Submitted:
15 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Aldose Reductase: Function, and Pathological and Physiological Roles
2.1. The Polyol Pathway
2.1.1. Polyol Pathway Activation and Sorbitol Accumulation
2.1.2. Oxidative Stress Generation
2.1.3. Formation of Advanced Glycation End Products (AGEs)
2.1.4. Activation of Protein Kinase C (PKC)
2.2. Clinical Manifestations
2.3. Physiological Function of AR
3. Structural Characteristics of Aldose Reductase
3.1. Conformational Flexibility
3.1.1. Structural Homology and Challenges
3.2. Current AR Inhibitors
3.2.1. Major Limitations of ARIs
3.2.2. New Strategies for Aldose Reductase Inhibitor Design
4. Emerging Tools in Rational Drug Design: Fragment-Based Drug Discovery and MicroED
4.1. Fragment-Based Drug Discovery (FBDD)
4.1.1. Fragment Screening Biophysical Detection
4.2. Microcrystal Electron Diffraction (MicroED)
4.3. Proposed Strategy: Integrating FBDD and MicroED for Aldose Reductase Inhibitor Design
4. 4. Fragment Optimization Strategies for Selective Aldose Reductase Inhibition
4.5. Structural Validation of Optimized Leads Using MicroED
4.6. Application Workflow: Using MicroED to Guide Differential Inhibitor Design
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 Suppl 1(Suppl 1), S62–9. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice, C., 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (1 Suppl 1), S27–S49. [CrossRef]
- Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008, 88(11), 1322–35. [Google Scholar] [CrossRef]
- Vithian, K.; Hurel, S. Microvascular complications: pathophysiology and management. Clin Med (Lond) 2010, 10(5), 505–9. [Google Scholar] [CrossRef]
- Klein, R.; et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 1984, 102(4), 527–32. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; et al. Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy. Diabetology 2022, 3(1), 159–175. [Google Scholar] [CrossRef]
- Honasoge, A.; et al. Emerging Insights and Interventions for Diabetic Retinopathy. Curr Diab Rep 2019, 19(10), p. 100. [Google Scholar] [CrossRef]
- Santiago, J.V. Lessons from the Diabetes Control and Complications Trial. Diabetes 1993, 42(11), 1549–54. [Google Scholar] [CrossRef]
- Hendrick, A.M.; Gibson, M.V.; Kulshreshtha, A. Diabetic Retinopathy. Prim Care 2015, 42(3), 451–64. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Wong, T.Y. Current concepts in diabetic retinopathy. Diabetes Metab J 2014, 38(6), 416–25. [Google Scholar] [CrossRef]
- Bortea, C.I.; et al. Risk Factors Associated with Retinopathy of Prematurity in Very and Extremely Preterm Infants. Medicina (Kaunas) 2021, 57(5). [Google Scholar] [CrossRef]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci 2018, 19(6). [Google Scholar] [CrossRef]
- Antonetti, D.A.; Silva, P.S.; Stitt, A.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021, 17(4), 195–206. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414(6865), 813–20. [Google Scholar] [CrossRef]
- Sheetz, M.J.; King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002, 288(20), 2579–88. [Google Scholar] [CrossRef]
- Stewart, M.W. Pathophysiology of Diabetic Retinopathy, in Diabetic Retinopathy; 2010; pp. 1–30. [Google Scholar]
- Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021, 11(10). [Google Scholar] [CrossRef]
- Van den Enden, M.K.; et al. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 1995, 36(8), 1675–85. [Google Scholar] [PubMed]
- Danila, A.I.; et al. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines 2024, 12(4). [Google Scholar] [CrossRef] [PubMed]
- Vinores, S.A.; et al. Aldose reductase expression in human diabetic retina and retinal pigment epithelium. Diabetes 1988, 37(12), 1658–64. [Google Scholar] [CrossRef]
- Kinoshita, J.H.; et al. Aldose reductase in diabetic complications of the eye. Metabolism 1979, 28((4) Suppl 1, 462–9. [Google Scholar] [CrossRef]
- Mestry, S.N.; Juvekar, A.R. Aldose reductase inhibitory potential and anti-cataract activity of Punica granatum Linn. leaves against glucose-induced cataractogenesis in goat eye lens. Oriental Pharmacy and Experimental Medicine 2017, 17(3), 277–284. [Google Scholar] [CrossRef]
- Gabbay, K.H. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 1975, 26, 521–36. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, J.H. A thirty year journey in the polyol pathway. Exp Eye Res 1990, 50(6), 567–73. [Google Scholar] [CrossRef]
- Steinmetz, P.R. C. Balko, and K.H. Gabbay, The Sorbitol Pathway and the Complications of Diabetes. New England Journal of Medicine 1973, 288(16), 831–836. [Google Scholar] [CrossRef]
- Srikanth, K.K.; Orrick, J.A. Biochemistry, Polyol Or Sorbitol Pathways, in StatPearls; Treasure Island (FL), 2025. [Google Scholar]
- Ali, T.K.; El-Remessy, A.B. Diabetic retinopathy: current management and experimental therapeutic targets. Pharmacotherapy 2009, 29(2), 182–92. [Google Scholar] [CrossRef]
- Julius, A.; Hopper, W. A non-invasive, multi-target approach to treat diabetic retinopathy. Biomed Pharmacother 2019, 109, 708–715. [Google Scholar] [CrossRef]
- Balestri, F.; et al. In Search of Differential Inhibitors of Aldose Reductase. Biomolecules 2022, 12(4). [Google Scholar] [CrossRef]
- Gulec, O.; et al. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorg Chem 2024, 145, 107221. [Google Scholar] [CrossRef]
- Ahmad, S.; et al. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024, 280 (Pt 2), 135761. [Google Scholar] [CrossRef]
- Kumari, P.; et al. Selectivity challenges for aldose reductase inhibitors: A review on comparative SAR and interaction studies. Journal of Molecular Structure 2024, 1318. [Google Scholar] [CrossRef]
- Sarges, R.; Oates, P.J. Aldose reductase inhibitors: recent developments. Prog Drug Res 1993, 40, 99–161. [Google Scholar] [PubMed]
- Maccari, R.; Ottana, R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: new insights and future directions. J Med Chem 2015, 58(5), 2047–67. [Google Scholar] [CrossRef]
- Grewal, A.S.; et al. Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-diabetic Diseases. Mini Rev Med Chem 2016, 16(2), 120–62. [Google Scholar] [CrossRef]
- Grewal, A.S.; et al. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr Drug Metab 2020, 21(14), 1091–1116. [Google Scholar] [CrossRef]
- Gabbay, K.H. Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? Curr Diab Rep 2004, 4(6), 405–8. [Google Scholar] [CrossRef]
- Hotta, N.; et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet Med 2012, 29(12), 1529–33. [Google Scholar]
- Senthilkumari, S.; et al. Epalrestat, an Aldose Reductase Inhibitor Prevents Glucose-Induced Toxicity in Human Retinal Pigment Epithelial Cells In Vitro. J Ocul Pharmacol Ther 2017, 33(1), 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.A.; Borja, N.L. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 2008, 28(5), 646–55. [Google Scholar] [CrossRef]
- Petrash, J.M. All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 2004, 61(7-8), 737–49. [Google Scholar] [CrossRef]
- Sun, W.; et al. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes 2006, 55(10), 2757–62. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; et al. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 2005, 54(11), 3119–25. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; et al. Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. Diabetes 2005, 54(12), 3418–26. [Google Scholar] [CrossRef]
- A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch Ophthalmol 1990, 108(9), 1234–44. [CrossRef]
- Dagher, Z.; et al. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 2004, 53(9), 2404–11. [Google Scholar] [CrossRef]
- Asnaghi, V.; et al. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003, 52(2), 506–11. [Google Scholar] [CrossRef] [PubMed]
- Barski, O.A.; et al. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry 1995, 34(35), 11264–75. [Google Scholar] [CrossRef]
- Del-Corso, A.; et al. A new approach to control the enigmatic activity of aldose reductase. PLoS One 2013, 8(9), e74076. [Google Scholar] [CrossRef]
- Elimam, D.M.; et al. Olive and ginkgo extracts as potential cataract therapy with differential inhibitory activity on aldose reductase. Drug Discov Ther 2017, 11(1), 41–46. [Google Scholar] [CrossRef]
- Wang, Z.Z.; et al. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021, 42(7), 551–565. [Google Scholar] [CrossRef]
- Ramana, K.V. ALDOSE REDUCTASE: New Insights for an Old Enzyme. Biomol Concepts 2011, 2(1-2), 103–114. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Goldberg, I.J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 2010, 106(9), 1449–58. [Google Scholar] [CrossRef]
- Rao, M.; Chang, K.C. Aldose reductase is a potential therapeutic target for neurodegeneration. Chem Biol Interact 2024, 389, 110856. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, T.; et al. Clinical analysis of aldose reductase for differential diagnosis of the pathogenesis of diabetic complication. Analytica Chimica Acta 1998, 365(1-3), 285–292. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54(6), 1615–25. [Google Scholar] [CrossRef] [PubMed]
- Alwadani, F.; Saif, M. The role and prevalence of polyol pathway and oxidative stress markers as risk factors for diabetic cataract in adult type-I diabetic and diabetic cataract Saudi patients. J Clin Exp Ophthalmol 2016, 7(558), p. 2. [Google Scholar] [CrossRef]
- Doorn, J.A.; Srivastava, S.K.; Petersen, D.R. Aldose reductase catalyzes reduction of the lipid peroxidation product 4-oxonon-2-enal. Chem Res Toxicol 2003, 16(11), 1418–23. [Google Scholar] [CrossRef]
- Petrash, J.M.; Harter, T.M.; Murdock, G.L. A potential role for aldose reductase in steroid metabolism. Adv Exp Med Biol 1997, 414, 465–73. [Google Scholar]
- Iwata, N. Hormonal regulation of aldose reductase in rat ovary during the estrous cycle. Eur J Biochem 1996, 235(1-2), 444–8. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004, 56(3), 331–49. [Google Scholar] [CrossRef]
- Niimi, N.; et al. Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Int J Mol Sci 2021, 22(3). [Google Scholar] [CrossRef]
- Hers, H.G. The mechanism of the transformation of glucose in fructose in the seminal vesicles. Biochim Biophys Acta 1956, 22(1), 202–3. [Google Scholar] [CrossRef]
- Hirakawa, H.; et al. Expression analysis of the aldo-keto reductases involved in the novel biosynthetic pathway of tetrahydrobiopterin in human and mouse tissues. J Biochem 2009, 146(1), 51–60. [Google Scholar] [CrossRef]
- Park, Y.S.; et al. Human carbonyl and aldose reductases: new catalytic functions in tetrahydrobiopterin biosynthesis. Biochem Biophys Res Commun 1991, 175(3), 738–44. [Google Scholar] [CrossRef]
- Endo, S.; et al. Kinetic studies of AKR1B10, human aldose reductase-like protein: endogenous substrates and inhibition by steroids. Arch Biochem Biophys 2009, 487(1), 1–9. [Google Scholar] [CrossRef]
- Bravi, M.C.; et al. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 1997, 46(10), 1194–8. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.; et al. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int J Mol Sci 2023, 24(11). [Google Scholar] [CrossRef]
- Shi, X.; et al. Hesperidin prevents retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Molecules 2012, 17(11), 12868–81. [Google Scholar] [CrossRef] [PubMed]
- Obrosova, I.G. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 2005, 7(11-12), 1543–52. [Google Scholar] [CrossRef] [PubMed]
- Luis-Rodriguez, D.; et al. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 2012, 3(1), 7–18. [Google Scholar] [CrossRef]
- Wu, J.; et al. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016, 9, 145–53. [Google Scholar]
- Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res 2007, 2007, 61038. [Google Scholar] [CrossRef]
- Hohman, T.C.; Nishimura, C.; Robison, W.G., Jr. Aldose reductase and polyol in cultured pericytes of human retinal capillaries. Exp Eye Res 1989, 48(1), 55–60. [Google Scholar] [CrossRef]
- Li, W.; et al. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil. Biochim Biophys Acta 1986, 857(2), 198–208. [Google Scholar] [CrossRef]
- Chakrabarti, S.; et al. Aldose reductase in the BB rat: isolation, immunological identification and localization in the retina and peripheral nerve. Diabetologia 1987, 30(4), 244–51. [Google Scholar] [CrossRef]
- Drel, V.R.; et al. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 2008, 21(6), 667–76. [Google Scholar] [CrossRef]
- Kador, P.F.; Kinoshita, J.H. Role of aldose reductase in the development of diabetes-associated complications. Am J Med 1985, 79(5A), 8–12. [Google Scholar] [CrossRef]
- Varma, S.D.; Kinoshita, J.H. The absence of cataracts in mice with congenital hyperglycemia. Exp Eye Res 1974, 19(6), 577–82. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, A.D.; et al. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy. Kidney Int 2001, 60(1), 211–8. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.J. Diabetic Retinopathy. 2010. [Google Scholar] [PubMed]
- Yan, L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018, 1(1), 7–13. [Google Scholar] [CrossRef]
- Yan, L.J.; et al. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 2002, 21(19), 5164–72. [Google Scholar] [CrossRef] [PubMed]
- Mapanga, R.F.; Essop, M.F. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016, 310(2), H153–73. [Google Scholar] [CrossRef]
- Treberg, J.R.; Quinlan, C.L.; Brand, M.D. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 2011, 286(31), 27103–10. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem J 2009, 417(1), 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012, 3, 87. [Google Scholar] [CrossRef]
- Inoguchi, T.; et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000, 49(11), 1939–45. [Google Scholar] [CrossRef]
- Miyata, T.; et al. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol 1998, 9(12), 2349–56. [Google Scholar] [CrossRef]
- Miyata, T.; et al. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 1999, 55(2), 389–99. [Google Scholar] [CrossRef]
- Kaneko, M.; et al. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann N Y Acad Sci 2005, 1043, 702–9. [Google Scholar] [CrossRef]
- Gugliucci, A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr 2017, 8(1), 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Zhong, Q.; Santos, J.M. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs 2012, 21(6), 797–805. [Google Scholar] [CrossRef]
- Jin, M.; et al. Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina 2001, 21(1), 28–33. [Google Scholar] [CrossRef]
- Giebel, S.J.; et al. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005, 85(5), 597–607. [Google Scholar] [CrossRef]
- Mohammad, G.; Kowluru, R.A. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab Invest 2010, 90(9), 1365–72. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Kanwar, M. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radic Biol Med 2009, 46(12), 1677–85. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; et al. MMP-2 and MMP-9 secretion by rpe is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 2006, 26(4), 454–61. [Google Scholar] [CrossRef]
- Navaratna, D.; et al. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes 2007, 56(9), 2380–7. [Google Scholar] [CrossRef]
- Ramana, K.V.; et al. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 2005, 54(3), 818–29. [Google Scholar] [CrossRef]
- Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010, 106(8), 1319–31. [Google Scholar] [CrossRef] [PubMed]
- Das Evcimen, N.; King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007, 55(6), 498–510. [Google Scholar] [CrossRef]
- Derubertis, F.R.; Craven, P.A. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 1994, 43(1), 1–8. [Google Scholar] [CrossRef]
- Xia, P.; et al. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994, 43(9), 1122–9. [Google Scholar] [CrossRef]
- Balestri, F.; et al. Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules 2020, 10(7). [Google Scholar] [CrossRef]
- Srivastava, S.; et al. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun 1995, 217(3), 741–6. [Google Scholar] [CrossRef] [PubMed]
- Vander Jagt, D.L.; et al. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1995, 1249(2), 117–26. [Google Scholar] [CrossRef]
- Ramana, K.V.; Srivastava, S.K. Aldose reductase: a novel therapeutic target for inflammatory pathologies. Int J Biochem Cell Biol 2010, 42(1), 17–20. [Google Scholar] [CrossRef]
- Frohnert, B.I.; Bernlohr, D.A. Glutathionylated products of lipid peroxidation: A novel mechanism of adipocyte to macrophage signaling. Adipocyte 2014, 3(3), 224–9. [Google Scholar] [CrossRef] [PubMed]
- Frohnert, B.I.; et al. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 2014, 63(1), 89–100. [Google Scholar] [CrossRef]
- Srivastava, S.; et al. Synthesis, quantification, characterization, and signaling properties of glutathionyl conjugates of enals. Methods Enzymol 2010, 474, 297–313. [Google Scholar]
- Way, K.J.; Katai, N.; King, G.L. Protein kinase C and the development of diabetic vascular complications. Diabet Med 2001, 18(12), 945–59. [Google Scholar] [CrossRef] [PubMed]
- Bursell, S.E.; et al. Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci 1997, 38(13), 2711–20. [Google Scholar]
- Oishi, N.; et al. Correlation between erythrocyte aldose reductase level and human diabetic retinopathy. Br J Ophthalmol 2002, 86(12), 1363–6. [Google Scholar] [CrossRef] [PubMed]
- Akagi, Y.; et al. Aldose reductase localization in human retinal mural cells. Invest Ophthalmol Vis Sci 1983, 24(11), 1516–9. [Google Scholar] [PubMed]
- Akagi, Y.; et al. Localization of aldose reductase in the human eye. Diabetes 1984, 33(6), 562–6. [Google Scholar] [CrossRef]
- Kador, P.F.; et al. Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 1988, 106(8), 1099–102. [Google Scholar] [CrossRef]
- Kador, P.F.; et al. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 1990, 108(9), 1301–9. [Google Scholar] [CrossRef]
- Takahashi, Y.; et al. Diabeteslike preproliferative retinal changes in galactose-fed dogs. Arch Ophthalmol 1992, 110(9), 1295–302. [Google Scholar] [CrossRef]
- Heesom, A.E.; Millward, A.; Demaine, A.G. Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5’ end of the aldose reductase gene. J Neurol Neurosurg Psychiatry 1998, 64(2), 213–6. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.P.; et al. Aldose reductase (AC)(n) microsatellite polymorphism and diabetic microvascular complications in Caucasian Type 1 diabetes mellitus. Diabetes Res Clin Pract 2001, 52(1), 21–7. [Google Scholar] [CrossRef]
- Park, H.K.; et al. (AC)(n) polymorphism of aldose reductase gene and diabetic microvascular complications in type 2 diabetes mellitus. Diabetes Res Clin Pract 2002, 55(2), 151–7. [Google Scholar] [CrossRef]
- Abhary, S.; et al. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes 2009, 58(9), 2137–47. [Google Scholar] [CrossRef]
- Lee, A.Y.; Chung, S.K.; Chung, S.S. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc Natl Acad Sci U S A 1995, 92(7), 2780–4. [Google Scholar] [CrossRef]
- Ramana, K.V.; et al. Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells. FASEB J 2003, 17(2), 315–7. [Google Scholar] [CrossRef] [PubMed]
- Zatechka, D.S., Jr.; et al. Diabetes can alter the signal transduction pathways in the lens of rats. Diabetes 2003, 52(4), 1014–22. [Google Scholar] [CrossRef] [PubMed]
- Yagihashi, S.; et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001, 124 Pt 12, 2448–58. [Google Scholar] [CrossRef]
- Song, Z.; et al. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 2003, 23(4), 638–47. [Google Scholar] [CrossRef]
- Wang, X.; et al. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 1998, 333 Pt 2)(Pt 2, 291–300. [Google Scholar] [CrossRef]
- Purves, T.; et al. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 2001, 15(13), 2508–14. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.C.; et al. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 2006, 55(7), 1946–53. [Google Scholar] [CrossRef]
- Kasajima, H.; et al. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001, 439(1), 46–54. [Google Scholar] [CrossRef]
- Kapor-Drezgic, J.; et al. Effect of high glucose on mesangial cell protein kinase C-delta and -epsilon is polyol pathway-dependent. J Am Soc Nephrol 1999, 10(6), 1193–203. [Google Scholar] [CrossRef]
- Noh, H.; King, G.L. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl 2007, 106, S49–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; et al. Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice. Diabetologia 2011, 54(5), 1242–51. [Google Scholar] [CrossRef]
- Sango, K.; et al. Physiological and Pathological Roles of Aldose Reductase in Schwann Cells. Journal of Molecular and Genetic Medicine 2014, 02(s1). [Google Scholar]
- Kobayashi, T.; et al. Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats. J Androl 2002, 23(5), 674–83. [Google Scholar] [CrossRef] [PubMed]
- Steffgen, J.; et al. Osmoregulation of aldose reductase and sorbitol dehydrogenase in cultivated interstitial cells of rat renal inner medulla. Nephrol Dial Transplant 2003, 18(11), 2255–61. [Google Scholar] [CrossRef]
- Pastel, E.; et al. Aldo-Keto Reductases 1B in Endocrinology and Metabolism. Front Pharmacol 2012, 3, 148. [Google Scholar] [CrossRef]
- Cappiello, M.; et al. Basic models for differential inhibition of enzymes. Biochem Biophys Res Commun 2014, 445(3), 556–60. [Google Scholar] [CrossRef]
- Petrash, J.M.; et al. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Diabetes 1994, 43(8), 955–9. [Google Scholar] [CrossRef]
- Guo, M.; et al. Role of AKR1B10 in inflammatory diseases. Scand J Immunol 2024, 100(2), p. e13390. [Google Scholar] [CrossRef]
- Singh, M.; Kapoor, A.; Bhatnagar, A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact 2015, 234, 261–73. [Google Scholar] [CrossRef]
- Endo, S.; Matsunaga, T.; Nishinaka, T. The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites 2021, 11(6). [Google Scholar] [CrossRef]
- Rondeau, J.M.; et al. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 1992, 355(6359), 469–72. [Google Scholar] [CrossRef]
- Borhani, D.W.; Harter, T.M.; Petrash, J.M. The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem 1992, 267(34), 24841–7. [Google Scholar] [CrossRef]
- Wilson, D.K.; et al. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 1992, 257(5066), 81–4. [Google Scholar] [CrossRef]
- Biadene, M.; et al. The atomic resolution structure of human aldose reductase reveals that rearrangement of a bound ligand allows the opening of the safety-belt loop. Acta Crystallogr D Biol Crystallogr 2007, 63 Pt 6, 665–72. [Google Scholar] [CrossRef] [PubMed]
- Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008, 40(4), 553–624. [Google Scholar] [CrossRef]
- Bohren, K.M.; et al. The structure of Apo R268A human aldose reductase: hinges and latches that control the kinetic mechanism. Biochim Biophys Acta 2005, 1748(2), 201–12. [Google Scholar] [CrossRef] [PubMed]
- Urzhumtsev, A.; et al. A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 1997, 5(5), 601–12. [Google Scholar] [CrossRef] [PubMed]
- Sotriffer, C.A.; Kramer, O.; Klebe, G. Probing flexibility and “induced-fit” phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins 2004, 56(1), 52–66. [Google Scholar] [CrossRef] [PubMed]
- Klebe, G.; Kramer, O.; Sotriffer, C. Strategies for the design of inhibitors of aldose reductase, an enzyme showing pronounced induced-fit adaptations. Cell Mol Life Sci 2004, 61(7-8), 783–93. [Google Scholar] [CrossRef] [PubMed]
- El-Kabbani, O.; et al. Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with Fidarestat and Minalrestat: implications for the binding of cyclic imide inhibitors. Proteins 2004, 55(4), 805–13. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.K.; et al. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc Natl Acad Sci U S A 1993, 90(21), 9847–51. [Google Scholar] [CrossRef]
- Steuber, H.; et al. Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. J Mol Biol 2008, 379(5), 991–1016. [Google Scholar] [CrossRef]
- Steuber, H.; et al. Expect the unexpected or caveat for drug designers: multiple structure determinations using aldose reductase crystals treated under varying soaking and co-crystallisation conditions. J Mol Biol 2006, 363(1), 174–87. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Niu, Y. Inhibitory selectivity to the AKR1B10 and aldose reductase (AR): insight from molecular dynamics simulations and free energy calculations. RSC Adv 2023, 13(38), 26709–26718. [Google Scholar] [CrossRef]
- Ruiz, F.X.; Pares, X.; Farres, J. Perspective on the Structural Basis for Human Aldo-Keto Reductase 1B10 Inhibition. Metabolites 2021, 11(12). [Google Scholar] [CrossRef]
- Tarle, I.; et al. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem 1993, 268(34), 25687–93. [Google Scholar] [CrossRef]
- Kanazu, T.; et al. Aldehyde reductase is a major protein associated with 3-deoxyglucosone reductase activity in rat, pig and human livers. Biochem J 1991, 279 Pt 3)(Pt 3, 903–6. [Google Scholar] [CrossRef]
- Oya, T.; et al. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J Biol Chem 1999, 274(26), 18492–502. [Google Scholar] [CrossRef]
- Harrison, D.H.; et al. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry 1994, 33(8), 2011–20. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.H.; et al. The alrestatin double-decker: binding of two inhibitor molecules to human aldose reductase reveals a new specificity determinant. Biochemistry 1997, 36(51), 16134–40. [Google Scholar] [CrossRef]
- Ramunno, A.; et al. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem 2012, 51, 216–26. [Google Scholar] [CrossRef]
- Rojas, J.J.; et al. Computational screening identifies selective aldose reductase inhibitors with strong efficacy and limited off target interactions. Sci Rep 2025, 15(1), 28111. [Google Scholar] [CrossRef]
- Gabbay, K.H.; et al. Aldose reductase inhibition: studies with alrestatin. Metabolism 1979, 28 (4 Suppl 1), 471–6. [Google Scholar] [CrossRef]
- Judzewitsch, R.G.; et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med 1983, 308(3), 119–25. [Google Scholar] [CrossRef]
- Goto, Y.; et al. A placebo-controlled double-blind study of epalrestat (ONO-2235) in patients with diabetic neuropathy. Diabet Med 1993, 10 Suppl 2, 39S–43S. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; et al. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed Pharmacother 1995, 49(6), 269–77. [Google Scholar] [CrossRef]
- Hotta, N.; et al. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. Diabetic Neuropathy Study Group in Japan. J Diabetes Complications 1996, 10(3), 168–72. [Google Scholar] [CrossRef]
- Hotta, N.; et al. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 2001, 24(10), 1776–82. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; et al. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. J Diabetes Complications 2002, 16(2), 133–8. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; et al. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 2009, 32(7), 1256–60. [Google Scholar] [CrossRef]
- Perfetti, R.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of the New Aldose Reductase Inhibitor Govorestat (AT-007) After a Single and Multiple Doses in Participants in a Phase 1/2 Study. J Clin Pharmacol 2024, 64(11), 1397–1406. [Google Scholar] [CrossRef]
- Imran, A.; et al. Development and exploration of novel substituted thiosemicarbazones as inhibitors of aldose reductase via in vitro analysis and computational study. Sci Rep 2022, 12(1), p. 5734. [Google Scholar] [CrossRef]
- Zhang, L.; et al. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: role of Trp112 (Trp111). FEBS Lett 2013, 587(22), 3681–6. [Google Scholar] [CrossRef]
