Submitted:
01 December 2025
Posted:
02 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Advantages of the Biotechnological Use of Microalgae
1.2. Advantages of Chlamydomonas reinhardtii
1.3. Limitations and Challenges of Using Chlamydomonas reinhardtii in Biotechnology
2. Microbiological Aspects and Biotechnological Applications of Chlamydomonas reinhardtii
2.1. Growth Regimes
2.2. Nutrient Media
- 6xP medium, containing sixfold phosphate concentration, is optimized for high-density photoautotrophic cultivation in bioreactors and prevents phosphate-limited growth [42].
- T10 rich medium, with elevated acetate levels (40 mM) and yeast extract, is designed for heterotrophic cultivation aimed at maximal biomass yield [43].
2.3. Temperature
2.4. Stress and Nutrient Deprivation
2.5. Illumination
2.6. Aeration
2.7. Carbon Sources
2.8. Nitrogen Sources
2.9. Summary of the Section
| Parameter | Description | Application |
|---|---|---|
| Growth modes | Photoautotrophic, heterotrophic, mixotrophic | Photoautotrophy is economical for biomass scale-up; mixotrophy and heterotrophy are used for specific metabolite synthesis and lipid accumulation |
| Nutrient media | TAP, HSM, 6xP, T10 | TAP is standard for mixotrophic and heterotrophic growth; HSM is for photosynthesis and nutrient deprivation studies; 6xP optimized for high-density photoautotrophic cultivation; T10 used for maximal biomass yield under heterotrophy |
| Temperature | 20-25°C | Optimal for growth; increased temperature induces stress responses useful for metabolic engineering |
| Stress and deprivation | Nitrogen, sulfur, phosphorus deprivation | Induces storage compound accumulation such as triacylglycerols, starch, and molecular hydrogen production |
| Illumination | Intensity 100-300 μmol photons m⁻² s⁻¹, photoperiod 16:8 or 24:0, blue and red light spectrum | Optimized for maximal photosynthetic efficiency |
| Aeration | CO₂ enriched air (1-5%), mixing | Supplies substrate for photosynthesis, homogenizes culture, prevents cell damage |
| Additional carbon sources | Acetate, glycerol, glucose, lactic acid | Acetate is the standard; alternatives researched to reduce costs |
| Nitrogen sources | Nitrate (NO₃⁻), ammonium salts (NH₄⁺), urea | Affect pH and metabolism; nitrogen deprivation directs carbon towards lipid synthesis |
3. Genetic Engineering of Chlamydomonas reinhardtii
3.1. Transformation Methods
3.1.1. Glass Beads Method
3.1.2. Electroporation
3.1.3. Gene Gun (Biolistic Delivery)
3.1.4. Agrobacterium-Mediated Transformation
3.1.5. CRISPR/Cas9
3.2. Selectable Markers
3.2.1. Endogenous Selectable Markers
3.2.2. Exogenous Selectable Markers
3.2.3. Marker-Free Transformation
3.3. Additional Factors for Efficient Transgene Expression
3.4. Summary of the Section
4. Modern Biotechnological Applications of C. reinhardtii
4.1. Medicine
4.2. Food Industry
4.3. Ecology
4.4. Industrially Significant Compounds and Biofuels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Ma, S.; Kong, F. Microalgae Biotechnology: Methods and Applications. Bioengineering (Basel, Switzerland) 2024, 11. [Google Scholar] [CrossRef]
- Scaife, M.A.; Nguyen, G.; Rico, J.; Lambert, D.; Helliwell, K.E.; Smith, A.G. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. The Plant journal : for cell and molecular biology 2015, 82, 532–546. [Google Scholar] [CrossRef]
- Singh, U.B.; Ahluwalia, A.S. Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change 2013, 18, 73–95. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; Chen, P.; Chen, D.; Ruan, R. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource technology 2019, 291, 121934. [Google Scholar] [CrossRef] [PubMed]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology advances 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresource technology 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products Towards Human Health and Nutrition. Marine drugs 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a future food source. Biotechnology advances 2020, 41, 107536. [Google Scholar] [CrossRef]
- Brynjólfsson, S. Bioactive Compounds From Microalgae: Current Development and Prospects: Studies in natural products chemistry. Studies in natural products chemistry 2017, 199–225. [Google Scholar]
- Muñoz, C.F.; Südfeld, C.; Naduthodi, M.I.S.; Weusthuis, R.A.; Barbosa, M.J.; Wijffels, R.H.; D'Adamo, S. Genetic engineering of microalgae for enhanced lipid production. Biotechnology advances 2021, 52, 107836. [Google Scholar] [CrossRef]
- Dhokane, D.; Shaikh, A.; Yadav, A.; Giri, N.; Bandyopadhyay, A.; Dasgupta, S.; Bhadra, B. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Frontiers in bioengineering and biotechnology 2023, 11, 1267826. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, F.; Chen, L.; Zhang, W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Marine drugs 2024, 22. [Google Scholar] [CrossRef]
- Kato, Y.; Hasunuma, T. Metabolic Engineering for Carotenoid Production Using Eukaryotic Microalgae and Prokaryotic Cyanobacteria. Advances in experimental medicine and biology 2021, 1261, 121–135. [Google Scholar] [PubMed]
- Ghiffary, M.R.; Kim, H.U.; Chang, Y.K. Metabolic Engineering Strategies for the Enhanced Microalgal Production of Long-Chain Polyunsaturated Fatty Acids (LC-PUFAs). Biotechnology journal 2019, 14, e1900043. [Google Scholar] [CrossRef]
- Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; Ji, X.J.; Huang, H. Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochimica et biophysica acta. Molecular and cell biology of lipids 2019, 1864, 552–566. [Google Scholar] [CrossRef]
- Dyo, Y.M.; Purton, S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology (Reading, England) 2018, 164, 113–121. [Google Scholar] [CrossRef]
- Banerjee, A.; Ward, V. Production of recombinant and therapeutic proteins in microalgae. Current opinion in biotechnology 2022, 78, 102784. [Google Scholar] [CrossRef]
- Vani, M.V.; Basha, P.O.; Chandrasekhar, T.; Riazunnisa, K. Development and characterization of Chlamydomonas reinhardtii low chlorophyll mutants to improve photosynthetic efficiency and biomass. Brazilian Journal of Botany 2023, 46, 307–318. [Google Scholar] [CrossRef]
