This study presents a drone-based method for assessing the condition of road markings from high-resolution imagery acquired by an unmanned aerial vehicle (UAV). A DJI Matrice 300 RTK equipped with a Zenmuse P1 camera is flown over urban road corridors to capture images with centimeter-level ground sampling distance. In contrast to common approaches that rely on vehicle-mounted or street-view cameras, using a UAV reduces survey time and deployment effort while still providing views that are suitable for marking. The flight altitude, overlap, and corridor pattern are chosen to limit occlusions from traffic and building shadows while preserving the resolution required for condition assessment.From these images, the method locates individual markings, assigns a class to each marking, and estimates its level of deterioration. Candidate markings are first detected with YOLOv9 on the UAV imagery. The detections are cropped and segmented, which refines marking boundaries and thin structures. The condition is then estimated at the pixel level by modeling gray-level statistics with kernel density estimation (KDE) and a two-component Gaussian mixture model (GMM) to separate intact and distressed material. Subsequently, we compute a per-instance damage ratio that summarizes the proportion of degraded pixels within each marking. All results are georeferenced to map coordinates using a 3D reference model, allowing visualization on base maps and integration into road asset inventories. Experiments on unseen urban areas report detection performance (precision, recall, mean average precision) and segmentation performance (intersection over union), and analyze the stability of the damage ratio and processing time. The findings indicate that the drone-based method can identify road markings, estimate their condition, and attach each record to geographic space in a way that is useful for inspection scheduling and maintenance planning.