Submitted:
15 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Ore Preparations
2.3. Experimental Procedure
2.4. Radical Inhibition Tests
3. Results
3.1. Characterization of the Ore
3.2. Degradation of Paracetamol
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013;93:1268–87. [CrossRef]
- Aus Der Beek T, Weber F-A, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry 2015;35:823–35. [CrossRef]
- Houtman CJ. Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences 2010;7:271–95. [CrossRef]
- Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment 2014;473–474:619–41. [CrossRef]
- Liang L, Ji L, Ma Z, Ren Y, Zhou S, Long X, et al. Application of Photo-Fenton- Membrane Technology in Wastewater Treatment: A Review. Membranes 2023;13:369. [CrossRef]
- Audino F, Conte LO, Schenone AV, Pérez-Moya M, Graells M, Alfano OM. A kinetic study for the Fenton and photo-Fenton paracetamol degradation in an annular photoreactor. Environ Sci Pollut Res 2019;26:4312–23. [CrossRef]
- Hinojosa Guerra MM, Oller Alberola I, Malato Rodriguez S, Agüera López A, Acevedo Merino A, Quiroga Alonso JM. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research 2019;156:232–40. [CrossRef]
- Hassan ME, Chen Y, Liu G, Zhu D, Cai J. Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. Journal of Water Process Engineering 2016;12:52–7. [CrossRef]
- Xiao J, Guo S, Wang D, An Q. Fenton-Like Reaction: Recent Advances and New Trends. Chemistry A European J 2024;30:e202304337. [CrossRef]
- Pignatello JJ, Oliveros E, MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology 2006;36:1–84. [CrossRef]
- Brillas E, Martínez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental 2015;166–167:603–43. [CrossRef]
- Neamtu M, Yediler A, Siminiceanu I, Kettrup A. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of Photochemistry and Photobiology A: Chemistry 2003;161:87–93. [CrossRef]
- Clausi M, Savino S, Cangialosi F, Eramo G, Fornaro A, Quatraro L, et al. Polluta nts abatement in aqueous solutions with geopolymer catalysts: A photo fenton case. Chemosphere 2023;344:140333. [CrossRef]
- Kim SL, Yang H, Lee S, Cho S-K, Lee C-G, Azat S, et al. Mining waste as heterogeneous catalysts. Green Chem 2025;27:8691–709. [CrossRef]
- Kessouagni MJ, Koriko M, Fiaty K, Charcosset C, Jaurand X, Brioude A, Tchangbedji G., Mineralogical and Physico-Chemical Characterization of Raw Iron Ore from Bandjéli in Bassar Prefecture in Northern Togo. Journal of Materials Science and Chemical Engineering 2025;13:85–97. [CrossRef]
- Decree of 24/08/17 amending, in a series of ministerial decrees, the provisions relating to the discharge of hazardous substances into water from facilities classified for environmental protection | AIDA n.d. https://aida.ineris.fr/reglementation/arrete-240817- modifiant-serie-darretes- ministeriels-dispositions-relatives-rejets (accessed August 8, 2025).
- Araujo FVF, Yokoyama L, Teixeira LAC, Campos JC. Heterogeneous Fenton process using the mineral hematite for the discoloration of a reactive dye solution. Braz J Chem Eng 2011;28:605–16. [CrossRef]
- Gracien EB, Jérémie ML, Joseph LK-K, Omer MM, Antoine MK, Hercule KM. Role of hydroxyl radical scavenger agents in preparing silver nanoparticles under γ-irradiatio n. SN Appl Sci 2019;1:961. [CrossRef]
- Reina AC,Santos-Juanes L.,Garcia Sanchez J.L.,Casas Lopès J.L.,Maldonado Rubio M.I.,Li Puma G.,Sanchez Pérez J.A. Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA) Applied Catalysis B:Environmental 166–167(2015)295–301. http://dx.doi.org/10.1016/j.apcatb.2014.11.023.
- Hurtado L, Avilés O, Brewer S, Donkor KK, Romero R, Gómez-Espinosa RM,Alvarado O,Natividad R.Al/Cu-PILC as a Photo-Fenton Catalyst: Paracetamol Mineralization. ACS Omega 2022;7:23821–32. [CrossRef]
- Bárbara N. Giménez, Leandro O. Conte, Francesca Audino, Agustina V. Schenone, Moisès Graellsb, Orlando M. Alfano, Montserrat Pérez-Moya, Kinetic model of photo-Fenton degradation of paracetamol in an annular reactor: main reaction intermediates and cytotoxicity studies, Catalysis Today 413-415(2023)113958. [CrossRef]





| Oxide | |||||||||||
| W(%) | 93.45 | 4.19 | 1.45 | 0.30 | 0.29 | 0.10 | 0.05 | 0.06 | 0.02 | 0.02 | 0.01 |
| Element | Fe | Si | Al | Mg | S | Ti | Cl | Mn | P | Cr | V | Sr | Rb |
| W(%) | 95.84 | 2.54 | 0.98 | 0.20 | 0.15 | 0.08 | 0.07 | 0.06 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 |
| Reactions steps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).