- Mackinder, L.C.M. The Chlamydomonas CO(2) -concentrating mechanism and its potential for engineering photosynthesis in plants. The New phytologist 2018, 217, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Vavitsas, K.; Crozet, P.; Vinde, M.H.; Davies, F.; Lemaire, S.D.; Vickers, C.E. The Synthetic Biology Toolkit for Photosynthetic Microorganisms. Plant physiology 2019, 181, 14–27. [Google Scholar] [CrossRef]
- Guihéneuf, F.; Khan, A.; Tran, L.S. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae. Frontiers in plant science 2016, 7, 400. [Google Scholar] [CrossRef]
- Ranjbar, S.; Malcata, F.X. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules (Basel, Switzerland) 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- Rajput, B.K.; Ikram, S.F.; Tripathi, B.N. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. Protoplasma 2024, 261, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Jinkerson, R.E.; Jonikas, M.C. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. The Plant journal : for cell and molecular biology 2015, 82, 393–412. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; Marshall, W.F.; Qu, L.H.; Nelson, D.R.; Sanderfoot, A.A.; Spalding, M.H.; Kapitonov, V.V.; Ren, Q.; Ferris, P.; Lindquist, E.; Shapiro, H.; Lucas, S.M.; Grimwood, J.; Schmutz, J.; Cardol, P.; Cerutti, H.; Chanfreau, G.; Chen, C.L.; Cognat, V.; Croft, M.T.; Dent, R.; Dutcher, S.; Fernández, E.; Fukuzawa, H.; González-Ballester, D.; González-Halphen, D.; Hallmann, A.; Hanikenne, M.; Hippler, M.; Inwood, W.; Jabbari, K.; Kalanon, M.; Kuras, R.; Lefebvre, P.A.; Lemaire, S.D.; Lobanov, A.V.; Lohr, M.; Manuell, A.; Meier, I.; Mets, L.; Mittag, M.; Mittelmeier, T.; Moroney, J.V.; Moseley, J.; Napoli, C.; Nedelcu, A.M.; Niyogi, K.; Novoselov, S.V.; Paulsen, I.T.; Pazour, G.; Purton, S.; Ral, J.P.; Riaño-Pachón, D.M.; Riekhof, W.; Rymarquis, L.; Schroda, M.; Stern, D.; Umen, J.; Willows, R.; Wilson, N.; Zimmer, S.L.; Allmer, J.; Balk, J.; Bisova, K.; Chen, C.J.; Elias, M.; Gendler, K.; Hauser, C.; Lamb, M.R.; Ledford, H.; Long, J.C.; Minagawa, J.; Page, M.D.; Pan, J.; Pootakham, W.; Roje, S.; Rose, A.; Stahlberg, E.; Terauchi, A.M.; Yang, P.; Ball, S.; Bowler, C.; Dieckmann, C.L.; Gladyshev, V.N.; Green, P.; Jorgensen, R.; Mayfield, S.; Mueller-Roeber, B.; Rajamani, S.; Sayre, R.T.; Brokstein, P.; Dubchak, I.; Goodstein, D.; Hornick, L.; Huang, Y.W.; Jhaveri, J.; Luo, Y.; Martínez, D.; Ngau, W.C.; Otillar, B.; Poliakov, A.; Porter, A.; Szajkowski, L.; Werner, G.; Zhou, K.; Grigoriev, I.V.; Rokhsar, D.S.; Grossman, A.R. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, N.Y.) 2007, 318, 245–250. [Google Scholar] [CrossRef]
- Pessoa, J.D.S.; de Oliveira, C.F.M.; Mena-Chalco, J.P.; de Carvalho, J.C.M.; Ferreira-Camargo, L.S. Trends on Chlamydomonas reinhardtii growth regimes and bioproducts. Biotechnology and applied biochemistry 2023, 70, 1830–1842. [Google Scholar] [CrossRef]
- Hemschemeier, A.; Fouchard, S.; Cournac, L.; Peltier, G.; Happe, T. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 2008, 227, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Young, R.E.; Purton, S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. Plant biotechnology journal 2016, 14, 1251–1260. [Google Scholar] [CrossRef]
- Posten, C. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences 2009, 9, 165–177. [Google Scholar] [CrossRef]
- Qin, S.; Wang, K.; Gao, F.; Ge, B.; Cui, H.; Li, W. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. Biotechnology for biofuels and bioproducts 2023, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Blaby, I.K.; Blaby-Haas, C.E.; Tourasse, N.; Hom, E.F.; Lopez, D.; Aksoy, M.; Grossman, A.; Umen, J.; Dutcher, S.; Porter, M.; King, S.; Witman, G.B.; Stanke, M.; Harris, E.H.; Goodstein, D.; Grimwood, J.; Schmutz, J.; Vallon, O.; Merchant, S.S.; Prochnik, S. The Chlamydomonas genome project: a decade on. Trends in plant science 2014, 19, 672–680. [Google Scholar] [CrossRef]
- Work, V.H.; Radakovits, R.; Jinkerson, R.E.; Meuser, J.E.; Elliott, L.G.; Vinyard, D.J.; Laurens, L.M.; Dismukes, G.C.; Posewitz, M.C. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic cell 2010, 9, 1251–1261. [Google Scholar] [CrossRef]
- Neupert, J.; Gallaher, S.D.; Lu, Y.; Strenkert, D.; Segal, N.; Barahimipour, R.; Fitz-Gibbon, S.T.; Schroda, M.; Merchant, S.S.; Bock, R. An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nature communications 2020, 11, 6269. [Google Scholar] [CrossRef] [PubMed]
- Ferenczi, A.; Pyott, D.E.; Xipnitou, A. Efficient targeted DNAediting replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America 2017, 114, 13567–13572. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Moellering, E.R.; Liu, B.; Johnny, C.; Fedewa, M.; Sears, B.B.; Kuo, M.H.; Benning, C. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. The Plant cell 2012, 24, 4670–4686. [Google Scholar] [CrossRef] [PubMed]
- Eichler-Stahlberg, A.; Weisheit, W.; Ruecker, O.; Heitzer, M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 2009, 229, 873–883. [Google Scholar] [CrossRef]
- Calijuri, M.L.; Silva, T.A.; Magalhães, I.B.; Pereira, A.; Marangon, B.B.; Assis, L.R.; Lorentz, J.F. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere 2022, 305, 135508. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae for human and animal nutrition. Handbook of microalgal culture: applied phycology and biotechnology 2013, 461–503. [Google Scholar]
- Kliphuis, A.M.; Klok, A.J.; Martens, D.E.; Lamers, P.P.; Janssen, M.; Wijffels, R.H. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J Appl Phycol 2012, 24, 253–266. [Google Scholar] [CrossRef]
- Gorman, D.S.; Levine, R.P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America 1965, 54, 1665–1669. [Google Scholar] [CrossRef]
- Sueoka, N. ; MITOTICREPLICATIONOFDEOXYRIBONUCLEICACIDINCHLAMYDOMONASREINHARDI Proceedings of the National Academy of Sciences of the United States of America 1960, 46, 83–91.
