Submitted:
29 November 2025
Posted:
02 December 2025
You are already at the latest version
Abstract
African grasses deliberately introduced for cattle forage have become among the most destructive invaders of tropical wetlands globally, yet invasion mechanisms and management strategies remain poorly understood. We conducted field experiments examining competition dynamics between the invasive African grass Echinochloa pyramidalis and native wetland species in La Mancha, Mexico—a Ramsar site of international importance. Experiment 1 tested invasion potential within native Sagittaria lancifolia zones using four treatments: control, herbicide removal, E. pyramidalis transplant, and combined removal + transplant. Repeated measures ANOVA showed significant treatment and time effects on invasion success, with vegetation removal facilitating invasion (relative importance value increasing from 0 to 149.4 ± 26.6 after 18 months) while transplants alone failed to establish (RIV < 7.0). Sagittaria maintained 35-48% biomass across treatments, demonstrating coexistence capacity. Experiment 2 examined natural invasion of the vegetation ecotone over 49 months. Mixed-effects models revealed that E. pyramidalis increased dominance in its zone (β = 9.98, z = 4.77, p < 0.001) but showed minimal expansion into adjacent Sagittaria habitat, indicating propagule limitation rather than competitive exclusion as the invasion constraint. Sagittaria removal within E. pyramidalis zones significantly reduced invasion temporal increase (β = -6.44, z = -2.18, p = 0.030), suggesting biotic resistance. Results demonstrate that E. pyramidalis possesses invasion potential but requires disturbance to overcome establishment barriers. These findings support prevention-based management prioritizing disturbance limitation in intact wetlands and demonstrate that hydrological management maintaining permanent flooding (>30 cm depth) can effectively control established invasions by exploiting C4 photosynthetic limitations. Conservation implications for Mexican coastal wetlands—which lack legal protection equivalent to mangroves despite comparable ecosystem services—are discussed. These findings inform evidence-based management of African grass invasions in tropical wetlands worldwide.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.2.1. Experiment 1: Invasion Potential in Sagittaria Zone
- Control: Quadrats were left under natural conditions with no manipulation.
- Kill: All vegetation within quadrats was eliminated by spraying with glyphosate herbicide (Round Up, 2% solution) to create open space for potential colonization.
- Transplant Echinochloa: Five individuals of E. pyramidalis were transplanted from the Echinochloa-dominated zone to test active establishment capacity in the native zone.
- Kill + Echinochloa: All existing vegetation was eliminated with glyphosate, and five E. pyramidalis individuals were subsequently transplanted to simulate invasion into disturbed habitat.
2.2.2. Experiment 2: Natural Invasion Dynamics at the Ecotone
- Control in Echinochloa zone (Control_Echino): Quadrats in the Echinochloa zone were left unmanipulated to track natural Sagittaria advance.
- Control in Sagittaria zone (Control_Sagit): Quadrats in the Sagittaria zone were left unmanipulated to track natural Echinochloa invasion.
- Kill Sagittaria in Echinochloa zone (Kill_Sagit_Echino): All Sagittaria individuals in the Echinochloa side were removed to test whether the native species was actively colonizing the invaded zone.
- Kill Sagittaria in Sagittaria zone (Kill_Sagit_Sagit): All plants in Sagittaria-side quadrats were eliminated with glyphosate to create reference conditions.
- Kill Echinochloa in Echinochloa zone (Kill_Echino_Echino): All vegetation in Echinochloa-side quadrats was eliminated with glyphosate to assess reinvasion capacity and native recovery potential.
- Kill Echinochloa in Sagittaria zone (Kill_Echino_Sagit): All Echinochloa individuals in the Sagittaria side were removed to prevent any invasion attempts.
