Submitted:
05 December 2025
Posted:
09 December 2025
You are already at the latest version
Abstract
Background: Active-fluidics phacoemulsification can maintain anterior chamber stability at lower intraoperative intraocular pressure (IOP) levels. However, whether reducing IOP alone—without additional stabilizing technologies such as the Active Sentry handpiece—can decrease surgical invasiveness during Eight-Chop technique phacoemulsification remains unclear. Methods: In this prospective fellow-eye comparative study, 56 non-diabetic patients (112 eyes) underwent Eight-Chop technique phacoemulsification using the Centurion Vision System with active fluidics. One eye was randomly assigned to a standard-IOP setting (55 mmHg; high-IOP group) and the fellow eye to a reduced-IOP setting (28 mmHg; low-IOP group). Intraoperative parameters—including operative time, phaco time, aspiration time, cumulative dissipated energy (CDE), and irrigation volume—were recorded. Postoperative outcomes included aqueous flare (laser flare photometry), corneal endothelial cell density (CECD) and CECD loss, corneal morphology (central corneal thickness [CCT], coefficient of variation [CV], percentage of hexagonal cells [PHC]), and IOP. Linear mixed-effects models with patient ID as a random effect were used for all paired-eye comparisons. Results: Lowering the intraoperative IOP did not reduce surgical invasiveness. Phaco time was significantly longer in the low-IOP group (16.2 ± 5.22 s vs 13.9 ± 4.40 s; p = 0.001), and aspiration time was also longer (75.0 ± 18.3 s vs 69.0 ± 17.9 s; p = 0.033). No significant differences were found in operative time (5.08 ± 1.10 min vs 4.82 ± 1.13 min; p = 0.082), CDE (5.93 ± 1.87 vs 5.56 ± 1.90; p = 0.099), or irrigation volume (26.6 ± 7.71 mL vs 25.2 ± 7.35 mL; p = 0.214). Postoperative outcomes were similarly comparable. Aqueous flare showed no significant differences at any time point (e.g., day 1: 14.8 ± 5.10 vs 14.5 ± 4.76 ph/ms; p = 0.655). Mean CECD loss remained small in both groups and did not differ significantly (7 weeks: -0.82 ± 1.05% vs -0.98 ± 1.16%, p = 0.460; 19 weeks: -0.93 ± 1.38% vs -1.28 ± 1.69%, p = 0.239). Corneal morphological parameters (CCT, CV, PHC) and postoperative IOP also showed no significant differences between settings. Conclusions: When used with the Eight-Chop technique and active fluidics, lowering intraoperative IOP to near-physiologic levels did not decrease surgical invasiveness and did not provide measurable improvements in postoperative inflammation, CECD loss, or structural corneal outcomes. The present results suggest that reducing IOP alone—without supplemental stabilizing technologies—does not enhance tissue protection during phacoemulsification.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Active Fluidics System and Intraoperative IOP Settings
2.5. Surgical Technique
2.6. Outcome Measures
2.6.1. Aqueous Flare
2.6.2. Corneal Endothelial Cell Density
2.6.3. Corneal Morphological Parameters
2.6.4. Intraocular Pressure
2.6.5. Best-Corrected Visual Acuity
2.6.6. Intraoperative Parameters
2.7. Sample Size Considerations
2.8. Statistical Analysis
2.8.1. Modeling Approach
2.8.2. Handling of Missing Data
2.8.3. Analysis of Corneal Endothelial Cell Density Loss
2.8.4. Analysis of Preoperative Characteristics
2.8.5. Visual Acuity Analysis
2.8.6. Significance Threshold
3. Results
3.1. Preoperative Characteristics
3.2. Intraoperative Parameters
3.3. Postoperative Flare and Corneal Endothelial Outcomes
3.4. Corneal Morphological Parameters
3.5. Postoperative Intraocular Pressure
3.6. Best-Corrected Visual Acuity
3.7. Intraoperative Stability at Low IOP
3.8. Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Abbreviations