- Goodenough, U. The Chlamydomonas sourcebook: volume 1: introduction to Chlamydomonas and its laboratory use. Academic Press: 2023.
- Harris, E.H. CHLAMYDOMONASASAMODELORGANISM Annual review of plant physiology and plant molecular biology 2001, 52, 363–406.
- Liu, C.; Willmund, F.; Golecki, J.R.; Cacace, S.; Hess, B.; Markert, C.; Schroda, M. The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. The Plant journal : for cell and molecular biology 2007, 50, 265–277.
- Msanne, J.; Xu, D.; Konda, A.R.; Casas-Mollano, J.A.; Awada, T.; Cahoon, E.B.; Cerutti, H. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 2012, 75, 50–59.
- Tsygankov, A.A.; Kosourov, S.N.; Tolstygina, I.V.; Ghirardi, M.L.; Seibert, M. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy 2006, 31, 1574–1584. [Google Scholar] [CrossRef]
- Batyrova, K.A.; Tsygankov, A.A.; Kosourov, S.N. Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. international journal of hydrogen energy 2012, 37, 8834–8839. [Google Scholar] [CrossRef]
- He, Q.; Yang, H.; Wu, L.; Hu, C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource technology 2015, 191, 219–228. [Google Scholar] [CrossRef]
- Li, X.; Huff, J.; Crunkleton, D.W.; Johannes, T.W. Light intensity and spectral quality modulation for improved growth kinetics and biochemical composition of Chlamydomonas reinhardtii. Journal of biotechnology 2023, 375, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.S.; Barreira, L.A.; Pereira, H.G.; Perales, J.A.; Varela, J.C. Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology 2014, 32, 422–430. [Google Scholar] [CrossRef]
- Barbosa, M.J.; Albrecht, M.; Wijffels, R.H. Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and bioengineering 2003, 83, 112–120. [Google Scholar] [CrossRef]
- 52. Maria, M. N.; Alexandros, P.; Nikolaos, G.; Anastasios, M.; Maria-Eleni, G.; George, P., HETEROTROPHIC CULTIVATION OF CHLAMYDOMONAS REINHARDTII USING GLYCERINE AS THE SOLE CARBON SOURCE. Analele Universitatii din Craiova. Seria Biologie, Horticultura, Tehnologia Prelucrarii Produselor Agricole, Ingineria Mediului 2020, 25.
- Huang, G.; Zhao, D.; Lan, C.; Wu, B.; Li, X.; Lou, S.; Zheng, Y.; Huang, Y.; Hu, Z.; Jia, B. Glucose-assisted trophic conversion of Chlamydomonas reinhardtii by expression of glucose transporter GLUT1. Algal Research 2022, 62, 102626. [Google Scholar] [CrossRef]
- Valledor, L.; Furuhashi, T.; Recuenco-Muñoz, L.; Wienkoop, S.; Weckwerth, W. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnology for biofuels 2014, 7, 171. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Galvan, A. Nitrate assimilation in Chlamydomonas. Eukaryotic cell 2008, 7, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.M.; Machado, M.; Vaz, M.G.M.V.; Lopes-Santos, R.; do Nascimento, A.G.; Araújo, W.L.; Nunes-Nesi, A. Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy. Journal of biotechnology 2023, 367, 20–30. [Google Scholar] [CrossRef]
- Debuchy, R.; Purton, S.; Rochaix, J.D. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. The EMBO journal 1989, 8, 2803–2809. [Google Scholar] [CrossRef]
- Kindle, K.L. Nuclear transformation: technology and applications. In The molecular biology of chloroplasts and mitochondria in Chlamydomonas, Springer: 1998; pp 41-61.
- Sodeinde, O.A.; Kindle, K.L. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 9199–9203. [Google Scholar] [CrossRef]
- Day, A.; Goldschmidt-Clermont, M. The chloroplast transformation toolbox: selectable markers and marker removal. Plant biotechnology journal 2011, 9, 540–553. [Google Scholar] [CrossRef]
- Jiang, W.; Brueggeman, A.J.; Horken, K.M.; Plucinak, T.M.; Weeks, D.P. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryotic cell 2014, 13, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Kindle, K.L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 1990, 87, 1228–1232. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, Y.T.; Kang, N.S.; Han, J.W. A Simple Method for Removal of the Chlamydomonas reinhardtii Cell Wall Using a Commercially Available Subtilisin (Alcalase). Journal of molecular microbiology and biotechnology 2018, 28, 169–178. [Google Scholar] [CrossRef]
- Dunahay, T.G. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. BioTechniques 1993, 15, 452–455, 457-8, 460. -8.
- Larrea-Alvarez, M.; Young, R.; Purton, S. A Simple Technology for Generating Marker-Free Chloroplast Transformants of the Green Alga Chlamydomonas reinhardtii. Methods in molecular biology (Clifton, N.J.) 2021, 2317, 293–304.
- Shimogawara, K.; Fujiwara, S.; Grossman, A.; Usuda, H. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998, 148, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kwon, S.G.; Bae, S.J.; Park, S.J.; Im, D.J. Optimization of the droplet electroporation method for wild type Chlamydomonas reinhardtii transformation. Bioelectrochemistry (Amsterdam, Netherlands) 2019, 126, 29–37.
- Wang, L.; Yang, L.; Wen, X.; Chen, Z.; Liang, Q.; Li, J.; Wang, W. Rapid and high efficiency transformation of Chlamydomonas reinhardtii by square-wave electroporation. Bioscience reports 2019, 39. [Google Scholar] [CrossRef]
- Yamano, T.; Fukuzawa, H. Transformation of the Model Microalga Chlamydomonas reinhardtii Without Cell-Wall Removal. Methods in molecular biology (Clifton, N.J.) 2020, 2050, 155–161.
- Neupert, J.; Shao, N.; Lu, Y.; Bock, R. Genetic transformation of the model green alga Chlamydomonas reinhardtii. Methods in molecular biology (Clifton, N.J.) 2012, 847, 35–47.
- Ramesh, V.M.; Bingham, S.E.; Webber, A.N. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods in molecular biology (Clifton, N.J.) 2011, 684, 313–320.
- Rochaix, J.D.; Surzycki, R.; Ramundo, S. Tools for regulated gene expression in the chloroplast of Chlamydomonas. Methods in molecular biology (Clifton, N.J.) 2014, 1132, 413–424.
- Pratheesh, P.T.; Vineetha, M.; Kurup, G.M. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Molecular biotechnology 2014, 56, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Mini, P.; Demurtas, O.C.; Valentini, S.; Pallara, P.; Aprea, G.; Ferrante, P.; Giuliano, G. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: a comparative study. BMC biotechnology 2018, 18, 11. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Q.L.; Xu, J.X.; Deng, X.; Zhang, Y.J.; Liu, T.; Rots, M.G.; Xu, G.L.; Huang, K.Y. Efficient methods for multiple types of precise gene-editing in Chlamydomonas. The Plant journal : for cell and molecular biology 2023, 115, 846–865.
- Dhokane, D.; Kancharla, N.; Savarimuthu, A.; Bhadra, B.; Bandyopadhyay, A.; Dasgupta, S. Genome Editing in Chlamydomonas reinhardtii Using Cas9-gRNA Ribonucleoprotein Complex: A Step-by-Step Guide. Methods in molecular biology (Clifton, N.J.) 2023, 2653, 207–217.
- Kelterborn, S.; Boehning, F.; Sizova, I.; Baidukova, O.; Evers, H.; Hegemann, P. Gene Editing in Green Alga Chlamydomonas reinhardtii via CRISPR-Cas9 Ribonucleoproteins. Methods in molecular biology (Clifton, N.J.) 2022, 2379, 45–65.
- Asadian, M.; Saadati, M.; Bajestani, F.B.; Beardall, J.; Abdolahadi, F.; Mahdinezhad, N. Knockout of Cia5 gene using CRISPR/Cas9 technique in Chlamydomonas reinhardtii and evaluating CO(2) sequestration in control and mutant isolates. Journal of genetics 2022, 101. [Google Scholar] [CrossRef]
- Baek, K.; Kim, D.H.; Jeong, J.; Sim, S.J.; Melis, A.; Kim, J.S.; Jin, E.; Bae, S. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific reports 2016, 6, 30620. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.; Baek, K.; Jin, E. Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-Mediated Knock-in Method. Frontiers in plant science 2020, 11, 306. [Google Scholar] [CrossRef]
- Shin, S.E.; Lim, J.M.; Koh, H.G.; Kim, E.K.; Kang, N.K.; Jeon, S.; Kwon, S.; Shin, W.S.; Lee, B.; Hwangbo, K.; Kim, J.; Ye, S.H.; Yun, J.Y.; Seo, H.; Oh, H.M.; Kim, K.J.; Kim, J.S.; Jeong, W.J.; Chang, Y.K.; Jeong, B.R. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific reports 2016, 6, 27810. [Google Scholar] [CrossRef]
- De Silvio, M.A.; Sánchez-Retuerta, C.; Águila Ruiz-Sola, M.; Baidukova, O.; Monte, E. A quick-to-implement and optimized CRISPR-Cas9 protocol to obtain insertional and small indel mutants in Chlamydomonas reinhardtii. MethodsX 2025, 15, 103416. [Google Scholar] [CrossRef]
- Nievergelt, A.P.; Diener, D.R.; Bogdanova, A.; Brown, T.; Pigino, G. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. Cell reports methods 2023, 3, 100562. [Google Scholar] [CrossRef] [PubMed]
- Nievergelt, A.P.; Diener, D.R.; Bogdanova, A.; Brown, T.; Pigino, G. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. STAR protocols 2024, 5, 102774. [Google Scholar] [CrossRef] [PubMed]
- Einhaus, A.; Krieger, A.; Köhne, L.; Rautengarten, B.; Jacobebbinghaus, N.; Saudhof, M.; Baier, T.; Kruse, O. Genome editing of epigenetic transgene silencing in Chlamydomonas reinhardtii. Trends in biotechnology 2025, 43, 1961–1981. [Google Scholar] [CrossRef]
- Ross, I.L.; Le, H.P.; Budiman, S.; Xiong, D.; Hemker, F.; Millen, E.A.; Oey, M.; Hankamer, B. A cyclical marker system enables indefinite series of oligonucleotide-directed gene editing in Chlamydomonas reinhardtii. Plant physiology 2024, 196, 2330–2345. [Google Scholar] [CrossRef]
- Le, T.T.; Choi, H.I.; Kim, J.W.; Yun, J.H.; Lee, Y.H.; Jeon, E.J.; Kwon, K.K.; Cho, D.H.; Choi, D.Y.; Park, S.B.; Yoon, H.R.; Lee, J.; Sim, E.J.; Lee, Y.J.; Kim, H.S. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proceedings of the National Academy of Sciences of the United States of America 2025, 122, e2415072122. [Google Scholar] [CrossRef]
- Jacobebbinghaus, N.; Bigge, F.; Saudhof, M.; Hübner, W.; Kruse, O.; Baier, T. Transcriptional gene fusions via targeted integration at safe harbors for high transgene expression in Chlamydomonas reinhardtii. The New phytologist 2025, 247, 2665–2677. [Google Scholar] [CrossRef] [PubMed]
- Purton, S.; Rochaix, J.-D. Characterisation of the ARG7 gene of Chlamydomonas reinhardtii and its application to nuclear transformation. European Journal of Phycology 1995, 30, 141–148. [Google Scholar] [CrossRef]
- Ohresser, M.; Matagne, R.F.; Loppes, R. Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Current genetics 1997, 31, 264–271. [Google Scholar] [CrossRef]
- Nelson, J.A.; Savereide, P.B.; Lefebvre, P.A. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Molecular and cellular biology 1994, 14, 4011–4019. [Google Scholar]
- Kovar, J.L.; Zhang, J.; Funke, R.P.; Weeks, D.P. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. The Plant journal : for cell and molecular biology 2002, 29, 109–117.
- Brueggeman, A.J.; Kuehler, D.; Weeks, D.P. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant biotechnology journal 2014, 12, 894–902. [Google Scholar] [CrossRef]
- Liu, J.; Gerken, H.; Huang, J.; Chen, F. Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochemistry 2013, 48 (5-6), 788-795.
- Freudenberg, R.A.; Wittemeier, L.; Einhaus, A.; Baier, T.; Kruse, O. The Spermidine Synthase Gene SPD1: A Novel Auxotrophic Marker for Chlamydomonas reinhardtii Designed by Enhanced CRISPR/Cas9 Gene Editing. Cells 2022, 11. [Google Scholar] [CrossRef]
- Berthold, P.; Schmitt, R.; Mages, W. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 2002, 153, 401–412. [Google Scholar] [CrossRef]
- Davies, J. Bacterial resistance to aminoglycoside antibiotics. The Journal of infectious diseases 1971, 124 Suppl, S7–10. [Google Scholar] [CrossRef]
- Meslet-Cladière, L.; Vallon, O. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryotic cell 2011, 10, 1670–1678. [Google Scholar] [CrossRef]
- Chang, M.; Li, F.; Odom, O.W.; Lee, J.; Herrin, D.L. A cosmid vector containing a dominant selectable marker for cloning Chlamydomonas genes by complementation. Plasmid 2003, 49, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Fan, Z.; Zhao, Z.; Chen, J.; Li, J. Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii. PloS one 2012, 7, e35542. [Google Scholar] [CrossRef] [PubMed]
- Barahimipour, R.; Neupert, J.; Bock, R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant molecular biology 2016, 90 (4-5), 403–418.
- Hall, L.M.; Taylor, K.B.; Jones, D.D. Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 1993, 124, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, M.; Oertel, W.; Hegemann, P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. The Plant journal : for cell and molecular biology 1999, 19, 353–361.
- Fuhrmann, M.; Hausherr, A.; Ferbitz, L.; Schödl, T.; Heitzer, M.; Hegemann, P. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant molecular biology 2004, 55, 869–881. [Google Scholar] [CrossRef]
- de Carpentier, F.; Le Peillet, J.; Boisset, N.D.; Crozet, P.; Lemaire, S.D.; Danon, A. Blasticidin S Deaminase: A New Efficient Selectable Marker for Chlamydomonas reinhardtii. Frontiers in plant science 2020, 11, 242. [Google Scholar] [CrossRef]
- Garcia-Echauri, S.A.; Cardineau, G.A. TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant methods 2015, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Peng, J.; Pan, J. Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. Plant methods 2019, 15, 140. [Google Scholar] [CrossRef]
- Young, R.E.; Purton, S. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. The Plant journal : for cell and molecular biology 2014, 80, 915–925.
- Molina-Márquez, A.; Vila, M.; Vigara, J.; Borrero, A.; León, R. The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites 2019, 9. [Google Scholar]
- Changko, S.; Rajakumar, P.D.; Young, R.E.B.; Purton, S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Applied microbiology and biotechnology 2020, 104, 675–686. [Google Scholar] [CrossRef]
- Sandoval-Vargas, J.M.; Jiménez-Clemente, L.A.; Macedo-Osorio, K.S.; Oliver-Salvador, M.C.; Fernández-Linares, L.C.; Durán-Figueroa, N.V.; Badillo-Corona, J.A. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Molecular biotechnology 2019, 61, 461–468. [Google Scholar] [CrossRef]
- Taunt, H.N.; Jackson, H.O.; Gunnarsson Í, N.; Pervaiz, R.; Purton, S. Accelerating Chloroplast Engineering: A New System for Rapid Generation of Marker-Free Transplastomic Lines of Chlamydomonas reinhardtii. Microorganisms 2023, 11. [Google Scholar] [CrossRef]
- Bertalan, I.; Munder, M.C.; Weiß, C.; Kopf, J.; Fischer, D.; Johanningmeier, U. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Journal of biotechnology 2015, 195, 60–66. [Google Scholar] [CrossRef]
- Di Rocco, G.; Taunt, H.N.; Berto, M.; Jackson, H.O.; Piccinini, D.; Carletti, A.; Scurani, G.; Braidi, N.; Purton, S. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Scientific reports 2023, 13, 10028. [Google Scholar] [CrossRef]
- Chen, H.C.; Melis, A. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant biotechnology journal 2013, 11, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Jackson, H.O.; Taunt, H.N.; Mordaka, P.M.; Kumari, S.; Smith, A.G.; Purton, S. CpPosNeg: A positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnology journal 2022, 17, e2200088. [Google Scholar] [CrossRef] [PubMed]
- Kasai, Y.; Harayama, S. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System. PloS one 2016, 11, e0161733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.P.; Wang, M.; Wang, C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2021, 181, 1–11. [Google Scholar] [CrossRef]
- Sizova, I.; Greiner, A.; Awasthi, M.; Kateriya, S.; Hegemann, P. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. The Plant journal : for cell and molecular biology 2013, 73, 873–882.
