Preprint
Article

This version is not peer-reviewed.

Eco-Functional Epoxy Composites from Recycled ZnO and Tire Rubber: A Study on Breakdown Voltage Enhancement

Submitted:

03 December 2025

Posted:

04 December 2025

You are already at the latest version

Abstract

The increasing demand for sustainable materials in electrical engineering has encouraged the substitution of conventional fillers in epoxy insulation with recycled industrial by-products. This study investigates the potential use of waste tire rubber particles and zinc oxide recovered from electric arc furnace dust as eco-friendly fillers for epoxy resins in high-voltage insulation applications. Four material variants were fabricated: pure epoxy, epoxy with 10 wt% ZnO, epoxy with 10 wt% tire rubber, and epoxy with 20 wt% tire rubber. The breakdown voltage of each composite was measured under AC voltage. Results indicate that the incorporation of recycled fillers influences the breakdown voltage depending on both the type and concentration of filler. The 10 wt% ZnO-filled epoxy exhibited a moderate enhancement in breakdown voltage compared to pure epoxy, attributable to interfacial polarization and charge trapping at the epoxy-ZnO interface. Conversely, tire rubber fillers introduced localized field distortion and interfacial voids, resulting in a gradual reduction of breakdown voltage with increasing filler content. The results show that ZnO from metallurgical waste can function as an effective additive to improve dielectric performance. This approach supports circular-economy principles and offers a sustainable option for future high-voltage insulation materials.

Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated