Submitted:
27 November 2025
Posted:
27 November 2025
You are already at the latest version
Abstract
Human breast milk evolves beyond simple nutrition to function as a complex signaling system that promotes neonatal development. This review analyzes the bioactive components, delineating how its specific constituents compensate for the physiological vulnerabilities of the neonate. Additionally, the distinct roles of colostral and mature milk are in fortifying the immature immune system and promoting gastrointestinal maturation. Focus is placed on the prevention of necrotizing enterocolitis, where milk oligo-saccharides and microbiome function to maintain mucosal integrity and symbiosis, while preventing pathogens’ adhesion. Furthermore, it is evaluated how breastfeeding duration is linked to long-term metabolic and immunological programming. Mi-croRNAs and bioactive lipids actively modulate gene expression and immune responses, thereby reducing the incidence of metabolic diseases and childhood malignancies. By integrating findings, this article underscores the irreplaceable role of breast milk in clinical dietetics and pediatric care.
Keywords:
1. Introduction
2. Breast Milk Composition
3. Breast Milk Benefits
3.1. Effect on the Immune System
3.2. Effect on Growth
3.3. Effect on Gut Microbiome
3.4. Effect on Necrotizing Enterocolitis
3.5. Atopy
3.6. Effect on Cancer
3.7. Other Benefits
3.7.1. Inflammatory Bowel Disease
3.7.2. Celiac Disease
3.7.3. Gastrointestinal Infections
3.7.4. Metabolic Health
4. Discussion
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALL | Acute Lymphoid Leukemia |
| AML | Acute Myeloid Leukemia |
| AAP | American Academy of Pediatrics |
| BPD | bronchopulmonary dysplasia |
| CD | Crohn’s disease |
| EGF | epithelial growth factor |
| GLP-1 | glucagon-like peptide-1 |
| HB-EGF | Heparin-binding growth factor |
| HGF | hepatocyte growth factor |
| HMOs | Human milk oligosaccharides |
| IBD | Inflammatory Bowel Diseases |
| IFNγ | interferon-gamma |
| IGFs | insulin growth factors |
| ILs | interleukins |
| NEC | necrotizing enterocolitis |
| ROP | retinopathy of prematurity |
| sIgA | secretory immunoglobulin A |
| Th1 | T helper 1 |
| Th2 | T helper 2 |
| TNFs | tumor necrosis factors |
| UC | Ulcerative colitis |
| VEGF | vascular endothelial growth factor |
| WBCs | white blood cells |
| WHO | World Health Organization |
References
- Global Strategy for Infant and Young Child Feeding. Available online: https://www.who.int/publications/i/item/9241562218 (accessed on 25 November 2025).
- Section on Breastfeeding Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–841. [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr Clin North Am 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human Breast Milk: A Review on Its Composition and Bioactivity. Early Hum Dev 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, A. Premature Delivery Influences the Immunological Composition of Colostrum and Transitional and Mature Human Milk. J Nutr 2011, 141, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.W.; Hartmann, P.E. Initiation of Human Lactation: Secretory Differentiation and Secretory Activation. J Mammary Gland Biol Neoplasia 2007, 12, 211–221. [Google Scholar] [CrossRef]
- Kulski, J.K.; Hartmann, P.E. Changes in Human Milk Composition during the Initiation of Lactation. Aust J Exp Biol Med Sci 1981, 59, 101–114. [Google Scholar] [CrossRef]
- Lawrence, R.M.; Pane, C.A. Human Breast Milk: Current Concepts of Immunology and Infectious Diseases. Curr Probl Pediatr Adolesc Health Care 2007, 37, 7–36. [Google Scholar] [CrossRef]
- Manzoni, P.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M.G.; Messner, H.; Stolfi, I.; Decembrino, L.; Laforgia, N.; Vagnarelli, F.; et al. Bovine Lactoferrin Supplementation for Prevention of Late-Onset Sepsis in Very Low-Birth-Weight Neonates: A Randomized Trial. JAMA 2009, 302, 1421–1428. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Chea-Woo, E.; Baiocchi, N.; Pecho, I.; Campos, M.; Prada, A.; Valdiviezo, G.; Lluque, A.; Lai, D.; Cleary, T.G. Randomized Double-Blind Controlled Trial of Bovine Lactoferrin for Prevention of Diarrhea in Children. The Journal of Pediatrics 2013, 162, 349–356. [Google Scholar] [CrossRef]
- Ellison, R.T.; Giehl, T.J. Killing of Gram-Negative Bacteria by Lactoferrin and Lysozyme. J Clin Invest 1991, 88, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, K.-M.; Suomalainen, H. Leucocytes in Human Milk and Lymphocyte Subsets in Cow’s Milk-Allergic Infants. Pediatr Allergy Immunol 2002, 13, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. The Mucosal Immune System and Its Integration with the Mammary Glands. J Pediatr 2010, 156, S8–15. [Google Scholar] [CrossRef]
- Kadaoui, K.A.; Corthésy, B. Secretory IgA Mediates Bacterial Translocation to Dendritic Cells in Mouse Peyer’s Patches with Restriction to Mucosal Compartment. J Immunol 2007, 179, 7751–7757. [Google Scholar] [CrossRef]
- Monzon, N.; Kasahara, E.M.; Gunasekaran, A.; Burge, K.Y.; Chaaban, H. Impact of Neonatal Nutrition on Necrotizing Enterocolitis. Seminars in Pediatric Surgery 2023, 32, 151305. [Google Scholar] [CrossRef]
- Bering, S.B. Human Milk Oligosaccharides to Prevent Gut Dysfunction and Necrotizing Enterocolitis in Preterm Neonates. Nutrients 2018, 10, 1461. [Google Scholar] [CrossRef]
- Radulescu, A.; Zhang, H.-Y.; Chen, C.-L.; Chen, Y.; Zhou, Y.; Yu, X.; Otabor, I.; Olson, J.K.; Besner, G.E. Heparin-Binding EGF-like Growth Factor Promotes Intestinal Anastomotic Healing. J Surg Res 2011, 171, 540–550. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Olson, J.; Yang, J.; Besner, G.E. Heparin-Binding EGF-like Growth Factor Promotes Neuronal Nitric Oxide Synthase Expression and Protects the Enteric Nervous System after Necrotizing Enterocolitis. Pediatr Res 2017, 82, 490–500. [Google Scholar] [CrossRef]
- Coscia, A.; Bardanzellu, F.; Caboni, E.; Fanos, V.; Peroni, D.G. When a Neonate Is Born, So Is a Microbiota. Life 2021, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Padilha, M.; Danneskiold-Samsøe, N.B.; Brejnrod, A.; Hoffmann, C.; Cabral, V.P.; Iaucci, J. de M.; Sales, C.H.; Fisberg, R.M.; Cortez, R.V.; Brix, S.; et al. The Human Milk Microbiota Is Modulated by Maternal Diet. Microorganisms 2019, 7, 502. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Demerath, E.W. Relationship of Insulin, Glucose, Leptin, IL-6 and TNF-α in Human Breast Milk with Infant Growth and Body Composition. Pediatric Obesity 2012, 7, 304–312. [Google Scholar] [CrossRef]
- Wang, J.; Perona, J.S.; Schmidt-RioValle, J.; Chen, Y.; Jing, J.; González-Jiménez, E. Metabolic Syndrome and Its Associated Early-Life Factors among Chinese and Spanish Adolescents: A Pilot Study. Nutrients 2019, 11, 1568. [Google Scholar] [CrossRef] [PubMed]
- Young, T.K.; Martens, P.J.; Taback, S.P.; Sellers, E.A.C.; Dean, H.J.; Cheang, M.; Flett, B. Type 2 Diabetes Mellitus in Children: Prenatal and Early Infancy Risk Factors Among Native Canadians. Arch Pediatr Adolesc Med 2002, 156, 651–655. [Google Scholar] [CrossRef]
- Bener, A.; Ehlayel, M.S.; Alsowaidi, S.; Sabbah, A. Role of Breast Feeding in Primary Prevention of Asthma and Allergic Diseases in a Traditional Society. Eur Ann Allergy Clin Immunol 2007, 39, 337–343. [Google Scholar] [PubMed]
- Froń, A.; Orczyk-Pawiłowicz, M. Breastfeeding Beyond Six Months: Evidence of Child Health Benefits. Nutrients 2024, 16, 3891. [Google Scholar] [CrossRef] [PubMed]
- Kintossou, A.K.; Blanco-Lopez, J.; Iguacel, I.; Pisanu, S.; Almeida, C.C.B.; Steliarova-Foucher, E.; Sierens, C.; Gunter, M.J.; Ladas, E.J.; Barr, R.D.; et al. Early Life Nutrition Factors and Risk of Acute Leukemia in Children: Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3775. [Google Scholar] [CrossRef]
- Nommsen, L.A.; Lovelady, C.A.; Heinig, M.J.; Lönnerdal, B.; Dewey, K.G. Determinants of Energy, Protein, Lipid, and Lactose Concentrations in Human Milk during the First 12 Mo of Lactation: The DARLING Study. Am J Clin Nutr 1991, 53, 457–465. [Google Scholar] [CrossRef]
- Greer, F.R. Do Breastfed Infants Need Supplemental Vitamins? Pediatr Clin North Am 2001, 48, 415–423. [Google Scholar] [CrossRef]
- Allen, L.H. B Vitamins in Breast Milk: Relative Importance of Maternal Status and Intake, and Effects on Infant Status and Function. Adv Nutr 2012, 3, 362–369. [Google Scholar] [CrossRef]
- Lemas, D.J.; Yee, S.; Cacho, N.; Miller, D.; Cardel, M.; Gurka, M.; Janicke, D.; Shenkman, E. Exploring the Contribution of Maternal Antibiotics and Breastfeeding to Development of the Infant Microbiome and Pediatric Obesity. Semin Fetal Neonatal Med 2016, 21, 406–409. [Google Scholar] [CrossRef]
- Goldman, A.S.; Chheda, S.; Garofalo, R. Evolution of Immunologic Functions of the Mammary Gland and the Postnatal Development of Immunity. Pediatr Res 1998, 43, 155–162. [Google Scholar] [CrossRef]
- Hanson, L.A.; Silfverdal, S.-A.; Korotkova, M.; Erling, V.; Strömbeck, L.; Olcén, P.; Ulanova, M.; Hahn-Zoric, M.; Zaman, S.; Ashraf, R.; et al. Immune System Modulation by Human Milk. Adv Exp Med Biol 2002, 503, 99–106. [Google Scholar] [CrossRef]
- Ichikawa, M.; Sugita, M.; Takahashi, M.; Satomi, M.; Takeshita, T.; Araki, T.; Takahashi, H. Breast Milk Macrophages Spontaneously Produce Granulocyte-Macrophage Colony-Stimulating Factor and Differentiate into Dendritic Cells in the Presence of Exogenous Interleukin-4 Alone. Immunology 2003, 108, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Christensen, R.D.; Calhoun, D.A. ELR+ CXC Chemokines in Human Milk. Cytokine 2003, 24, 91–102. [Google Scholar] [CrossRef]
- Maheshwari, A.; Lu, W.; Lacson, A.; Barleycorn, A.A.; Nolan, S.; Christensen, R.D.; Calhoun, D.A. Effects of Interleukin-8 on the Developing Human Intestine. Cytokine 2002, 20, 256–267. [Google Scholar] [CrossRef]
- Agarwal, S.; Karmaus, W.; Davis, S.; Gangur, V. Immune Markers in Breast Milk and Fetal and Maternal Body Fluids: A Systematic Review of Perinatal Concentrations. J Hum Lact 2011, 27, 171–186. [Google Scholar] [CrossRef]
- Gao, X.; McMahon, R.J.; Woo, J.G.; Davidson, B.S.; Morrow, A.L.; Zhang, Q. Temporal Changes in Milk Proteomes Reveal Developing Milk Functions. J Proteome Res 2012, 11, 3897–3907. [Google Scholar] [CrossRef]
- Vogel, H.J. Lactoferrin, a Bird’s Eye View. Biochem. Cell Biol. 2012, 90, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, Á.L.; Sáenz de Pipaón, M.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Khailova, L.; Dvorak, K.; Arganbright, K.M.; Williams, C.S.; Halpern, M.D.; Dvorak, B. Changes in Hepatic Cell Junctions Structure during Experimental Necrotizing Enterocolitis: Effect of EGF Treatment. Pediatr Res 2009, 66, 140–144. [Google Scholar] [CrossRef]
- Alzaree, F.A.; AbuShady, M.M.; Atti, M.A.; Fathy, G.A.; Galal, E.M.; Ali, A.; Elias, T.R. Effect of Early Breast Milk Nutrition on Serum Insulin-Like Growth Factor-1 in Preterm Infants. Open Access Maced J Med Sci 2019, 7, 77–81. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.D. The Management of Retinopathy of Prematurity. Paediatr Drugs 2001, 3, 263–272. [Google Scholar] [CrossRef]
- DiBiasie, A. Evidence-Based Review of Retinopathy of Prematurity Prevention in VLBW and ELBW Infants. Neonatal Netw 2006, 25, 393–403. [Google Scholar] [CrossRef]
- Vizzari, G.; Morniroli, D.; Ceroni, F.; Verduci, E.; Consales, A.; Colombo, L.; Cerasani, J.; Mosca, F.; Giannì, M.L. Human Milk, More Than Simple Nourishment. Children 2021, 8, 863. [Google Scholar] [CrossRef]
- Alderete, T.L.; Autran, C.; Brekke, B.E.; Knight, R.; Bode, L.; Goran, M.I.; Fields, D.A. Associations between Human Milk Oligosaccharides and Infant Body Composition in the First 6 Mo of Life. Am J Clin Nutr 2015, 102, 1381–1388. [Google Scholar] [CrossRef]
- Cesur, G.; Ozguner, F.; Yilmaz, N.; Dundar, B. The Relationship between Ghrelin and Adiponectin Levels in Breast Milk and Infant Serum and Growth of Infants during Early Postnatal Life. The Journal of Physiological Sciences 2012, 62, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.; Shaw, A.G.; Randell, P.; Cox, M.J.; McClure, Z.E.; Li, M.-S.; Haddad, M.; Langford, P.R.; Cookson, W.O.C.M.; Moffatt, M.F.; et al. Dysbiosis Anticipating Necrotizing Enterocolitis in Very Premature Infants. Clin Infect Dis 2015, 60, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.K.; Shah, J.S. Necrotizing Enterocolitis in Very Low Birth Weight Infants: A Systemic Review. ISRN Gastroenterol 2012, 2012, 562594. [Google Scholar] [CrossRef]
- Kamity, R.; Kapavarapu, P.K.; Chandel, A. Feeding Problems and Long-Term Outcomes in Preterm Infants—A Systematic Approach to Evaluation and Management. Children 2021, 8, 1158. [Google Scholar] [CrossRef]
- Bazacliu, C.; Neu, J. Necrotizing Enterocolitis: Long Term Complications. Current Pediatric Reviews 15, 115–124. [CrossRef]
- Baranowski, J.R.; Claud, E.C. Necrotizing Enterocolitis and the Preterm Infant Microbiome. In Probiotics and Child Gastrointestinal Health: Advances in Microbiology, Infectious Diseases and Public Health Volume 10; Guandalini, S., Indrio, F., Eds.; Springer International Publishing: Cham, 2019; pp. 25–36. ISBN 978-3-030-14636-8. [Google Scholar]
- Thompson, A.M.; Bizzarro, M.J. Necrotizing Enterocolitis in Newborns. Drugs 2008, 68, 1227–1238. [Google Scholar] [CrossRef]
- Pammi, M.; Cope, J.; Tarr, P.I.; Warner, B.B.; Morrow, A.L.; Mai, V.; Gregory, K.E.; Kroll, J.S.; McMurtry, V.; Ferris, M.J.; et al. Intestinal Dysbiosis in Preterm Infants Preceding Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Microbiome 2017, 5, 31. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr 2017, 171, 647–654. [Google Scholar] [CrossRef]
- Ford, S.L.; Lohmann, P.; Preidis, G.A.; Gordon, P.S.; O’Donnell, A.; Hagan, J.; Venkatachalam, A.; Balderas, M.; Luna, R.A.; Hair, A.B. Improved Feeding Tolerance and Growth Are Linked to Increased Gut Microbial Community Diversity in Very-Low-Birth-Weight Infants Fed Mother’s Own Milk Compared with Donor Breast Milk. The American Journal of Clinical Nutrition 2019, 109, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Morniroli, D.; Consales, A.; Crippa, B.L.; Vizzari, G.; Ceroni, F.; Cerasani, J.; Colombo, L.; Mosca, F.; Giannì, M.L. The Antiviral Properties of Human Milk: A Multitude of Defence Tools from Mother Nature. Nutrients 2021, 13, 694. [Google Scholar] [CrossRef]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Armanini, F.; Turroni, F.; James, K.; Ferretti, P.; Gorfer, V.; Ferrario, C.; Milani, C.; et al. Maternal Inheritance of Bifidobacterial Communities and Bifidophages in Infants through Vertical Transmission. Microbiome 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, S.; Pannaraj, P.S. Beyond the Bacterial Microbiome: Virome of Human Milk and Effects on the Developing Infant. In Nestlé Nutrition Institute Workshop Series; Ogra, P.L., Walker, W.A., Lönnerdal, B., Eds.; S. Karger AG, 2020; Vol. 94, pp. 86–93 ISBN 978-3-318-06684-5.
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human Milk Oligosaccharides: Shaping the Infant Gut Microbiota and Supporting Health. J Funct Foods 2020, 72, 104074. [Google Scholar] [CrossRef]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Chong, C.Y.L.; Bloomfield, F.H.; O’Sullivan, J.M. Factors Affecting Gastrointestinal Microbiome Development in Neonates. Nutrients 2018, 10, 274. [Google Scholar] [CrossRef]
- Quitadamo, P.A.; Comegna, L.; Cristalli, P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front. Public Health 2021, 8. [Google Scholar] [CrossRef]
- August, A.; Mueller, C.; Weaver, V.; Polanco, T.A.; Walsh, E.R.; Cantorna, M.T. Nutrients, Nuclear Receptors, Inflammation, Immunity Lipids, PPAR, and Allergic Asthma. J Nutr 2006, 136, 695–699. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Ouwehand, A.; Arvilommi, H.; Kero, P.; Isolauri, E. Transforming Growth Factor-Beta in Breast Milk: A Potential Regulator of Atopic Disease at an Early Age. J Allergy Clin Immunol 1999, 104, 1251–1257. [Google Scholar] [CrossRef]
- Savilahti, E.; Siltanen, M.; Kajosaari, M.; Vaarala, O.; Saarinen, K.M. IgA Antibodies, TGF-Beta1 and -Beta2, and Soluble CD14 in the Colostrum and Development of Atopy by Age 4. Pediatr Res 2005, 58, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P. Th1/Th2 Balance: The Hypothesis, Its Limitations, and Implications for Health and Disease. Altern Med Rev 2003, 8, 223–246. [Google Scholar] [PubMed]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the Immune System in Humans from Infancy to Old Age. Proc Biol Sci 2015, 282, 20143085. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Bode, L.; Tappenden, K.A. Human Milk Oligosaccharides Influence Intestinal Epithelial Cell Maturation In Vitro. J Pediatr Gastroenterol Nutr 2017, 64, 296–301. [Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Devereux, G.; Seaton, A. Diet as a Risk Factor for Atopy and Asthma. J Allergy Clin Immunol 2005, 115, 1109–1117. [Google Scholar] [CrossRef]
- Mutinati, M.; Pantaleo, M.; Roncetti, M.; Piccinno, M.; Rizzo, A.; Sciorsci, R. Oxidative Stress in Neonatology. A Review. Reproduction in Domestic Animals 2014, 49, 7–16. [Google Scholar] [CrossRef]
- Pearson, P.J.K.; Lewis, S.A.; Britton, J.; Fogarty, A. Vitamin E Supplements in Asthma: A Parallel Group Randomised Placebo Controlled Trial. Thorax 2004, 59, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, A.; Lewis, S.; Weiss, S.; Britton, J. Dietary Vitamin E, IgE Concentrations, and Atopy. Lancet 2000, 356, 1573–1574. [Google Scholar] [CrossRef]
- Reif, S.; Elbaum Shiff, Y.; Golan-Gerstl, R. Milk-Derived Exosomes (MDEs) Have a Different Biological Effect on Normal Fetal Colon Epithelial Cells Compared to Colon Tumor Cells in a miRNA-Dependent Manner. Journal of Translational Medicine 2019, 17, 325. [Google Scholar] [CrossRef]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and Other Non-Coding RNAs as Targets for Anticancer Drug Development. Nat Rev Drug Discov 2013, 12, 847–865. [Google Scholar] [CrossRef]
- Mollaei, H.; Safaralizadeh, R.; Rostami, Z. MicroRNA Replacement Therapy in Cancer. Journal of Cellular Physiology 2019, 234, 12369–12384. [Google Scholar] [CrossRef]
- Lupo, P.J.; Zhou, R.; Skapek, S.X.; Hawkins, D.S.; Spector, L.G.; Scheurer, M.E.; Fatih Okcu, M.; Melin, B.; Papworth, K.; Erhardt, E.B.; et al. Allergies, Atopy, Immune-Related Factors and Childhood Rhabdomyosarcoma: A Report from the Children’s Oncology Group. International Journal of Cancer 2014, 134, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.L.; Olshan, A.F.; Pollock, B.H.; Shah, N.R.; Stram, D.O. Breast-Feeding and Neuroblastoma, USA and Canada. Cancer Causes Control 2002, 13, 401–405. [Google Scholar] [CrossRef]
- Heck, J.E.; Omidakhsh, N.; Azary, S.; Ritz, B.; von Ehrenstein, O.S.; Bunin, G.R.; Ganguly, A. A Case-Control Study of Sporadic Retinoblastoma in Relation to Maternal Health Conditions and Reproductive Factors: A Report from the Children’s Oncology Group. BMC Cancer 2015, 15, 735. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care-An Evidence-Based Guideline From European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018, 67, 257–291. [Google Scholar] [CrossRef] [PubMed]
- Saeid Seyedian, S.; Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran; Nokhostin, F.; Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Forogh Nokhostin, Assistant Professor of Internal Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Phone: +989163723286, E-mail: Forogh_Nokhostin@yahoo.com; Dargahi Malamir, M.; Faculty of Medicine, Medical doctor of Internal Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran A Review of the Diagnosis, Prevention, and Treatment Methods of Inflammatory Bowel Disease. JMedLife 2019, 12, 113–122. [CrossRef]
- Newburg, D.S.; Walker, W.A. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr Res 2007, 61, 2–8. [Google Scholar] [CrossRef]
- Iyengar, S.R.; Walker, W. a. Immune Factors in Breast Milk and the Development of Atopic Disease. Journal of Pediatric Gastroenterology and Nutrition 2012, 55, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, A.; Hernell, O.; Stenlund, H.; Persson, L.Å. Breast-Feeding Protects against Celiac Disease123. The American Journal of Clinical Nutrition 2002, 75, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Effect of Breastfeeding on Common Pediatric Infections: A 5-Year Prospective Cohort Study. Arch Argent Pediatr 2018, 116. [CrossRef]
- Abrahamsson, T. Nordic Study on Human Milk Fortification in Extremely Preterm Infants: A Randomized Controlled Trial. Available online: https://clinicaltrials.gov/study/NCT03797157 (accessed on 26 November 2025).
- Salas, A.A. Early Human Milk Fortification After Early, Exclusive, Enteral Nutrition in Very Preterm Infants: A Randomized Clinical Trial. Available online: https://clinicaltrials.gov/study/NCT05525585 (accessed on 26 November 2025).
- Hair, A. Utilizing Targeted Fortification to Evaluate the Effects of a High Versus Standard Protein Diet on Linear Growth and Body Composition in Infants < 1000 g Birth Weight. Available online: https://clinicaltrials.gov/study/NCT02943746 (accessed on 26 November 2025).
- Belfort, M.B. Targeting Human Milk Fortification to Improve Preterm Infant Growth and Brain Development. Available online: https://clinicaltrials.gov/study/NCT03977259 (accessed on 26 November 2025).
- Salas, A.A. Early Life Protein-Enriched Human Milk Diets to Increase Lean Body Mass Accretion and Diversity of the Gut Microbiome in Extremely Preterm Infants: A Randomized Trial. Available online: https://clinicaltrials.gov/study/NCT04325308 (accessed on 26 November 2025).
- University of Aarhus The Influence of Maternal Health on Human Breast Milk Composition With Potential Downstream Effects on Infant Metabolism and Gut Colonization. Available online: https://clinicaltrials.gov/study/NCT05111990 (accessed on 26 November 2025).
- Brockway, M. Comparing Impacts of Donor Human Milk to Formula Supplementation on the Gut Microbiome of Full-Term Infants Exposed to Antibiotics in Labour: A Pilot Randomized Controlled Trial. Available online: https://clinicaltrials.gov/study/NCT05815433 (accessed on 26 November 2025).
- Yang, Y.-J. To Explore and Develop the Effective Human Milk Oligosaccharides and Microbiomes on Maternal and Infant Health and Neurodevelopment in Early Infancy. Available online: https://clinicaltrials.gov/study/NCT05992493 (accessed on 26 November 2025).
- University of California, Davis Functional Deconstruction of Human Milk Oligosaccharides and Lipids. Available online: https://clinicaltrials.gov/study/NCT01817127 (accessed on 26 November 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