- Fujii, J.; et al. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites 2021, 11(6). [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; et al. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations. J Chem Inf Model 2013, 53(9), 2409–22. [Google Scholar] [CrossRef]
- Eisenmann, M.; et al. Structure-based optimization of aldose reductase inhibitors originating from virtual screening. ChemMedChem 2009, 4(5), 809–19. [Google Scholar] [CrossRef]
- Bon, M.; et al. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol Oncol 2022, 16(21), 3761–3777. [Google Scholar] [CrossRef] [PubMed]
- Erlanson, D.A.; et al. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 2016, 15(9), 605–619. [Google Scholar] [CrossRef] [PubMed]
- Schuffenhauer, A.; et al. Library design for fragment based screening. Curr Top Med Chem 2005, 5(8), 751–62. [Google Scholar] [CrossRef]
- Jacquemard, C.; Kellenberger, E. A bright future for fragment-based drug discovery: what does it hold? Expert Opin Drug Discov 2019, 14(5), 413–416. [Google Scholar] [CrossRef]
- Kirsch, P.; et al. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019, 24(23). [Google Scholar] [CrossRef]
- Davis, B.J.; Giannetti, A.M. The Synthesis of Biophysical Methods In Support of Robust Fragment-Based Lead Discovery, in Fragment-based Drug Discovery Lessons and Outlook; 2016; pp. 119–138. [Google Scholar]
- Bancet, A.; et al. Fragment Linking Strategies for Structure-Based Drug Design. J Med Chem 2020, 63(20), 11420–11435. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, T.; et al. How to Find a Fragment: Methods for Screening and Validation in Fragment-Based Drug Discovery. ChemMedChem 2024, 19(24), p. e202400342. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, L.; et al. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach. J Med Chem 2018, 61(13), 5719–5732. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; et al. Identification of novel lysine demethylase 5-selective inhibitors by inhibitor-based fragment merging strategy. Bioorg Med Chem 2019, 27(6), 1119–1129. [Google Scholar] [CrossRef]
- Keseru, G.M.; et al. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. J Med Chem 2016, 59(18), 8189–206. [Google Scholar] [CrossRef]
- Yamaotsu, N.; Hirono, S. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. J Comput Aided Mol Des 2018, 32(11), 1229–1245. [Google Scholar] [CrossRef]
- Zhu, T.; et al. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem 2013, 56(17), 6560–72. [Google Scholar] [CrossRef]
- Navratilova, I.; Hopkins, A.L. Fragment screening by surface plasmon resonance. ACS Med Chem Lett 2010, 1(1), 44–8. [Google Scholar] [CrossRef]
- Murray, J.B.; et al. Off-rate screening (ORS) by surface plasmon resonance. An efficient method to kinetically sample hit to lead chemical space from unpurified reaction products. J Med Chem 2014, 57(7), 2845–50. [Google Scholar] [CrossRef]
- Neumann, T.; et al. SPR-based fragment screening: advantages and applications. Curr Top Med Chem 2007, 7(16), 1630–42. [Google Scholar] [CrossRef]
- Chavanieu, A.; Pugniere, M. Developments in SPR Fragment Screening. Expert Opin Drug Discov 2016, 11(5), 489–99. [Google Scholar] [CrossRef]
- Senisterra, G.; Chau, I.; Vedadi, M. Thermal denaturation assays in chemical biology. Assay Drug Dev Technol 2012, 10(2), 128–36. [Google Scholar] [CrossRef]
- Lo, M.C.; et al. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 2004, 332(1), 153–9. [Google Scholar] [CrossRef] [PubMed]
- Jerabek-Willemsen, M.; et al. MicroScale Thermophoresis: Interaction analysis and beyond. Journal of Molecular Structure 2014, 1077, 101–113. [Google Scholar] [CrossRef]
- Mueller, A.M.; et al. MicroScale Thermophoresis: A Rapid and Precise Method to Quantify Protein-Nucleic Acid Interactions in Solution. Methods Mol Biol 2017, 1654, 151–164. [Google Scholar] [PubMed]
- Asmari, M.; et al. Thermophoresis for characterizing biomolecular interaction. Methods 2018, 146, 107–119. [Google Scholar] [CrossRef]
- Lamoree, B.; Hubbard, R.E. Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem 2017, 61(5), 453–464. [Google Scholar] [PubMed]
- Linke, P.; et al. An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery. J Biomol Screen 2016, 21(4), 414–21. [Google Scholar] [CrossRef]
- Chilingaryan, Z.; Yin, Z.; Oakley, A.J. Fragment-based screening by protein crystallography: successes and pitfalls. Int J Mol Sci 2012, 13(10), 12857–79. [Google Scholar] [CrossRef]
- Fragment-Based Drug Discovery and X-Ray Crystallography. In Topics in Current Chemistry; 2012.
- Davies, T.G.; Tickle, I.J. Fragment Screening Using X-Ray Crystallography, in Fragment-Based Drug Discovery and X-Ray Crystallography; Davies, T.G., Hyvönen, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp. 33–59. [Google Scholar]
- Muller, I. Guidelines for the successful generation of protein-ligand complex crystals. Acta Crystallogr D Struct Biol 2017, 73 Pt 2, 79–92. [Google Scholar] [CrossRef]
- Cusack, S.; et al. Small is beautiful: protein micro-crystallography. In Nat Struct Biol; 1998; pp. 634–7. [Google Scholar]
- Wolff, A.M.; et al. Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals. IUCrJ 2020. 7, Pt 2, 306–323. [Google Scholar] [CrossRef]
- Nannenga, B.L.; et al. Structure of catalase determined by MicroED. Elife 2014, 3, p. e03600. [Google Scholar] [CrossRef]
- Yonekura, K.; et al. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc Natl Acad Sci U S A 2015, 112(11), 3368–73. [Google Scholar] [CrossRef] [PubMed]
- Clabbers, M.T.B.; et al. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallogr D Struct Biol 2017, 73 Pt 9, 738–748. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, M.J.; et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat Methods 2017, 14(4), 399–402. [Google Scholar] [CrossRef]
- Xu, H.; et al. A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. Structure 2018, 26(4), 667–675 e3. [Google Scholar] [CrossRef]
- Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 1995, 28(2), 171–93. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; et al. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun 2019, 10(1), p. 2386. [Google Scholar] [CrossRef]
- Purdy, M.D.; et al. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc Natl Acad Sci U S A 2018, 115(52), 13258–13263. [Google Scholar] [CrossRef]
- Clabbers, M.T.B.; et al. Visualizing drug binding interactions using microcrystal electron diffraction. Commun Biol 2020, 3(1), 417. [Google Scholar] [CrossRef]
- Clabbers, M.T.B.; Xu, H. Microcrystal electron diffraction in macromolecular and pharmaceutical structure determination. Drug Discov Today Technol 2020, 37, 93–105. [Google Scholar] [CrossRef]
- Shi, D.; et al. Three-dimensional electron crystallography of protein microcrystals. Elife 2013, 2, p. e01345. [Google Scholar] [CrossRef]
- Liu, S.; Gonen, T. MicroED structure of the NaK ion channel reveals a Na(+) partition process into the selectivity filter. Commun Biol 2018, 1, 38. [Google Scholar] [CrossRef] [PubMed]
- Grimshaw, C.E. Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 1992, 31(42), 10139–45. [Google Scholar] [CrossRef]
- de Souza Neto, L.R.; et al. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front Chem 2020, 8, 93. [Google Scholar] [CrossRef]
- Strecker, C.; et al. Fragment Growing to Design Optimized Inhibitors for Human Blood Group B Galactosyltransferase (GTB). ChemMedChem 2019, 14(14), 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; et al. Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 2009, 5(6), 407–13. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, O.; et al. Compound Design by Fragment-Linking. Mol Inform 2011, 30(4), 298–306. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002, 45(12), 2615–23. [Google Scholar] [CrossRef]
- Xu, X.; et al. Identification of novel ROS inducer by merging the fragments of piperlongumine and dicoumarol. Bioorg Med Chem Lett 2017, 27(5), 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, P.O.; et al. A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org Biomol Chem 2016, 14(7), 2318–26. [Google Scholar] [CrossRef]
- Friberg, A.; et al. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 2013, 56(1), 15–30. [Google Scholar] [CrossRef]
- Fesik, S.W. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025, 125(6), 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.M.; Teague, S.J.; Kleywegt, G.J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed Engl 2003, 42(24), 2718–36. [Google Scholar] [CrossRef]
- Holcomb, J.; et al. Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS Biophys 2017, 4(4), 557–575. [Google Scholar] [CrossRef]
- Kascakova, B.; et al. Revealing protein structures: crystallization of protein-ligand complexes - co-crystallization and crystal soaking. FEBS Open Bio 2025, 15(4), 542–550. [Google Scholar] [CrossRef]
- Tremlett, C.J.; et al. Small but mighty: the power of microcrystals in structural biology. IUCrJ 2025, 12 Pt 3, 262–279. [Google Scholar] [CrossRef]
- Oberthur, D. Microcrystals in structural biology: small samples, big insights. IUCrJ 2025, 12 Pt 3, 259–261. [Google Scholar] [CrossRef]
- Nannenga, B.L.; Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat Methods 2019, 16(5), 369–379. [Google Scholar] [CrossRef] [PubMed]
- Boudes, M. D. Garriga, and F. Coulibaly, Reflections on the Many Facets of Protein Microcrystallography. Australian Journal of Chemistry 2014, 67(12). [Google Scholar] [CrossRef]
- Fearon, D.; et al. Accelerating Drug Discovery With High-Throughput Crystallographic Fragment Screening and Structural Enablement. Applied Research 2024, 4(1). [Google Scholar] [CrossRef]
- Acehan, D.; et al. Reaching the potential of electron diffraction. Cell Rep Phys Sci 2024, 5(6). [Google Scholar] [CrossRef] [PubMed]
- Bochtler, M. X-rays, electrons, and neutrons as probes of atomic matter. Structure 2024, 32(5), 630–643 e6. [Google Scholar] [CrossRef]
- Nannenga, B.L.; Gonen, T. MicroED: a versatile cryoEM method for structure determination. Emerg Top Life Sci 2018, 2(1), 1–8. [Google Scholar] [PubMed]
- Meyer, A.; et al. Single-drop optimization of protein crystallization. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012, 68 (Pt 8), 994–8. [Google Scholar] [CrossRef]
- Duyvesteyn, H.M.E.; et al. Machining protein microcrystals for structure determination by electron diffraction. Proc Natl Acad Sci U S A 2018, 115(38), 9569–9573. [Google Scholar] [CrossRef]
- Martynowycz, M.W.; et al. Collection of Continuous Rotation MicroED Data from Ion Beam-Milled Crystals of Any Size. Structure 2019, 27(3), 545–548 e2. [Google Scholar] [CrossRef]
- Guha, R. On exploring structure-activity relationships. Methods Mol Biol 2013, 993, 81–94. [Google Scholar] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
