Submitted:
19 November 2025
Posted:
20 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Soil Samples and Properties
2.2. Materials
2.3. Experimental Setup
2.4. Data Collection and Analysis
2.5. Data Analysis
3. Results
3.1. Effects of AMF Inoculation and Fertiliser Rate on Maize Growth
3.2. Effects of AMF Inoculation and Fertiliser Rate on Maize Yield
3.3. Relative Mycorrhizal Dependency on Maize Growth and Yield According to Fertiliser Rate
3.4. AMF Root Colonisation and Soil AMF Spore Numbers Affected by Fertiliser Rate
3.5. Correlation Between AMF Root Colonisation on RMD of Maize Growth and Yield
3.6. Effects of AMF Inoculation and Fertiliser Rate on Photosynthetic Physiological Parameters and Plant NPK Nutrient Uptake in Maize Shoots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and interpreting Soil Surveys, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999; pp. 721–782. [Google Scholar]
- Vijarnsorn, P.; Eswaran, H. The Soil Resources of Thailand. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Pratamaningsih, M.M.; Hati, D.P.; Erwinda, E.; Muslim, R.Q.; Hikmat, M.; Purwanto, S. Soil characteristics and management of Ultisols derived from claystones of Sumatra. J. Trop. Soils 2024, 29, 115–125. [Google Scholar] [CrossRef]
- Ye, G.; Lin, Y.; Liu, D.; Chen, Z.; Luo, J.; Bolan, N.; Fan, J.; Ding, W. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl. Soil Ecol. 2019, 133, 24–33. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008; 787p. [Google Scholar]
- Chaudhary, A.; Poudyal, S.; Kaundal, A. Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems. Appl. Microbiol. 2025, 5, 6. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, A.; Dodmani, B.A.; Swati, S.; Joshi, R.; Wongamthing, R.; Mishra, S.; Karanwal, R. Arbuscular mycorrhizal fungi efficiency on plant growth and nutrient acquisition: A comprehensive review. Microbiol. Res. J. Int. 2024, 34, 13–22. [Google Scholar] [CrossRef]
- Franczuk, J.; Tartanus, M.; Rosa, R.; Zaniewicz-Bajkowska, A.; Debski, H.; Andrejiová, A.; Dydiv, A. The effect of mycorrhiza fungi and various mineral fertilizer levels on the growth, yield and nutritional value of sweet pepper (Capsicum annuum L.). Agric. 2023, 13, 857. [Google Scholar] [CrossRef]
- Wu, F.; Ma, Z.; Che, T.; Huang, Y.; Li, T.; Wu, N.; Zhang, X.; Zhang, L.; Zhu, X.; Zheng, X.; et al. Arbuscular mycorrhizal fungi mitigated nitrogen leaching by enhancing soil nitrogen retention in Camellia oleifera Abel. soils. Appl. Environ. Microbiol. 2025, 91, e01487–25. [Google Scholar] [CrossRef]
- Lyu, H.; Yu, A.; Chai, Q.; Wang, Y.; Wang, F.; Wang, P.; Shang, Y. Arbuscular mycorrhizal fungi mediate soil N dynamics, mitigating N2O emissions and N-leaching while promoting crop N uptake in green manure systems. Sci. Total Environ. 2024, 957, 177592. [Google Scholar] [CrossRef]
- Sato, T.; Hachiya, S.; Inamura, N.; Ezawa, T.; Cheng, W.; Tawaraya, K. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 2019, 29, 599–605. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Luo, X.; Hou, E.; Zheng, M.; Zhang, L.; He, X.; Shen, W.; Wen, D. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biol. Biochem. 2021, 153, 108099. [Google Scholar] [CrossRef]
- Jusop, S.; Ishak, C.F. Weathered Tropical Soils: The Ultisols and Oxisols; Universiti Putra Malaysia Press: Selangor, Malaysia, 2010; pp. 1–147. [Google Scholar]
- Agbodjato, N.A.; Assogba, S.A.; Babalola, O.O.; Koda, A.D.; Aguégué, R.M.; Sina, H.; Dagbénonbakin, G.D.; Adjanohoun, A.; Baba-Moussa, L. Formulation of biostimulants based on arbuscular mycorrhizal fungi for maize growth and yield. Front. Agron. 2022, 4, 894489. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Y.; Qin, J.; Ou, L.; Yang, X.; Liu, F.; Xu, Y. Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil. Front. Plant Sci. 2023, 14, 2023. [Google Scholar] [CrossRef]