2.3. Vegetation Sampling and Analysis
2.4. Statistical Analyses
3. Results
3.1. Invasion Potential in Sagittaria Zone (Experiment 1)
3.1.1. Temporal Dynamics of Relative Importance Values
3.1.2. Biomass Accumulation
3.2. Natural Invasion Dynamics at the Ecotone (Experiment 2)
3.2.1. Temporal Dynamics of Relative Importance Values
3.2.2. Final Biomass Responses
4. Discussion
4.1. Invasion Requires Disturbance: E. pyramidalis Cannot Invade Intact Native Communities
4.2. Propagule Limitation, Not Competitive Exclusion, Constrains Natural Invasion Spread
4.3. Coexistence Mechanisms: Sagittaria Persistence Despite E. pyramidalis Dominance
4.4. Conservation Implications for Mexican Ramsar Wetlands
4.5. Context: African Grass Invasions and Alternative Stable States
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López Rosas, H.; Moreno-Casasola, P.; Mendelssohn, I.A. Effects of an African grass invasion on vegetation, soil and interstitial water characteristics in a tropical freshwater marsh in La Mancha, Veracruz (Mexico). J. Plant Interact. 2005, 1, 187-195. [CrossRef]
- López Rosas, H.; Moreno-Casasola, P.; Mendelssohn, I.A. Effects of experimental disturbances on a tropical freshwater marsh invaded by the African grass Echinochloa pyramidalis. Wetlands 2006, 26, 593-604. [CrossRef]
- Williams, D.G.; Baruch, Z. African grass invasion in the Americas: Ecosystem consequences and the role of ecophysiology. Biol. Invasions 2000, 2, 123-140. [CrossRef]
- D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63-87. [CrossRef]
- Boyden, J.; Wurm, P.; Joyce, K. E.; Boggs, G. Spatial dynamics of invasive Pará grass on a monsoonal floodplain, Kakadu National Park, Northern Australia. Remote Sens. 2019, 11, 2090, doi: doi.org/10.3390/rs11182090.
- Hoffmann, W.A.; Haridasan, M. The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol. 2008, 33, 29-36. [CrossRef]
- Barbosa, F.G. The future of invasive African grasses in South America under climate change. Ecol. Informatics, 36, 114-117. [CrossRef]
- Pivello, V.R.; Shida, C.N.; Meirelles, S.T. Alien grasses in Brazilian savannas: A threat to the biodiversity. Biodivers. Conserv. 1999, 8, 1281-1294. [CrossRef]
- Osborne, C.P.; Freckleton, R.P. Ecological selection pressures for C4 photosynthesis in the grasses. Proc. R. Soc. B 2009, 276, 1753-1760. [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Crit. Rev. Plant Sci. 2004, 23, 431-452. [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126-139. [CrossRef]
- Kengne, I.M.; Akoa, A.; Soh, E.K.; Tsama, V.; Ngoutane, M.M.; Dodane, P.H.; Koné, D. Effects of faecal sludge application on growth characteristics and chemical composition of Echinochloa pyramidalis (Lam.) Hitchc. and Chase and Cyperus papyrus L. Ecol. Eng. 2008, 34, 233-242. [CrossRef]
- Cook, B.G.; Pengelly, B.C.; Brown, S.D.; Donnelly, J.L.; Eagles, D.A.; Franco, M.A.; Hanson, J.; Mullen, B.F.; Partridge, I.J.; Peters, M.; et al. Tropical Forages: An Interactive Selection Tool; CSIRO, DPI&F(Qld), CIAT and ILRI: Brisbane, Australia, 2005. Available online: https://tropicalforages.info/text/intro/index.html (accessed on 30 Octobre 2025).
- Clayton, W. D.; Phillips, S. M.; Renvoize, S. A. Poaceae (Gramineae). In Flora of Tropical East Africa; Polhill, R.M., Ed.; Royal Botanic Gardens, Kew: Richmond, UK, 1974.
- Clayton, W.D.; Vorontsova, M.S.; Harman, K.T.; Williamson, H. GrassBase - The Online World Grass Flora. Available online: www.rbgkew.org.uk/data/grasses-db.html (accessed on 30 October 2025).
- 15a. Royal Botanic Gardens Kew. Plants of the World Online. Available online:.
- https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:88106-2 (accessed on 29 November 2025).