- Díaz-Santos, E.; de la Vega, M.; Vila, M.; Vigara, J.; León, R. Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii. Biotechnology progress 2013, 29, 319–328. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Wu, G.; Li, L.; Hu, Z.; Li, X. A Blue Light-Responsive Strong Synthetic Promoter Based on Rational Design in Chlamydomonas reinhardtii. International journal of molecular sciences 2023, 24. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Kim, S.; Jin, E. Heterologous Gene Expression System Using the Cold-Inducible CnAFP Promoter in Chlamydomonas reinhardtii. Journal of microbiology and biotechnology 2020, 30, 1777–1784. [Google Scholar] [CrossRef]
- McQuillan, J.L.; Berndt, A.J.; Sproles, A.E.; Mayfield, S.P.; Pandhal, J. Novel cis-regulatory elements as synthetic promoters to drive recombinant protein expression from the Chlamydomonas reinhardtii nuclear genome. New biotechnology 2022, 68, 9–18. [Google Scholar] [CrossRef]
- Beauchemin, R.; Merindol, N.; Fantino, E.; Lavoie, P.; Nouemssi, S.B.; Meddeb-Mouelhi, F.; Desgagné-Penix, I. Successful reversal of transgene silencing in Chlamydomonas reinhardtii. Biotechnology journal 2024, 19, e2300232. [Google Scholar] [CrossRef]
- Guo, Y.; Xiong, H.; Fan, Q.; Duanmu, D. Heterologous Gene Expression in Chlamydomonas reinhardtii Chloroplast by Heterologous Promoters and Terminators, Intercistronic Expression Elements and Minichromosome. Microbial biotechnology 2024, 17, e70069. [Google Scholar] [CrossRef]
- Plucinak, T.M.; Horken, K.M.; Jiang, W.; Fostvedt, J.; Nguyen, S.T.; Weeks, D.P. Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. The Plant journal : for cell and molecular biology 2015, 82, 717–729.
- Caspari, O.D. Introduction of a leaky stop codon as molecular tool in Chlamydomonas reinhardtii. PloS one 2020, 15, e0237405. [Google Scholar] [CrossRef]
- Melero-Cobo, X.; Gallemí, M.; Carnicer, M.; Monte, E.; Planas, A.; Leivar, P. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. Physiologia plantarum 2025, 177, e70088. [Google Scholar] [CrossRef]
- Xue, B.; Li, Y.Y.; Zheng, B.F.; Zhang, C.; Hadiatullah, H.; Dai, W.T.; Wang, Y.J.; Fan, Z.C. Expression and Characterization of Recombinant Triple Laterosporulin in Chlamydomonas reinhardtii. Probiotics and antimicrobial proteins 2025. [Google Scholar] [CrossRef]
- Li, A.; Huang, R.; Wang, C.; Hu, Q.; Li, H.; Li, X. Expression of Anti-Lipopolysaccharide Factor Isoform 3 in Chlamydomonas reinhardtii Showing High Antimicrobial Activity. Marine drugs 2021, 19. [Google Scholar] [CrossRef]
- Zhuang, H.; Ou, Y.; Chen, R.; Huang, D.; Wang, C. Comparing the Ability of Secretory Signal Peptides for Heterologous Expression of Anti-Lipopolysaccharide Factor 3 in Chlamydomonas reinhardtii. Marine drugs 2023, 21. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhang, Y.Y.; Fan, Z.C. Antibacterial Efficacy of Chlamydomonas reinhardtii-Expressed Enterocin RM6 Against Gram-Positive and Gram-Negative Bacteria. Probiotics and antimicrobial proteins 2025. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Liu, Y.X.; Sun, S.N.; Fan, Z.C. Amyloid β-peptide multimer expressed in green algae efficiently inhibits bacteria growth by disrupting cell membrane permeability. Scientific reports 2025, 15, 34228. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, R.; Khan, M.A.; Raza, F.A.; Ahmad, S.; Zafar, A.U.; Ahmed, N.; Akram, M. Expression of a mosquito larvicidal gene in chloroplast and nuclear compartments of Chlamydomonas reinhardtii. Journal of biotechnology 2022, 360, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Qiu, J.; Zhang, M.; Wang, C. Heterologous expression of human C-reactive protein in the green alga Chlamydomonas reinhardtii. Journal of food biochemistry 2022, 46, e14067. [Google Scholar] [CrossRef] [PubMed]
- Jarquín-Cordero, M.; Chávez, M.N.; Centeno-Cerdas, C.; Bohne, A.V.; Hopfner, U.; Machens, H.G.; Egaña, J.T.; Nickelsen, J. Towards a biotechnological platform for the production of human pro-angiogenic growth factors in the green alga Chlamydomonas reinhardtii. Applied microbiology and biotechnology 2020, 104, 725–739. [Google Scholar] [CrossRef]
- Akram, M.; Khan, M.A.; Ahmed, N.; Bhatti, R.; Pervaiz, R.; Malik, K.; Tahir, S.; Abbas, R.; Ashraf, F.; Ali, Q. Cloning and expression of an anti-cancerous cytokine: human IL-29 gene in Chlamydomonas reinhardtii. AMB Express 2023, 13, 23. [Google Scholar] [CrossRef]
- Sabljić, I.; Zou, Y.; Klemenčič, M.; Funk, C.; Ståhlberg, J.; Bozhkov, P. Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii. Methods in molecular biology (Clifton, N.J.) 2022, 2447, 13–20.
- Zadabbas Shahabadi, H.; Akbarzadeh, A.; Ofoghi, H. Site-specific gene knock-in bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. Frontiers in plant science 2023, 14, 1150436. [Google Scholar] [CrossRef]
- Perozeni, F.; Pivato, M.; Angelini, M.; Maricchiolo, E.; Pompa, A.; Ballottari, M. Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. Frontiers in plant science 2023, 14, 1184064. [Google Scholar] [CrossRef]
- Perozeni, F.; Ceschi, E.; Luzzini, G.; Slaghenaufi, D.; Pivato, M.; Cazzaniga, S.; Baier, T.; Einhaus, A.; Overmans, S.; Lauersen, K.J.; Ugliano, M.; Ballottari, M. Sustainable Production of Bio-Based Geraniol: Heterologous Expression of Early Terpenoid Pathway Enzymes in Chlamydomonas reinhardtii. ACS synthetic biology 2025, 14, 3753–3766. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Tran, M.; Lönnerdal, B. Recombinant Bovine and Human Osteopontin Generated by Chlamydomonas reinhardtii Exhibit Bioactivities Similar to Bovine Milk Osteopontin When Assessed in Mouse Pups Fed Osteopontin-Deficient Milk. Molecular nutrition & food research 2021, 65, e2000644.
