Preprint
Review

This version is not peer-reviewed.

Resonant Convergence: An Integrative Model for Electromagnetic Interactions in Biological Systems

Submitted:

01 December 2025

Posted:

02 December 2025

You are already at the latest version

Abstract

Over the past 50 years, scientific interest in electromagnetic field-biology interactions has flourished. Important experimental observations and mathematical hypotheses remain central to academic debate. Adey [1, 2] and Blackman [3, 4] found that specific electromagnetic frequencies affect calcium transport in cells. To explain this phenomenon, Liboff introduced ion cyclotron resonance-like (ICR-like) theory [5, 8-10, 32], proposing a specific mechanism for ion modulation. Preparata and Del Giudice introduced quantum electrodynamics (QED) [26-28], offering controversial quantum-level explanations that complement classical models. Lucia and NASA contributed further with thermomagnetic resonance [69-74] and experimental observations [76]. Together, these hypotheses have partially clarified how weak electromagnetic fields interact with cells and suggest possible parallel endogenous mechanisms. The aim of this narrative review is to provide a clear and logical framework for understanding biological events, both those that arise naturally within biology and those that can be initiated externally through the application of electromagnetic fields. Since electromagnetism is one of the 4 fundamental forces, this peculiarity deserves careful scientific attention.

Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated