient-Derived 3D Culture Platform for Prediction of Clinical Outcomes in Multiple Myeloma. Proceedings of the Molecular and Cellular Biology / Genetics 2020, Vol. 80. [Google Scholar] [CrossRef]
- Braham, M.V.J.; Minnema, M.C.; Aarts, T.; Sebestyen, Z.; Straetemans, T.; Vyborova, A.; Kuball, J.; Öner, F.C.; Robin, C.; Alblas, J. Cellular Immunotherapy on Primary Multiple Myeloma Expanded in a 3D Bone Marrow Niche Model. Oncoimmunology 2018, 7, e1434465. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.V.; Deshantri, A.K.; Minnema, M.C.; Öner, F.C.; Schiffelers, R.M.; Fens, M.H.; Alblas, J. Liposomal Drug Delivery in an in Vitro 3D Bone Marrow Model for Multiple Myeloma. Int. J. Nanomedicine 2018, 13, 8105–8118. [Google Scholar] [CrossRef]
- de la Puente, P.; Muz, B.; Gilson, R.C.; Azab, F.; Luderer, M.; King, J.; Achilefu, S.; Vij, R.; Azab, A.K. 3D Tissue-Engineered Bone Marrow as a Novel Model to Study Pathophysiology and Drug Resistance in Multiple Myeloma. Biomaterials 2015, 73, 70–84. [Google Scholar] [CrossRef]
- Ayuso, J.M.; Virumbrales-Muñoz, M.; Lang, J.M.; Beebe, D.J. A Role for Microfluidic Systems in Precision Medicine. Nat. Commun. 2022, 13, 3086. [Google Scholar] [CrossRef]
- Ferrarini, M.; Steimberg, N.; Ponzoni, M.; Belloni, D.; Berenzi, A.; Girlanda, S.; Caligaris-Cappio, F.; Mazzoleni, G.; Ferrero, E. Ex-Vivo Dynamic 3-D Culture of Human Tissues in the RCCSTM Bioreactor Allows the Study of Multiple Myeloma Biology and Response to Therapy. PLoS One 2013, 8, e71613. [Google Scholar] [CrossRef]
- Young, E.W.K.; Pak, C.; Kahl, B.S.; Yang, D.T.; Callander, N.S.; Miyamoto, S.; Beebe, D.J. Microscale Functional Cytomics for Studying Hematologic Cancers. Blood 2012, 119, e76-85. [Google Scholar] [CrossRef] [PubMed]
- De Acha, O.P.; Idler, B.M.; Walker, Z.; Forsberg, P.A.; Mark, T.; Sherbenou, D.W. Myeloma Drug Sensitivity Testing to Optimize Retreatment with Anti-CD38 Monoclonal Antibodies in Daratumumab-Refractory Patients. Blood 2020, 136, 37–38. [Google Scholar] [CrossRef]
- Walker, Z.J.; Idler, B.M.; Davis, L.N.; Stevens, B.M.; VanWyngarden, M.J.; Ohlstrom, D.; Bearrows, S.C.; Hammes, A.; Smith, C.A.; Jordan, C.T.; et al. Exploiting Protein Translation Dependence in Multiple Myeloma with Omacetaxine-Based Therapy. Clin. Cancer Res. 2021, 27, 819–830. [Google Scholar] [CrossRef]
- Keller, A.; Parzych, S.E.; Reiman, L.T.; Walker, Z.; Forsberg, P.A.; Sherbenou, D.W. BCMAxCD3 Bispecific Antibody Elranatamab Is Effective in Patient Myeloma Relapsed after BCMA CAR-T. Blood 2023. [Google Scholar] [CrossRef]
- Chen, X.; Wong, O.K.; Reiman, L.; Sherbenou, D.W.; Post, L. CD38 x ICAM-1 Bispecific Antibody Is a Novel Approach for Treating Multiple Myeloma and Lymphoma. Mol. Cancer Ther. 2024, 23, 127–138. [Google Scholar] [CrossRef]
- Keller, A.L.; Reiman, L.T.; Perez de Acha, O.; Parzych, S.E.; Forsberg, P.A.; Kim, P.S.; Bisht, K.; Wang, H.; van de Velde, H.; Sherbenou, D.W. Ex Vivo Efficacy of SAR442257 Anti-CD38 Trispecific T-Cell Engager in Multiple Myeloma Relapsed after Daratumumab and BCMA-Targeted Therapies. Cancer Res. Commun. 2024, 4, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.N.; Walker, Z.J.; Reiman, L.T.; Parzych, S.E.; Stevens, B.M.; Jordan, C.T.; Forsberg, P.A.; Sherbenou, D.W. MYC Inhibition Potentiates CD8+ T Cells against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin. Cancer Res. 2024, 30, 3023–3035. [Google Scholar] [CrossRef] [PubMed]
- Reiman, L.T.; Walker, Z.J.; Babcock, L.R.; Forsberg, P.A.; Mark, T.M.; Sherbenou, D.W. A Case for Improving Frail Patient Outcomes in Multiple Myeloma with Phenotype-driven Personalized Medicine. Aging Cancer 2021, 2, 6–12. [Google Scholar] [CrossRef]
- Walker, Z.; Wang, D.; Parzych, S.E.; Reiman, L.T.; Joram, J.; Straubel, M.; Roque, A.; Imsande, K.; Zhou, K.; Forsberg, P.A.; et al. Phase II Clinical Trial: Ex Vivo Drug Sensitivity Testing in Parallel with Physician Selected Selinexor-Based Therapy for Multiple Myeloma. Blood 2024. [Google Scholar] [CrossRef]
- NIH 2016 Microfluidic Assay to Predict Patient-Specific Multiple Myeloma Clinical Response. Available online: https://www.inknowvation.com/sbir/awards/nih-2016-microfluidic-assay-predict-patient-specific-multiple-myeloma-clinical-response (accessed on 3 December 2025).
- Mainou, M.; Tsapa, K.; Michailidis, T.; Malandris, K.; Karagiannis, T.; Avgerinos, I.; Liakos, A.; Papaioannou, M.; Terpos, E.; Prasad, V.; et al. Outcomes in Randomized Controlled Trials of Therapeutic Interventions for Multiple Myeloma: A Systematic Review. Crit. Rev. Oncol. Hematol. 2024, 204, 104529. [Google Scholar] [CrossRef]
- Mohyuddin, G.R.; Koehn, K.; Abdallah, A.-O.; W Sborov, D.; Rajkumar, S.V.; Kumar, S.; McClune, B. Use of Endpoints in Multiple Myeloma Randomized Controlled Trials over the Last 15 Years: A Systematic Review. Am. J. Hematol. 2021, 96, 690–697. [Google Scholar] [CrossRef]
| Study | Year | System Type | Cells included | Fresh and/or cryopreserved | System type | Drugs tested | Single drug or combo | Vessel | Sensitivity measure | Clinical Correlation | Doses / Replicates | Turnaround Time | Clinically approved | No cells? |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EMMA - [48] | 2017 | 2D | Patient CD138+ cells co-cultured with previously established human bone marrow stroma (bone marrow mesenchymal stem cells, BMSC) and collagen and culture media enriched with patient plasma cells | Fresh BMA | Brightfield microscopy + custom imaging and mathematical algorithms | 31 standard-of-care and experimental agents tested (with 127 theoretically possible in a larger plate format) | Single | 384 well for 31 drugs (or 1536 wells for 127 drugs) | Sensitivity defined by patient/drug specific mathematical models | 3 month response; 52 patients; 13 ND; 39 RR; 96% correctly classified by binary response; 79% by IMWG |
5 concentrations (1:3 serial dilution) and 2 replicates | 5 days |
Yes (>600 samples reported run at ASH 2023 [55]) |
4,000 MM cells per well (×5 concentrations ×2 replicates×31 drugs) |
| My-DST - [41] | 2020 | 2D | Unselected MNCs from patients with MM | Fresh or cryopreserved BMA | Flow cytometry | 7 drugs spanning PIs (Bortezomib, Carfilzomib), IMiDs (Lenalidomide, Pomalidomide), corticosteroids (Dexamethasone), alkylating agents (Cyclophosphamide) and MAbs (Daratumumab) | Single-agent testing; combo response inferred using My-DST Comb algorithm (mathematical prediction only) |
96 well plates | My-DST Comb cutoff of 50% (mathematically derived product of % killing across all drugs) | 55 unselected, fresh BM samples from MM cases spanning first diagnosis (24), first relapse (12) and multiple relapse (19). 30 used in clincorr. Patients experienced statistically worse event-free survival (EFS) if their next regimen did not contain at least two drugs to which they were predicted sensitive ex vivo by My-DST. My-DST Comb correlated strongly with the IMWG depth of clinical response after 4 treatment cycles (p =0.0006). Using a clinical response cutoff of a 50% decrease in disease (partial response or better), My-DST Comb cutoff of 50% was 96% sensitive (22 of 23 true positives) and 88% specific (6 of 7 true negatives) |
Single pre-optimized concentration and 3 replicates | 48 hours | In-process | 90,000 MNCs per well (x1 concentration x 3 replicates x 7 drugs) |
| Coffey et al. assay[51] | 2021 | 2D | CD138 selected mononuclear plasma cells from BMAs or single cell suspensions derived from mechanical dissociation of plasmacytomas | Fresh BMAs or single cell suspensions | CellTiter-Glo luminescent cell viability assay |
170 approved or investigational compounds | Single agent | 384 well plates coated with a protein matrix | Patient defined as sensitive if the IC₅₀ was ≤ 0.2 μM and this was achievable safely in patients per pharmacokinetic data | 25 patients with RR MM; Prospective clinical trial; 16 patients with sufficient material for screening; 13 had treatment guided by test; 92% achieved stable disease or better | 8 point drug concentration range, replicates not described | ~5 days | Yes | 500-4000 CD138+ cells per well (x8 concentrations x replicates unknown x170 drugs) |