- Ramírez-Flores, M.R.; Bello-Bello, E.; Rellán-Ălvarez, R.; Sawers, R.J.H.; Olalde-Portugal, V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zea mays ssp. mays L.). Plant Direct 2019, 3, e00192. [Google Scholar] [CrossRef] [PubMed]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Badji, A.; Ndiaye, A.; Ndiaye, M.; Kyakuwa, P.; Anyoni, O.G.; Kabaseke, C.; et al. Combined effects of indigenous arbuscular mycorrhizal fungi (AMF) and NPK Fertilizer on growth and yields of maize and soil nutrient availability. Sustainability 2023, 15, 2243. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual; U.S. Government Printing Office: Washington, DC, USA, 2017; pp. 83–234. [Google Scholar]
- Poomipan, P.; Suwanarit, A.; Suwanarit, P.; Nopamonbodi, O.; Dell, B. Reintroduction of a native Glomus to a tropical Ultisol promoted grain yield in maize after fallow and restored the density of arbuscular mycorrhizal fungal spores. J. Plant Nutr. Soil Sci. 2011, 174, 257–268. [Google Scholar] [CrossRef]
- Na Bhadalung, N.; Suwanarit, A.; Dell, B.; Nopamonbodi, O.; Thamchaipenet, A.; Rungchuang, J. Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under maize cropping system. Plant Soil 2005, 207, 371–382. [Google Scholar] [CrossRef]
- Na Bhadalung, N. Effects of Long-Term Fertilization on Diversity of Arbuscular Mycorrhizal Fungi Under a Maize Cropping System in Thailand. Ph.D. Thesis, Kasetsart University, Bangkok, Thailand, 2005. [Google Scholar]
- Gerdeman, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone extractable from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Daniels, B.A.; Skipper, H.A. Methods for the recovery and quantitative estimation of propagules from soil. In Methods & Principles of Mycorrhizal Research; Schenck, *!!! REPLACE !!!*, N.C., *!!! REPLACE !!!*, Eds.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 29–35. [Google Scholar]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996; 374p. [Google Scholar]
- Snowball, K.; Robson, A.D. Comparison of the internal and external requirements of wheat, oats and barley for copper. Aust. J. Agric. Res. 1984, 35, 359–365. [Google Scholar] [CrossRef]
- Attanandana, T.; Yost, R.S. A site-specific nutrient management approach for maize: Thailand’s experience. Better Crops Int. 2003, 17, 3–7. [Google Scholar]
- Li, T.; Liu, Y.J.; Shi, L.; Jiang, C.D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol. Biochem. 2015, 94, 86–94. [Google Scholar] [CrossRef]
- Gerdemann, J.W. Vesicular-arbuscular mycorrhizae. In The Development and Function of Roots; Torrey, J.G., Clarkson, D.T., Eds.; Academic Press: New York, NY, USA, 1975; pp. 579–591. [Google Scholar]
- Plenchette, C.; Fortin, J.A.; Furlan, V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 1983, 70, 199–209. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Black, C.A., Ed.; American society of Agronomy Inc. Publisher: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Peachey, D.; Roberts, J.L.; Scot-Baker, J. Rapid colorimetric determination of phosphorus in geochemical survey samples. J. Geochem. Explor. 1973, 2, 115–120. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1958; 498p. [Google Scholar]
- Philips, J.M.; Hayman, D.S. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. In Physiological and Genetical Aspects of Mycorrhizae = Aspects Physiologiques et Genetiques des Mycorhizes, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; Institut National de le Recherche Agronomique: Paris, France, 1986. [Google Scholar]
- Allen, M.F. Linking water and nutrients through the vadose zone: A fungal interface between the soil and plant systems. J. Arid Land. 2011, 3, 155–163. [Google Scholar] [CrossRef]