- CABI. Echinochloa pyramidalis (antelope grass). In Invasive Species Compendium; CAB International: Wallingford, UK, 2024. Available online: https://www.cabidigitallibrary.org/doi/abs/10.1079/cabicompendium.113990 (accessed on 30 October 2025).
- 16a. Center for Invasive Species and Ecosystem Health. Invasive.org. Antelope grass (Echinochloa pyramidalis). Available online:.
- https://www.invasive.org/browse/subinfo.cfm?sub=24115 (accessed on 29 November 2025).
- Skerman, P.J.; Riveros, F. Tropical Grasses; FAO Plant Production and Protection Series No. 23; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990; 832p.
- López Rosas. H.; Espejel González, V.E.; Moreno-Casasola, P. Zacate alemán (Echinochloa pyramidalis): planta invasora de humedales costeros del sureste mexicano. Investigación Ambiental Ciencia y Política Pública. 2013, 5, 53-63.
- Cornette, J.; Clementson, C.; Fredericks, D. Environmentally sustainable management of water hyacinth (Eichhornia crassipes) in Guyana. Int. J. Agric. Forest. 2018, 8, 4-9.
- USDA-APHIS. Weed Risk Assessment for Echinochloa pyramidalis (Lam.) Hitchc. & Chase (Poaceae) - Antelope grass; United States Department of Agriculture, Animal and Plant Health Inspection Service: Raleigh, NC, USA, 2012; 20p.
- Flores-Verdugo, F.; Moreno-Casasola, P.; Agraz-Hernández, C.M.; López-Rosas, H.; Benítez-Pardo, D.; Travieso-Bello, A.C. La topografía y el hidroperiodo: dos factores que condicionan la restauración de los humedales costeros. Bol. Soc. Bot. Mex. 2007, 80, 33-47. [CrossRef]
- Moreno-Casasola, P.; Infante-Mata, D.; López-Rosas, H. Tropical freshwater marshes and swamps of North America. In Wetland Habitats of North America: Ecology and Conservation Concerns; Batzer, D., Ed.; University of California Press: Berkeley, CA, USA, 2012; pp. 267-282.
- Beck, H.J.; Dugas,J.; Garber, A.; Couvillion, B.; Fischer, M.. Coastwide Reference Monitoring System (CRMS) 2005, 2008, 2012, 2015/2016, 2018, and 2021 land-water matrices, Eastern Louisiana; U.S. Geological Survey; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
- Campos, A.; Hernández, M.E.; Moreno-Casasola, P.; Cejudo-Espinosa, E.; Robledo, R.A.; Infante-Mata, D. Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. 2011, 56, 1388-1406. [CrossRef]
- Sjögersten,S.; de la Barreda-Bautista, B.; Brown, C.; Boyd, D.; Lopez-Rosas, H.; Hernández, E.; Monroy, R.; Rincón, M.; Vane, C.; Moss-Hayes, V.; Gallardo-Cruz, J. A.; Infante-Mata, D.; Hoyos-Santillan, J.; Vidal Solórzano, J.; Peralta-Carreta, C.; Moreno-Casasola, P. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 2021, 403, 115173. [CrossRef]
- Moreno-Casasola, P.; López-Rosas, H.; Infante-Mata, D.; Peralta, L.A.; Travieso-Bello, A.C.; Warner, B.G. Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecol. 2009, 200, 37-52. [CrossRef]
- Castillo-Campos, G.; Travieso-Bello, A.C. La flora. In Entornos veracruzanos: la costa de La Mancha; Moreno-Casasola, P., Ed.; Instituto de Ecología, A.C.: Xalapa, Mexico, 2006, 171-208.
- Hernández-Sánchez, M.; González-García, M.; Rojas-Soto, O.R.; Macgregor-Fors, I. Density and habitat associations of the Altamira Yellowthroat Geothlypis flavovelata in Veracruz, Mexico: an endemic vulnerable species. Bird Conserv. Int. 2020, 30, 355-364. [CrossRef]
- González-Romero, A.; Lara-López, M.S. Los anfibios, los reptiles y los mamíferos. In Entornos veracruzanos: la costa de La Mancha; Moreno-Casasola, P., Ed.; Instituto de Ecología, A.C.: Xalapa, Mexico, 2006, 407-422.