| Giliberto DSS study [45] | 2022 | 2D | Purified CD138+ MM cells enriched from BM mononuclear cells | Fresh | CellTiter-Glo luminescent cell viability assay | Approved and investigational agents; 30 single agents, 19 double agent and 25 triple agent combinations. | Single agents and ex vivo drug combinations (2- or 3-agent) |
Drug-coated 384 well TC plates. | Dose response was used to calculate a modified DSS score ranging from (0-100) for each drug. | A total of 44 samples at first diagnosis or relapse; Observational findings of potential clinical relevance. 13 patients (5 NDMM, 8 RMM) treated with double or triple combinations were considered in clinical correlation, ex vivo DSS scores trended higher in clinical responders (n = 9) than in poor responders (n = 4), though without formal statistical correlation | Single agents tested at 6 concentrations; double combinations used 5 concentrations for one drug + fixed IC20 priming drug; triple combinations used a 4×4 matrix for two drugs (0.1–100 nM) + fixed IC20 third drug; replicates not specified. | ~5 days | No | 5000 CD138+ cells per well ( x6 concentrations x replicates unknown x 30 drugs for single drug assay only) |
| rEnd / rBM / r-Bone model [50,58,59] | 2008-2020 | Latest version is 3-D bone-marrow-specific ECM scaffold (collagen I + bone proteins such as fibronectin/osteopontin) combined with myeloma-supportive soluble factors | Primary bone marrow mononuclear cells from patient BM aspirates, maintaining MM plasma cells and incorporating cellular (hematopoietic & stromal) and extracellular components(extracellular matrix & secretory factors). | Fresh BMA in paper. zPredicta website states cryopreserved samples can be used. | Flow cytometry used in 2020 study. | Cells were treated according to the clinical regimen selected by the treating physician in 2020 study. | Combinations used in 2020 study. | Unknown / variable. 2008 study used 48-well plates. | Plasma and non-plasma cell populations were evaluated post treatment and degree of cell death (by flow cytometry) correlated with clinical response | 2020 study used 21 cases “with multiple myeloma”. Showed ~90% accuracy (19/21 cases correct) with 8 true responders and 11 true non-responders identified (2 false positives) using IMWG criteria in a clinical trial | Unknown / variable. | 5 day culture pre-dosing and flow cytometry in 2020 study | No | Varies. zPredicta website states “10-80,000 cells per well in a 96-well plate” |
| Braham et al. BM Model [47] | 2019 | 3D Matrigel | Patient CD138+ cells co-cultured with human MSCs and EPCs | Cryopreserved BMA | Flow cytometry and confocal imaging | A panel of 7 drugs (lenalidomide, pomalidomide, thalidomide, bortezomib, carfilzomib, melphalan, 4-hydroperoxy-cyclophosphamide) | Single | 3D Matrigel plugs; plate format not reported |
% dead and live-cell count used (% dead showed best performance) |
7 relapsed/ refractory patients. High predictive agreement for AAs and PIs (PPV and NPV ranging from 1.00 - 0.80 for strict outcomes and lower for extended ranging from 1.00 to 0.44). No significant killing by IMiDs even at high doses | A single and a double dose of drug at a concentration known to be effective in 2D and 3D culture | 14 days culture + 3 days treatment before readout | No | Not reported |
| Alhallak study [46] based on earlier model described by [62] | 2021 | 3D matrix formed by cross-linking patient BM endogenous fibrinogen supplemented with purified human fibrinogen and collagen |
States “all the accessory and primary cancer cells found in the bone marrow (BM), as well as growth factors, enzymes, and cytokines naturally found in the TME” |
Fresh BMA | Flow cytometry | Panel of 11 drugs (carfilzomib, bortezomib, ixazomib, panobinostat, lenalidomide, pomalidomide, dexamethasone, etoposide, doxorubicin, daratumumab, and melphalan) | Single, double or triple combination (ex vivo) depending on patient clinical treatment regimen. | 96-well plate | Samples defined as responsive based on significant loss of viability (p < 0.05 by ANOVA) | 19 RR patients. Treated with upcoming clinical regimen. Predictions concurrent with clinical outcome in 89% of cases, correctly identifying 100% of non-responders and 75% of responders; |