- Lee, W.; Matthews, A.; Moore, D. Safety Evaluation of a Novel Algal Feed Additive for Poultry Production. Avian diseases 2022, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.; Yang, H.; Guo, C.; Hong, Z.; Hu, Z.; Wu, Y.; Huang, D.; Wang, C. Effects of high light exposure and heterologous expression of β-carotene ketolase on the metabolism of carotenoids in Chlamydomonas reinhardtii. Frontiers in bioengineering and biotechnology 2025, 13, 1533661. [Google Scholar] [CrossRef]
- Li, X.; Chu, Z.; Feng, C.; Song, P.; Yang, T.; Zhou, L.; Zhao, X.; Chai, X.; Xing, J.; Chen, S.; Zhang, J.; Wang, J.; Liu, G.; Tang, H. Unveiling the molecular mechanisms of size-dependent effect of polystyrene micro/nano-plastics on Chlamydomonas reinhardtii through proteomic profiling. Chemosphere 2024, 358, 142220. [Google Scholar] [CrossRef]
- Xue, H.; Wang, J.; Chen, R.; Wu, W.; Dong, Y.; Yuan, X.; Li, Z.; Gao, X.; Liu, J. Physiological and transcriptomic analysis reveals the toxicological mechanisms of polystyrene micro- and nano-plastics in Chlamydomonas reinhardtii. The Science of the total environment 2024, 947, 174660. [Google Scholar] [CrossRef]
- Dutra Molino, J.V.; Saucedo, B.; Kang, K.; Walsh, C.; Diaz, C.J.; Tessman, M.; Simkovsky, R.; Mayfield, S. Efficient secretion of a plastic degrading enzyme from the green algae Chlamydomonas reinhardtii. Scientific reports 2025, 15, 24690. [Google Scholar] [CrossRef]
- Kim, J.W.; Park, S.B.; Tran, Q.G.; Cho, D.H.; Choi, D.Y.; Lee, Y.J.; Kim, H.S. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microbial cell factories 2020, 19, 97. [Google Scholar] [CrossRef]
- Sobieh, S.S.; Abed El-Gammal, R.; El-Kheir, W.S.A.; El-Sheimy, A.A.; Said, A.A.; El-Ayouty, Y.M. Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution. Biology 2022, 11. [Google Scholar] [CrossRef]
- Helvig, C.; Kariyawasam, T.; Vriens, B.; Petkovich, M. Genetically engineered bacteria and microalgae expressing a mutant of cytochrome P450 BM3 for efficient Diuron degradation in wastewater treatment. Microbiology spectrum 2025, 13, e0290524. [Google Scholar] [CrossRef]
- Tao, L.; Wang, L.; Liu, L.; Cheng, X.; Zhang, Q. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii. Journal of hazardous materials 2024, 478, 135460. [Google Scholar] [CrossRef]
- Xi, Y.; Han, B.; Kong, F.; You, T.; Bi, R.; Zeng, X.; Wang, S.; Jia, Y. Enhancement of arsenic uptake and accumulation in green microalga Chlamydomonas reinhardtii through heterologous expression of the phosphate transporter DsPht1. Journal of hazardous materials 2023, 459, 132130. [Google Scholar] [CrossRef]
- Ibuot, A.; Webster, R.E.; Williams, L.E.; Pittman, J.K. Increased metal tolerance and bioaccumulation of zinc and cadmium in Chlamydomonas reinhardtii expressing a AtHMA4 C-terminal domain protein. Biotechnology and bioengineering 2020, 117, 2996–3005. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Ye, L.; Lin, Y.; Long, H.; Zhang, B.; Huang, K. [Surface display and application of cadmium-binding protein CADR on the cell wall of Chlamydomonas reinhardtii]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2024, 40, 3689–3704.
- Piña-Olavide, R.; Paz-Maldonado, L.M.T.; Alfaro-De La Torre, M.C.; García-Soto, M.J.; Ramírez-Rodríguez, A.E.; Rosales-Mendoza, S.; Bañuelos-Hernández, B.; García De la-Cruz, R.F. Increased removal of cadmium by Chlamydomonas reinhardtii modified with a synthetic gene for γ-glutamylcysteine synthetase. International journal of phytoremediation 2020, 22, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, T.; Zhu, Y. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii. Ecotoxicology and environmental safety 2020, 191, 110231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Duan, G.; Fang, Y.; Deng, X.; Yin, Y.; Huang, K. Selenium(Ⅳ) alleviates chromium(Ⅵ)-induced toxicity in the green alga Chlamydomonas reinhardtii. Environmental pollution (Barking, Essex : 1987) 2021, 272, 116407.
- Chokshi, K.; Kavanagh, K.; Khan, I.; Slaveykova, V.I.; Sieber, S. Surface displayed MerR increases mercury accumulation by green microalga Chlamydomonas reinhardtii. Environment international 2024, 189, 108813. [Google Scholar] [CrossRef]
- Shimamura, D.; Yamano, T.; Niikawa, Y.; Hu, D.; Fukuzawa, H. A pyrenoid-localized protein SAGA1 is necessary for Ca(2+)-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. Photosynthesis research 2023, 156, 181–192. [Google Scholar] [CrossRef]
- Carro, M.L.M.; Gonorazky, G.; Soto, D.; Mamone, L.; Bagnato, C.; Pagnussat, L.A.; Beligni, M.V. Expression of Chlamydomonas reinhardtii chloroplast diacylglycerol acyltransferase 3 is induced by light in concert with triacylglycerol accumulation. The Plant journal : for cell and molecular biology 2022, 110, 262–276.