| AFS | Active Fluidics System |
| ASM | Active Surge Mitigation |
| CCT | Central corneal thickness |
| CDE | Cumulative dissipated energy |
| CECD | Corneal endothelial cell density |
| CV | Coefficient of variation |
| GFS | Gravity-based fluidics system |
| IOP | Intraocular pressure |
| PHC | Percentage of hexagonal cells |
References
- Kelman, C.D. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol 1967, 64, 23–35. [Google Scholar] [CrossRef]
- Boulter, T.; Bernhisel, A.; Mamalis, C.; Zaugg, B.; Barlow, W.R.; Olson, R.J.; Pettey, J.H. Phacoemulsification in review: Optimization of cataract removal in an in vitro setting. Surv Ophthalmol 2019, 64, 868–875. [Google Scholar] [CrossRef]
- Vasavada, V.; Raj, S.M.; Praveen, M.R.; Vasavada, A.R.; Henderson, B.A.; Asnani, P.K. Real-time dynamic intraocular pressure fluctuations during microcoaxial phacoemulsification using different aspiration flow rates and their impact on early postoperative outcomes: a randomized clinical trial. J Refract Surg 2014, 30, 534–540. [Google Scholar] [CrossRef]
- Solomon, K.D.; Lorente, R.; Fanney, D.; Cionni, R.J. Clinical study using a new phacoemulsification system with surgical intraocular pressure control. J Cataract Refract Surg 2016, 42, 542–549. [Google Scholar] [CrossRef]
- Rauen, M.P.; Joiner, H.; Kohler, R.A.; O’Connor, S. Phacoemulsification using an active fluidics system at physiologic vs high intraocular pressure: impact on anterior and posterior segment physiology. J Cataract Refract Surg 2024, 50, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, H.; Chen, W.; Gao, Y.; Ma, T.; Ye, Z.; Li, Z. A prospective randomized clinical trial of active-fluidics versus gravity-fluidics system in phacoemulsification for age-related cataract (AGSPC). Ann Med 2022, 54, 1977–1987. [Google Scholar] [CrossRef]
- Spaulding, J.; Hall, B. Efficiency of phacoemulsification handpieces with high and low intraocular pressure settings. J Cataract Refract Surg 2025, 51, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [Google Scholar] [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [Google Scholar] [CrossRef]
- Sato, T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. J Clin Med 2025, 14, 2576. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. J Pers Med 2025, 15, 209. [Google Scholar] [CrossRef]
- Sato, T. Corneal endothelial cell loss in shallow anterior chamber eyes after phacoemulsification using the eight-chop technique. J Clin Med 2025, 14, 3045. [Google Scholar] [CrossRef]
- Emery, J.M.; Little, J.H. Patient selection. In Phacoemulsification and aspiration of cataracts; Surgical Techniques, Complications, and Results; Emery, J.M., Little, J.H., Eds.; CV Mosby: St Louis, MO, USA, 1979; pp. 45–48. [Google Scholar]
- McCarey, B.E.; Edelhauser, H.F.; Lynn, M.J. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea 2008, 27, 1–16. [Google Scholar] [CrossRef]
- Wavikar, C.M.; Tanna, M.N.; Wavikar, G.C.; Kale, C.B.; Setia, M.S. Comparison of Post-Operative Outcomes between IOP-20 and IOP-50 in Phacoemulsification with Active Fluidics System: Randomized Single Blinded Trial. Clin Ophthalmol 2025, 19, 3573–3582. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X. Surgical outcomes of phacoemulsification with different fluidics systems (centurion with active sentry vs. centurion gravity) in cataract patients with eye axial length above 26 mm. Front Med (Lausanne) 2025, 12, 1554832. [Google Scholar] [CrossRef] [PubMed]
- Biljana, K.E.; Tea, Š.; Iva, Ć.; Benedict, R.; Dora, M.; Mladen, B.; Mirjana, B. Unraveling Active Surge Mitigation (ASM) Actuation: Optimizing Phacoemulsification With Active Sentry Handpiece. Korean J Ophthalmol. 2025. Online ahead of print.
- Meyer, J.J.; Kuo, A.F.; Olson, R.J. The risk of capsular breakage from phacoemulsification needle contact with the lens capsule: a laboratory study. Am J Ophthalmol 2010, 149, 882–886.e881. [Google Scholar] [CrossRef]
- Suzuki, H.; Oki, K.; Shiwa, T.; Oharazawa, H.; Takahashi, H. Effect of bottle height on the corneal endothelium during phacoemulsification. J Cataract Refract Surg 2009, 35, 2014–2017. [Google Scholar] [CrossRef]
- Kunzmann, B.C.; Wenzel, D.A.; Bartz-Schmidt, K.U.; Spitzer, M.S.; Schultheiss, M. Effects of ultrasound energy on the porcine corneal endothelium - Establishment of a phacoemulsification damage model. Acta Ophthalmol 2020, 98, e155–e160. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; An, Q.; Zhou, H.; Ge, H. Research progress on the impact of cataract surgery on corneal endothelial cells. Adv Ophthalmol Pract Res 2024, 4, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Chang, H.S.; Kim, M.S. Risk factors for endothelial cell loss after phacoemulsification: comparison in different anterior chamber depth groups. Korean J Ophthalmol 2010, 24, 10–15. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, G.; Li, H.; Ma, T.; Ye, Z.; Li, Z. Application of the Active-Fluidics System in Phacoemulsification: A Review. J Clin Med 2023, 12, 611. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, J.; Chen, X. Comparisons of the clinical outcomes of Centurion(®) active fluidics system with a low IOP setting and gravity fluidics system with a normal IOP setting for cataract patients with low corneal endothelial cell density. Front Med (Lausanne) 2023, 10, 1294808. [Google Scholar] [CrossRef]
- Wang, S.; Tao, J.; Yu, X.; Diao, W.; Bai, H.; Yao, L. Safety and prognosis of phacoemulsification using active sentry and active fluidics with different IOP settings - a randomized, controlled study. BMC Ophthalmol 2024, 24, 350. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, V.; Agrawal, D.; Vasavada, S.A.; Vasavada, A.R.; Yagnik, J. Intraoperative Performance and Early Postoperative Outcomes Following Phacoemulsification With Three Fluidic Systems: A Randomized Trial. J Refract Surg 2024, 40, e304–e312. [Google Scholar] [CrossRef]
- Simsek, M.; Cakir, G.Y.; Koser, E.; Altan, C.; Taşkapılı, M. Quantitative evaluation of inflammation after phacoemulsification surgery: anterior chamber flare and choroidal vascular index. Jpn J Ophthalmol 2025, 69, 813–822. [Google Scholar] [CrossRef]
- Way, C.; Swampillai, A.J.; Lim, K.S.; Nanavaty, M.A. Factors influencing aqueous flare after cataract surgery and its evaluation with laser flare photometry. Ther Adv Ophthalmol 2023, 15, 25158414231204111. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Mi, L.; Li, J.; Lin, H.; Chen, W. Subfoveal Choroidal Thickness After Femtosecond Laser-Assisted Cataract Surgery for Age-Related Cataracts. Front Med (Lausanne) 2022, 9, 826042. [Google Scholar] [CrossRef]
- Opala, A.; Kołodziejski, Ł.; Grabska-Liberek, I. Impact of Well-Controlled Type 2 Diabetes on Corneal Endothelium Following Cataract Surgery: A Prospective Longitudinal Analysis. J Clin Med 2025, 14, 3603. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Poley, B.J.; Lindstrom, R.L.; Samuelson, T.W.; Schulze, R., Jr. Intraocular pressure reduction after phacoemulsification with intraocular lens implantation in glaucomatous and nonglaucomatous eyes: Evaluation of a causal relationship between the natural lens and open-angle glaucoma. J Cataract Refract Surg 2009, 35, 1946–1955. [Google Scholar] [CrossRef]
- Jimenez-Roman, J.; Lazcano-Gomez, G.; Martínez-Baez, K.; Turati, M.; Gulías-Cañizo, R.; Hernández-Zimbrón, L.F.; Ochoa-De la Paz, L.; Zamora, R.; Gonzalez-Salinas, R. Effect of phacoemulsification on intraocular pressure in patients with primary open angle glaucoma and pseudoexfoliation glaucoma. Int J Ophthalmol 2017, 10, 1374–1378. [Google Scholar]
- Goel, A.; Das, M.; Sen, S. Comparative Analysis of Patient-Reported Outcome Measures in Manual Small-Incision Cataract Surgery Versus Phacoemulsification for Brown Cataracts. Cureus 2024, 16, e75260. [Google Scholar] [CrossRef]
- Werner, L. Modern cataract surgery with simplified technology: new trend? Journal of Cataract & Refractive Surgery 2025, 51, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Ianchulev, S.; Yeu, E.; Hu, E.H.; Kamthan, G.; Pantanelli, S.; Singh, P.; Tyson, F. Micro-interventional pre-treatment for nucleus disassembly in the setting of non-cavitating sonic lensectomy: real-world evidence study in 512 cases. BMC Ophthalmol 2025, 25, 362. [Google Scholar] [CrossRef] [PubMed]
- Cannon, N.T.; Scruggs, K.; Pantanelli, S.M. A Prospective Single-Center Clinical Trial Comparing Short-Term Outcomes of a Novel Non-Cavitating Handheld Lensectomy Device versus Phacoemulsification. Clin Ophthalmol 2025, 19, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
| Parameter | High IOP (n=56) | Low IOP (n=56) | p-value |
|---|---|---|---|
| Age (years) | 73.4 ± 7.14 | 73.4 ± 7.14 | N/A |
| Sex (M/F) | 20 / 36 | 20 / 36 | N/A |
| Axial length (mm) | 24.1 ± 1.59 | 24.1 ± 1.64 | 0.943 |
| Anterior chamber depth (mm) | 3.21 ± 0.33 | 3.21 ± 0.35 | 0.664 |
| Nucleus grade | 2.27 ± 0.38 | 2.27 ± 0.36 | 0.844 |
| CECD (cells/mm2) | 2672 ± 235 | 2683 ± 228 | 0.449 |
| CV (%) | 38.9 ± 5.30 | 39.1 ± 5.75 | 0.663 |
| PHC (%) | 45.1 ± 7.50 | 45.4 ± 7.55 | 0.608 |
| CCT (µm) | 530 ± 38.0 | 530 ± 39.6 | 0.821 |
| Preoperative IOP (mmHg) | 13.4 ± 1.84 | 13.5 ± 1.60 | 0.623 |
| Preoperative flare (ph/ms) | 8.00 ± 2.63 Median 7.45 [6.4–8.8] |
7.89 ± 2.22 Median 7.8 [6.0–9.2] |
0.756 |
| Parameter | High IOP (n=56) | Low IOP (n=56) | p-value* |
|---|---|---|---|
| Operative time (min) | 4.82 ± 1.13 | 5.08 ± 1.10 | 0.082 |
| Phaco time (s) | 13.9 ± 4.40 | 16.2 ± 5.22 | 0.001 |
| Aspiration time (s) | 69.0 ± 17.9 | 75.0 ± 18.3 | 0.033 |
| CDE | 5.56 ± 1.9 | 5.93 ± 1.87 | 0.099 |
| Irrigation volume (mL) | 25.2 ± 7.35 | 26.6 ± 7.71 | 0.214 |
| Parameter | High IOP | Low IOP | p-value |
|---|---|---|---|
| Flare (ph/ms) – Preoperative | 8.00 ± 2.63 | 7.89 ± 2.22 | 0.756 |
| Flare (ph/ms) – Day 1 | 14.54 ± 4.76 | 14.84 ± 5.10 | 0.655 |
| Flare (ph/ms) – Week 1 | 17.54 ± 7.67 | 17.80 ± 8.18 | 0.820 |
| Flare (ph/ms) – Week 7 | 12.64 ± 3.93 | 12.44 ± 3.93 | 0.700 |
| Flare (ph/ms) – Week 19 | 10.68 ± 2.41 | 10.54 ± 2.12 | 0.749 |
| CECD loss (%) – Week 7 | -0.98 ± 1.16 | -0.82 ± 1.05 | 0.460 |
| CECD loss (%) – Week 19 | -1.28 ± 1.69 | -0.93 ± 1.38 | 0.239 |
| Parameter | Time point | High IOP (mean ± SD) | Low IOP (mean ± SD) | p-value |
|---|---|---|---|---|
| CCT (µm) | Preoperative | 529.9 ± 38.0 | 530.3 ± 39.6 | 0.821 |
| CCT (µm) | Week 7 | 529.9 ± 39.8 | 528.2 ± 40.6 | 0.410 |
| CCT (µm) | Week 19 | 530.4 ± 37.1 | 530.6 ± 38.4 | 0.942 |
| CV (%) | Preoperative | 38.9 ± 5.3 | 39.1 ± 5.7 | 0.663 |
| CV (%) | Week 7 | 38.7 ± 6.0 | 38.0 ± 5.1 | 0.190 |
| CV (%) | Week 19 | 38.5 ± 4.9 | 38.0 ± 4.5 | 0.386 |
| PHC (%) | Preoperative | 45.1 ± 7.5 | 45.4 ± 7.6 | 0.608 |
| PHC (%) | Week 7 | 45.9 ± 8.0 | 46.5 ± 6.6 | 0.389 |
| PHC (%) | Week 19 | 46.0 ± 6.1 | 46.6 ± 6.2 | 0.459 |
| Time point | Setting | n | Mean ± SD (mmHg) | % Change | p-value |
|---|---|---|---|---|---|
| Preoperative IOP | High | 56 | 13.37 ± 1.84 | N/A | 0.623 |
| Preoperative IOP | Low | 55 | 13.44 ± 1.60 | N/A | |
| 7 weeks postoperative | High | 51 | 12.19 ± 1.69 | -8.8% | 0.836 |
| 7 weeks postoperative | Low | 51 | 12.22 ± 1.55 | -9.1% | |
| 19 weeks postoperative | High | 43 | 12.42 ± 1.97 | -7.1% | 0.528 |
| 19 weeks postoperative | Low | 43 | 12.29 ± 1.87 | -8.6% |
| Time point | High IOP (mean ± SD) | Low IOP (mean ± SD) | p-value |
|---|---|---|---|
| Preoperative | 0.097 ± 0.214 | 0.113 ± 0.131 | 0.597 |
| Week 7 | -0.069 ± 0.029 | -0.071 ± 0.022 | 0.644 |
| Week 19 | -0.072 ± 0.024 | -0.068 ± 0.028 | 0.336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