0 x, 3x and 10x Css concentrations (based on pharmacokinetic data from Phase 1 and/or Phase 2 clinical trials.) in quadruplicate. | “Less than a week” including culture, 4 days treatment and readout | No | 100,000 BMNCs per well (x 3 concentrations including vehicle x 4 replicates x 1 treatment condition per patient) |
| Jakubikova PuraMatrix™ model [42] | 2016 | 3D self-assembling PuraMatrix™ hydrogel | Co-cultured primary MM patient BM cells from BMAs with MSCs in the hydrogel | Fresh BMA | Flow cytometry | Panel of 8 drugs in total (2 for clinical correlation work): (pomalidomide. lenalidomide, thalidomide, bortezomib, carfilzomib, doxorubicin, dexamethasone, melphalan) |
Single | 96-well plate |
Sensitivity defined by fold change of PCs relative to control under 2D vs 3D co-culture conditions | 52 patients in total. Patient-level correlative data in the study was limited to 4 patients tested for correlation to two drugs (pomalidomide and carfilzomib). Resistance to pomalidomide was observed in two patients, and one patient showed resistance to carfilzomib in the 3D model, but not in the 2D model, with the 3D model better mimicking known clinical course | One concentration per drug with no explicit mention of replicates |
7 days | No | Not reported. |
| Ferrarini et al. RCCS™ Bioreactor study [64] | 2013 | Dynamic | PCs, CD138+ MM cells, stromal cells, endothelial cells (bone lamellae and vessels arteriolae reported to be maintained). |
Fresh. Extramedullary tissue was obtained from two patients. A skull lesion was excised in a bortezomib sensitive patient. Excised subcutaneous samples were obtained from one bortezomib refractory patient. | Varied. FACS analysis, TEM, histological analysis, IHC. | Bortezomib only. | Single. | RCCS™ Bioreactor | Sensitivity assessed by various FACS, TEM and histological parameters |
5 patients total in study. Only 2 patients tested for clinical correlation (one sensitive and one refractory). Study indicated assay response reflective of clinical response in each patient | Tested with and without single dose bortezomib. Replicates not reported. | 2 patient samples cultured for up to seven days with drug before readout | No | Not specified. Assay used intact tissue explants. |
| Pak et al. MicroC(3) study [49] | 2015 | Dynamic | CD138+ tumor cells sorted and cultured with the patients’ own CD138 non-tumor mononuclear cell fractions i.e. MicroC(3) | Fresh BMA | Fluorescence microscopy. | Bortezomib only. | Single. | Custom microfluidics system [65] | Sensitivity defined using k-means and Gaussian mixture model unsupervised clustering | 17 patients. Mixture of newly diagnosed, relapsed/refractory, relapsed/refractory, relapsed, sensitive, and refractory. 8 with BMA pre therapy and 9 with BMA post therapy. All 17 patients were correctly classified | Tested with 2 doses of bortezomib and vehicle. | 3 days | No | 7500 CD138+ and 2x 8000 CD138- cells per drug/dose condition (x 3 doses) |
| Kruger Vivacyte study [44] | 2024 | Dynamic | BMMCs | EDTA BM samples processed on the day of collection. | Microwell-based fluorescence imaging (the Cellply Vivacyte with CC-Array) |
A panel of 6 drugs (bortezomib, melphalan, dexamethasone, lenalidomide, daratumumab, elotuzumab) | Single | CC-Array microfluidic device | ≤90% viable tumor cells (≥10% kill) was used to classify responders | 22 patients (12 ND, 10 RR); For 8 patients with clinical follow-up, ex vivo bortezomib sensitivity correctly identified all responders and non-responders. For melphalan, 4 of 5 evaluable patients were correctly classified. Dexamethasone sensitivity was observed in all 4 tested patients, aligning with clinical VGPR or better | Not specified. | No standardized assay time provided | No | 10 - 20 MNCs per microwell (x 1200 microwells per channel/1 channel per condition x 6 drugs. Replicates and concentrations unknown) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
