Submitted:
08 December 2025
Posted:
09 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Two–Level Solitonic Core
2.1. Ground and First Radial Excitation Modes
2.2. Two–Level Truncation
3. Adiabatic Perturbation by Dehnen Baryons
3.1. Effective Two–Level Baryon Induced Hamiltonian and Mixing Angle
4. Dwarf Galaxy: A Toy Model
4.1. Solitonic Core and DM–Only Level Spacing
4.2. Baryon–Induced Shifts and Mixing
4.3. Dimensionless Parametrization for the Two–Level ULDM System



5. Summary and Outlook
Appendix A. Overlap Coefficients
References
- Chen, J.; Du, X.; Lentz, E.W.; Marsh, D.J.E.; Niemeyer, J.C. New insights into the formation and growth of boson stars in dark matter halos. Phys. Rev. D 2021, 104, 083022. [Google Scholar] [CrossRef]
- Dawoodbhoy, T.; Shapiro, P.R.; Rindler-Daller, T. Core-envelope haloes in scalar field dark matter with repulsive self-interaction: fluid dynamics beyond the de Broglie wavelength. Monthly Notices of the Royal Astronomical Society 2021, 506, 2418–2444. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D. A universal density profile from hierarchical clustering. The Astrophysical Journal 1997, 490, 493. [Google Scholar] [CrossRef]
- Della Rocca, M.; Spieksma, T.F.; Duque, F.; Gualtieri, L.; Cardoso, V. Gravitational Atom Spectroscopy. arXiv 2025, arXiv:2511.13848. [Google Scholar] [CrossRef]
- Nielsen, N.G.; Palessandro, A.; Sloth, M.S. Gravitational atoms. Phys. Rev. D 2019, 99, 123011. [Google Scholar] [CrossRef]
- Rigolin, G.; Ortiz, G.; Ponce, V.H. Beyond the quantum adiabatic approximation: Adiabatic perturbation theory. Phys. Rev. A 2008, 78, 052508. [Google Scholar] [CrossRef]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics, 3 ed.; Cambridge University Press: Cambridge, 2020. [Google Scholar]
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics, 3 ed.; Cambridge University Press: Cambridge, 2018. [Google Scholar]
- Dehnen, W. Simple Distribution Functions for Stellar Disks. The Astronomical Journal 1999, 118, 1201. [Google Scholar] [CrossRef]
- Dehnen, W. A family of potential–density pairs for spherical galaxies and bulges. Monthly Notices of the Royal Astronomical Society 1993, 265, 250–256. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics: Second Edition, rev - revised, 2 ed.; Princeton University Press, 2008. [Google Scholar]
- De Martino, I.; Broadhurst, T.; Henry Tye, S.H.; Chiueh, T.; Schive, H.Y. Dynamical evidence of a dark solitonic core of 109M in the milky way. Physics of the Dark Universe 2020, 28, 100503. [Google Scholar] [CrossRef]
- Broadhurst, T.; De Martino, I.; Luu, H.N.; Smoot, G.F.; Tye, S.H.H. Ghostly galaxies as solitons of Bose-Einstein dark matter. Phys. Rev. D 2020, 101, 083012. [Google Scholar] [CrossRef]
- Dolbeault, J.; Jankowiak, G. Sobolev and Hardy–Littlewood–Sobolev inequalities. Journal of Differential Equations 2014, 257, 1689–1720. [Google Scholar] [CrossRef]
- Lieb, E.H. Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Mathematics 1983, 118, 349–374. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Schive, H.Y.; Liao, M.H.; Woo, T.P.; Wong, S.K.; Chiueh, T.; Broadhurst, T.; Hwang, W.P. Understanding the core-halo relation of quantum wave dark matter from 3D simulations. Physical review letters 2014, 113, 261302. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hui, L.; Yavetz, T.D. Oscillations and random walk of the soliton core in a fuzzy dark matter halo. Phys. Rev. D 2021, 103, 023508. [Google Scholar] [CrossRef]
- Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophysical Journal; (USA) 1990, 356. [Google Scholar] [CrossRef]
- Jaffe, W. A simple model for the distribution of light in spherical galaxies. Monthly Notices of the Royal Astronomical Society 1983, 202, 995–999. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