- López Rosas, H.; López-Barrera, F.; Moreno-Casasola, P.; Aguirre-León, G.; Cázares-Hernández, E.; Sánchez-Higueredo, L. Indicators of recovery in a tropical freshwater marsh invaded by an African grass. Ecol. Restor. 2010, 28, 324-332. [CrossRef]
- López Rosas, H.; Moreno-Casasola, P.; Espejel González, V.E. Shade treatment affects structure and recovery of invasive C4 African grass Echinochloa pyramidalis. Ecol. Evol. 2015, 5, 1327-1342. [CrossRef]
- López Rosas, H.; Moreno-Casasola, P. Invader versus natives: Effects of hydroperiod on competition between hydrophytes in a tropical freshwater marsh. Basic Appl. Ecol. 2012, 13, 40-49. [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25-55. [CrossRef]
- Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 2445-2449. [CrossRef]
- Lavergne, S.; Molofsky, J. Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Crit. Rev. Plant Sci. 2004, 23, 415-429. [CrossRef]
- Levine, J.M.; Adler, P.B.; Yelenik, S.G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 2004, 7, 975-989. [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 2009, 15, 22-40. [CrossRef]
- Kettenring, K.M.; Adams, C.R. Lessons learned from invasive plant control experiments: A systematic review and meta-analysis. J. Appl. Ecol. 2011, 48, 970-979. [CrossRef]
- Gioria, M.; Pyšek, P. Early bird catches the worm: germination as a critical step in plant invasion. Biol. Invasions 2017, 19, 1055-1080. [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002; 537p.
- Kent, M. Vegetation Description and Data Analysis: A Practical Approach, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2012; 428p.
- Curtis, J.T.; McIntosh, R.P. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434-450. [CrossRef]
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 1951, 32, 476-496. [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009; 574p.
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; 528p.
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127-135. [CrossRef]
- Von Holle, B.; Simberloff, D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 2005, 86, 3212-3218. [CrossRef]
- Fukami, T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 1-23. [CrossRef]
- Edwards, E.J.; Osborne, C.P.; Strömberg, C.A.E.; Smith, S.A.; C4 Grasses Consortium; et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 2010, 328, 587-591. [CrossRef]
- Grace, J.B. On the relationship between plant traits and competitive ability. In Perspectives on Plant Competition; Grace, J.B., Tilman, D., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 51-65.
- Wardle, D.A.; Karban, R.; Callaway, R.M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 2011, 26, 655-662. [CrossRef]
- Singh, M.; Daehler, C. C. Meta-analytic evidence that allelopathy may increase the success and impact of invasive grasses. PeerJ 2024, 11, e14858, 10.7717/peerj.14858.
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 2000, 88, 528-534. [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223-228. [CrossRef]
- Colautti, R.I.; Grigorovich, I.A.; MacIsaac, H.J. Propagule pressure: A null model for biological invasions. Biol. Invasions 2006, 8, 1023-1037. [CrossRef]
- Pringle, A.; Bever, J.D.; Gardes, M.; Parrent, J.L.; Rillig, M.C.; Klironomos, J.N. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 699-715. [CrossRef]
- Reinhart, K.O.; Callaway, R.M. Soil biota and invasive plants. New Phytol. 2006, 170, 445-457. [CrossRef]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant invaders. Science 2012, 335, 1344-1348. [CrossRef]
- Lishawa, S.C.; Carson, B.D.; Brandt, J.S.; Tallant, J.M.; Reo, N.J.; Albert, D.A.; Monks, A.M.; Lautenbach, J.M.; Clark, E. Mechanical harvesting effectively controls young Typha spp. invasion and unmanned aerial vehicle data enhances post-treatment monitoring. Front. Plant Sci. 2017, 8, 619. [CrossRef]
- Silvertown, J.; Araya, Y.; Gowing, D. Hydrological niches in terrestrial plant communities: A review. J. Ecol. 2015, 103, 93-108. [CrossRef]
- Keddy, P.A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 1992, 3, 157-164. [CrossRef]
- Wolkovich, E.M.; Cleland, E.E. Phenological niches and the future of invaded ecosystems with climate change. AoB Plants 2014, 6, plu013. [CrossRef]
- Howard, R.J.; Mendelssohn, I.A. Effect of increased water depth on growth of a common perennial freshwater-intermediate marsh species in coastal Louisiana. Wetlands 1995, 15, 82-91. [CrossRef]
- Klimešová, J.; Klimeš, L. Bud banks and their role in vegetative regeneration – A literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 115-129. [CrossRef]
- Ott, J.P.; Klimešová, J.; Hartnett, D.C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 2019, 123, 1099-1118. [CrossRef]
- Suding, K.N.; Gross, K.L.; Houseman, G.R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 2004, 19, 46-53. [CrossRef]
- Chase, J.M. Community assembly: When should history matter? Oecologia 2003, 136, 489-498. [CrossRef]
- MacDougall, A.S.; Gilbert, B.; Levine, J.M. Plant invasions and the niche. J. Ecol. 2009, 97, 609-615. [CrossRef]
- Miller, R.C.; Zedler, J.B. Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol. 2003, 167, 57-69. [CrossRef]
- Vivian-Smith, G.; Stiles, E.W. (1994). Dispersal of salt marsh seeds on the feet and feathers of waterfowl. Wetlands. 1994, 14, 316-319. [CrossRef]
- Ramsar Convention Secretariat. The Ramsar Convention Manual: A Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2013; 112p.
- Pérez-Arteaga, A.; Gaston, K.J.; Kershaw, M. Undesignated sites in Mexico qualifying as wetlands of international importance. Biol. Conserv. 2002, 107, 47-57. [CrossRef]
- Muñoz-Piña, C.; Guevara, A.; Torres, J.M.; Braña, J. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecol. Econ. 2008, 65, 725-736. [CrossRef]
- Beisner, B.E.; Haydon, D.T.; Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 2003, 1, 376-382. [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591-596. [CrossRef]
- Zweig, C.L.: Newman, S.; Saunders, C.J. Applied use of alternate stable state modeling in restoration ecology. Ecol. Appl. 2020, 30, e02195. [CrossRef]
- Suding, K.N.; Hobbs, R.J. Threshold models in restoration and conservation: A developing framework. Trends Ecol. Evol. 2009, 24, 271-279. [CrossRef]
- 78. Leung, B.; Roura-Pascual, N.; Bacher, S.; Heikkilä, J.; Brotons, L.; Burgman, M.A.; Dehnen-Schmutz, K.; Essl, F.; Hulme, P.E.; Richardson, D.M.; et al. TEASIng apart alien species risk assessments: A framework for best practices. Ecol. Lett. 2012, 15, 1475-1493. [CrossRef]
| Source | Species | SS | df | MS | F | P |
|---|---|---|---|---|---|---|
| Between subjects | ||||||
| Treatment | E. pyramidalis | 123,281 | 3 | 41,094 | 21.42 | <0.001 |
| S. lancifolia | 12,264 | 3 | 4,088 | 7.59 | 0.004 | |
| Block | E. pyramidalis | 5,780 | 4 | 1,445 | ||
| S. lancifolia | 5,530 | 4 | 1,382 | |||
| Error (between) | E. pyramidalis | 23,021 | 12 | 1,918 | ||
| S. lancifolia | 6,461 | 12 | 538 | |||
| Within subjects | ||||||
| Time | E. pyramidalis | 50,372 | 5 | 10,074 | 24.88 | <0.001 |
| S. lancifolia | 58,202 | 5 | 11,640 | 26.78 | <0.001 | |
| Treatment × Time | E. pyramidalis | 57,057 | 15 | 3,804 | 9.40 | <0.001 |
| S. lancifolia | 3,795 | 15 | 253 | 0.58 | 0.877 | |
| Error (within) | E. pyramidalis | 24,291 | 60 | 405 | ||
| S. lancifolia | 26,078 | 60 | 435 | |||
| Source | Species | SS | df | MS | F | P | Treatment means ± SD |
|---|---|---|---|---|---|---|---|
| Treatment | E. pyramidalis | 4,104,629.54 | 2 | 2,052,314.77 | 9.84 | 0.029 | Kill: 1457.8 ± 799.4ᵃ |
| Transplant: 25.9ᵇ | |||||||
| Kill+Transplant: 281.8 ± 173.4ᵇ | |||||||
| S. lancifolia | 6,723.72 | 3 | 2,241.24 | 2.67 | 0.099 | Control: 94.4 ± 19.1 | |
| Kill: 50.5 ± 27.0 | |||||||
| Transplant: 65.0 ± 22.7 | |||||||
| Kill+Transplant: 93.3 ± 40.2 | |||||||
| Block | E. pyramidalis | 1,842,362.66 | 4 | 460,590.67 | 2.21 | 0.231 | |
| S. lancifolia | 2,050.65 | 4 | 512.66 | 0.61 | 0.663 | ||
| Error | E. pyramidalis | 834,293.95 | 4 | 208,573.49 | |||
| S. lancifolia | 9,229.98 | 11 | 839.09 | ||||
| Total | E. pyramidalis | 6,781,286.16 | 10 | ||||
| S. lancifolia | 18,004.34 | 18 |
| Species / Zone | Effect | β | SE | z | P |
|---|---|---|---|---|---|
| Echinochloa pyramidalis | |||||
| Echinochloa zone | Time | 9.98 | 2.09 | 4.77 | <0.001 |
| Kill_Sagit × Time | -6.44 | 2.96 | -2.18 | 0.030 | |
| Kill_Echino × Time | -4.15 | 2.96 | -1.40 | 0.161 | |
| Sagittaria zone | Time | -1.04 | 1.84 | -0.57 | 0.570 |
| Kill_Sagit × Time | 7.22 | 2.60 | 2.78 | 0.006 | |
| Sagittaria lancifolia | |||||
| Echinochloa zone | Time | -0.50 | 1.12 | -0.45 | 0.653 |
| Kill_Echino (main) | 21.04 | 12.38 | 1.70 | 0.089 | |
| Kill_Echino × Time | -0.70 | 1.58 | -0.44 | 0.659 | |
| Sagittaria zone | Time | 5.51 | 1.20 | 4.58 | <0.001 |
| Kill_Echino × Time | -4.09 | 1.70 | -2.40 | 0.016 | |
| Species / Zone | Treatment | Biomass (g) | Statistic | P |
|---|---|---|---|---|
| Echinochloa pyramidalis | ||||
| Echinochloa zone | F₂,₁₅ = 4.67 | 0.027 | ||
| Control_Echino | 982.4 ± 308.5ᵃ | |||
| Kill_Sagit_Echino | 979.8 ± 357.0ᵃ | |||
| Kill_Echino_Echino | 515.4 ± 237.0ᵇ | |||
| Sagittaria zone | t₁₀ = -1.19 | 0.261 | ||
| Control_Sagit | 365.7 ± 301.1 | |||
| Kill_Sagit_Sagit | 565.4 ± 279.1 | |||
| Sagittaria lancifolia | ||||
| Echinochloa zone | H = 1.09* | 0.579 | ||
| Control_Echino | 8.2 ± 11.1 | |||
| Kill_Sagit_Echino | 11.7 ± 17.6 | |||
| Kill_Echino_Echino | 14.0 ± 9.9 | |||
| Sagittaria zone | t₁₀ = 0.33 | 0.750 | ||
| Control_Sagit | 18.5 ± 21.0 | |||
| Kill_Echino_Sagit | 15.5 ± 8.9 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