- Luo, Q.; Zou, X.; Wang, C.; Li, Y.; Hu, Z. The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Chlamydomonas reinhardtii. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Shin, S.E.; Koh, H.G.; Park, K.; Park, S.H.; Chang, Y.K.; Kang, N.K. Increasing lipid production in Chlamydomonas reinhardtii through genetic introduction for the overexpression of glyceraldehyde-3-phosphate dehydrogenase. Frontiers in bioengineering and biotechnology 2024, 12, 1396127. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Ying, K.; Liu, H.; Liu, C.; Zheng, L. Enhanced lipid production in Chlamydomonas reinhardtii: Impact of salt stress synergized with α-lipoic acid. Food chemistry 2025, 486, 144596. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Yu, L.; Shi, J.; Liu, J. A conserved MYB transcription factor is involved in regulating lipid metabolic pathways for oil biosynthesis in green algae. The New phytologist 2022, 235, 576–594. [Google Scholar] [CrossRef] [PubMed]
- Torres-Romero, I.; Kong, F.; Légeret, B.; Beisson, F.; Peltier, G.; Li-Beisson, Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie 2020, 169, 54–61. [Google Scholar] [CrossRef]
- Zhao, J.; Ge, Y.; Liu, K.; Yamaoka, Y.; Zhang, D.; Chi, Z.; Akkaya, M.; Kong, F. Overexpression of a MYB1 Transcription Factor Enhances Triacylglycerol and Starch Accumulation and Biomass Production in the Green Microalga Chlamydomonas reinhardtii. Journal of agricultural and food chemistry 2023, 71, 17833–17841. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Mo, J.; Yan Wong, T.; Liu, J.; Alessandro, P.; Zhong Tang, B.; Wang, W.X.; Yan, N. Bioprospecting of Chlamydomonas reinhardtii for boosting biofuel-related products production based on novel aggregation-induced emission active extracellular polymeric substances nanoprobes. Bioresource technology 2024, 399, 130636. [Google Scholar] [CrossRef]
- Chen, R.; Yang, M.; Li, M.; Zhang, H.; Lu, H.; Dou, X.; Feng, S.; Xue, S.; Zhu, C.; Chi, Z.; Kong, F. Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions. Biotechnology for biofuels and bioproducts 2022, 15, 54. [Google Scholar] [CrossRef]
- Gu, X.; Cao, L.; Wu, X.; Li, Y.; Hu, Q.; Han, D. A Lipid Bodies-Associated Galactosyl Hydrolase Is Involved in Triacylglycerol Biosynthesis and Galactolipid Turnover in the Unicellular Green Alga Chlamydomonas reinhardtii. Plants (Basel, Switzerland) 2021, 10.
- Lee, J.W.; Lee, M.W.; Jin, C.Z.; Oh, H.M.; Jin, E.; Lee, H.G. Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii. Biotechnology for biofuels and bioproducts 2022, 15, 88. [Google Scholar] [CrossRef]
- Dou, X.; Li, M.; Ge, Y.; Yin, G.; Wang, X.; Xue, S.; Jia, B.; Zi, L.; Wan, H.; Xi, Y.; Chi, Z.; Kong, F. Photoproduction of Aviation Fuel β-Caryophyllene From the Eukaryotic Green Microalga Chlamydomonas reinhardtii. Biotechnology and bioengineering 2025, 122, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Barera, S.; Longoni, P.; Guardini, Z.; Herrero Garcia, N.; Bolzonella, D.; Lopez-Arredondo, D.; Herrera-Estrella, L.; Goldschmidt-Clermont, M.; Bassi, R.; Dall'Osto, L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. Plant biotechnology journal 2021, 19, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.M.; Plummer, M.A.; Merkel, P.A.; Waidner, L.A. Using directed evolution to improve hydrogen production in chimeric hydrogenases from algal species. Enzyme and microbial technology 2024, 173, 110349. [Google Scholar] [CrossRef] [PubMed]
| Сategories of selectable markers | Name | Description | Property | Reference |
|---|---|---|---|---|
| Endogenous | ARG7 | Argininosuccinate lyase | Growth on medium lacking arginine | [89] |
| NIT1 | Nitrate reductase | Growth on medium where nitrate is the sole nitrogen source | [90] | |
| CRY1 | Cytosolic ribosomal protein S14 with the CRY1-1 mutation | Resistance to the eukaryotic translation inhibitors cryptopleurine and emetine | [91] | |
| ALS | Acetolactate synthase | Resistance to sulfonylurea herbicides | [92] | |
| PDS | Phytoene desaturase | Resistance to norflurazon | [93,94] | |
| PPO | Protoporphyrinogen oxidase | Resistance to oxyfluorfen | [94] | |
| GAT | Glyphosate acetyltransferase | Resistance to glyphosate | [94] | |
| SPD1 | Spermidine synthase | Involved in polyamine biosynthesis | [95] | |
| Exogenous | aph7”/ aphVIII/ aadA | Aminoglycoside phosphotransferases | Resistance to aminoglycoside antibiotics | [96,97,98] |
| ble | Bleomycin-binding protein | Resistance to zeocin and bleomycin | [99,100] | |
| NptII | Neomycin phosphotransferase | Resistance to neomycin and kanamycin | [101,102] | |
| BSR | Blasticidin S deaminase | Rresistance to blasticidin S without affecting resistance to other common antibiotics | [105] | |
| tetX | NADPH-dependent oxidoreductase | Resistance to tetracycline antibiotics | [106] | |
| NAT | Nourseothricin N-acetyltransferase | Resistance to nourseothricin – an antibiotic to which bacterial resistance is uncommon | [107] | |
| codA | Cytosine deaminase | Renders Chlamydomonas sensitive to the antifungal agent 5-fluorocytosine | [108] | |
| CRTIop | A codon-optimized bacterial phytoene desaturase | Less sensitive to norflurazon compared with plant or algal PDS homologs | [109] | |
| ptxD | Bacterial phosphite oxidoreductase, | Grow on media where phosphite is the sole phosphorus source | [110,111] | |
| GFP | Green fluorescent protein | Fluorescent reporter | [103] | |
| Luc | Luciferase | Bioluminescence reporter | [104] | |
| Marker-Free | psaA | Subunits of Photosystem I | Growth on minimal media | [112] |
| psbA/ psbH | Subunits of Photosystem I I | Growth on minimal media | [113,114] | |
| rbcL | Large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) | Growth on minimal media | [115] | |
| AadA/ CodA | Aminoglycoside adenyltransferase and cytosine deaminase | Spectinomycin resistance – for initial positive selection and 5-fluorocytosine sensitivity, thereby enabling strong negative selection against the marker cassette in later stages | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).