- Zhou, Q.; Ravnskov, S.; Jiang, D.; Wollenweber, B. Changes in carbon and nitrogen allocation, growth, and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul. 2015, 75, 751–760. [Google Scholar] [CrossRef]
- Mo, Y.; Wang, Y.; Yang, R.; Zheng, J.; Liu, C.; Li, H.; Ma, J.; Zhang, Y.; Wei, C.; Zhang, X. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci. 2016, 7, 644. [Google Scholar] [CrossRef] [PubMed]
- Fasusi, O.A.; Amoo, A.E.; Babalola, O.O. Propagation and characterization of viable arbuscular mycorrhizal fungal spores within maize plant (Zea mays L.). J. Sci. Food Agric. 2021, 101, 5834–5841. [Google Scholar] [CrossRef]
- Romero-Munar, A.; Aroca, R.; Zamarreño, A.M.; García-Mina, J.M.; Perez-Hernández, N.; Ruiz-Lozano, J.M. Dual inoculation with Rhizophagus irregularis and Bacillus megaterium improves maize tolerance to combined drought and high temperature stress by enhancing root hydraulics, photosynthesis and hormonal responses. Int. J. Mol. Sci. 2023, 24, 5193. [Google Scholar] [CrossRef]
- Le Pioufle, O.; Ganoudi, M.; Calonne-Salmon, M.; Ben Dhaou, F.; Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. 2019, 10, 897. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, V.; Delta, A.K.; Kaushik, P. Rhizophagus irregularis and nitrogen fixing azotobacter with a reduced rate of chemical fertilizer application enhances pepper growth along with fruits biochemical and mineral composition. Sustainability 2022, 14, 5653. [Google Scholar] [CrossRef]
- Xue, J.; Guo, L.; Li, L.; Zhang, Z.; Huang, M.; Cai, J.; Wang, X.; Zhong, Y.; Dai, T.; Jiang, D.; et al. Effects of arbuscular mycorrhizal fungi on uptake, partitioning and use efficiency of nitrogen in wheat. Field Crops Res. 2024, 306, 109244. [Google Scholar] [CrossRef]
- Sun, J.; Jia, Q.; Li, Y.; Zhang, T.; Chen, J.; Ren, Y.; Dong, K.; Xu, S.; Shi, N.-N.; Fu, S. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of maize (Zea mays L.). J. Fungi 2022, 8, 1275. [Google Scholar] [CrossRef]
- Püschel, D.; Bitterlich, M.; Rydlová, J.; Bukovská, P.; Sudová, R.; Jansa, J. Benefits in plant N uptake via the mycorrhizal pathway in ample soil moisture persist under severe drought. Soil Biol. Biochem. 2023, 187, 109220. [Google Scholar] [CrossRef]
- Qian, S.; Xu, Y.; Zhang, Y.; Wang, X.; Niu, X.; Wang, P. Effect of AMF Inoculation on Reducing Excessive Fertilizer Use. Microorganisms 2024, 12, 1550. [Google Scholar] [CrossRef]
- St. Subaedah; Edy, E.; Numba, S.; St. Sabahannur; Fausiah, R. Effectiveness of arbuscular mycorrhizal fungi and NPK Fertilizer in increasing the production of sweet corn plant. Asian J. Plant Sci. 2023, 22, 685–692. [Google Scholar] [CrossRef]
- Saboor, A.; Ali, M.A.; Husain, S.; Tahir, M.S.; Irfan, M.; Bilal, M.; Baig, K.S.; Datta, R.; Ahmed, N.; Danish, S.; et al. Regulation of phosphorus and zinc uptake in relation to arbuscular mycorrhizal fungi for better maize growth. Agronomy 2021, 11, 2322. [Google Scholar] [CrossRef]
- Yuan, Y.; Feng, Z.; Yan, S.; Zhang, J.; Song, H.; Zou, Y.; Jin, D. The effect of the application of chemical fertilizer and arbuscular mycorrhizal fungi on maize yield and soil microbiota in saline agricultural soil. J. Fungi 2025, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Nafady, N.A.; Hassan, E.A.; Abd-Alla, M.H.; Bagy, M.M.K. Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatal. Agric. Biotechnol. 2018, 16, 140–147. [Google Scholar] [CrossRef]
- Feng, H.Y.; Feng, G.; Wang, J.G.; Li, X.L. Regulation of P status in host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hyphae of AM fungi. Mycosystema 2003, 22, 589–598. [Google Scholar]
- Kahiluoto, H.; Ketoja, E.; Vestberg, M.; Saarela, I. Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 2001, 231, 65–79. [Google Scholar] [CrossRef]
- Balzergue, C.; Puech-Pagès, V.; Bécard, G.; Rochange, S.F. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. J. Exp. Bot. 2011, 62, 1049–1060. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Li, D.; Xu, C.; Xiang, X. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. MicrobiologyOpen 2019, 9, e00920. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 1997, 135, 575–586. [Google Scholar] [CrossRef]
- Polcyn, W.; Paluch-Lubawa, E.; Lehmann, T.; Mikuła, R. Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drought effects but does not improve fodder yield and quality. Front. Plant Sci. 2019, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Luo, P.; Yang, J.; Irfan, M.; Dai, J.; An, N.; Li, N.; Han, X. Responses of arbuscular mycorrhizal fungi diversity and community to 41-year rotation fertilization in brown soil region of Northeast China. Front. Microbiol. 2021, 12, 2941. [Google Scholar] [CrossRef]
- Mandou, M.S.; Modo, N.R.A.B.; Chotangui, A.H.; Adamou, S.; Raimatou, M.M.; Fisseng, J.K.K.A.; Waa, S.C.S.; Kouam, E.B. Arbuscular Mycorrhizal Fungi Combined with Mineral Fertilizer Improved the Growth and Yield of Wheat (Triticum aestivum L.) Cultivated in the Western Highlands of Cameroon. World J. Agric. Res. 2023, 11, 22–29. [Google Scholar] [CrossRef]
- Trejo, D.; Sangabriel-Conde, W.; Gavito-Pardo, M.E.; Banuelos, J. Mycorrhizal Inoculation and Chemical Fertilizer Interactions in Pineapple under Field Conditions. Agriculture 2021, 11, 934. [Google Scholar] [CrossRef]
- Safavi-Rizi, V.; Friedlein, H.; Safavi-Rizi, S.; Krajinski-Barth, F. The impact of arbuscular mycorrhizal colonization on flooding response of Medicago truncatula. Front. Plant Sci. 2025, 15, 1512350. [Google Scholar] [CrossRef]
- Sundar, S.K.; Sabari, V.M. Microbial diversity and phytochemical profile of Solanum nigrum L. from two different sites of Kannyakumari district, TamiNadu, India. Int. J. Res. Biotechnol. Biochem. 2011, 1, 8–10. [Google Scholar]
- Soti, P.G.; Jayachandran, K.; Koptur, S.; Volin, J.C. Effect of soil pH on growth, nutrient uptake, and mycorrhizal colonization in exotic invasive Lygodium microphyllum. Plant Ecol. 2015, 216, 989–998. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Zhao, Z.; Zhu, H.; Yao, Q. Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Sci. Plant Nutr. 2020, 66, 275–284. [Google Scholar] [CrossRef]
| Soil Physico-Chemical Properties | Soil Series of Ultisols | ||
| Korat | Mabbon | Pakthongchai | |
| Texture 1/ | Loamy sand | Sandy loam | Loam |
| Sand (%) | 72.2 | 60.8 | 41.3 |
| Silt (%) | 16.3 | 22.1 | 42.8 |
| Clay (%) | 11.5 | 17.1 | 15.9 |
| pH (1:1 H2O) | 5.8 | 5.1 | 5.6 |
| Organic matter 2/ (g.kg−1) | 7.14 | 6.52 | 5.11 |
| Available phosphorus 3/ (mg P.kg−1) | 8.28 | 5.16 | 8.64 |
| Available potassium 4/ (mg K.kg−1) | 36.3 | 62.1 | 55.9 |
| CEC 5/ (cmol.kg−1) | 6.5 | 10.4 | 8.2 |
| Base saturation 6/ (%) | 28 | 32 | 30 |
| Level of soil fertility | Low | Low | Low |
| Treatment |
Stem Height (cm) |
Stem Diameter (mm) |
Days of Tasselling (Days) |
Days of Silking (Days) |
Dry Weight (g plant−1) |
||||
| Fertiliser | AMF | 30 DAP | 60 DAP | 30 DAP | 60 DAP | Shoot | Root | ||
| (a) Korat soil | |||||||||
| 0% CF | Non-AMF | 13.5 d | 47.3 e | 4.4 e | 7.5 d | 68 a | 73 a | 27.33 f | 2.81 d |
| AMF | 21.4 c | 61.1 d | 7.1 d | 11.2 c | 62 b | 66 b | 43.98 e | 6.88 c | |
| 50% CF | Non-AMF | 22.4 c | 82.3 c | 10.9 c | 14.8 b | 55 c | 61 c | 75.43 d | 8.96 b |
| AMF | 32.8 b | 127.4 b | 14.1 b | 17.9 a | 54 c | 59 d | 85.22 c | 11.22 a | |
| 100% CF | Non-AMF | 25.4 c | 192.9 a | 16.4 a | 18.6 a | 52 d | 54 e | 95.58 b | 11.62 a |
| AMF | 39.2 a | 201.5 a | 16.1 a | 18.5 a | 52 d | 54 e | 110.81 a | 12.03 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliserx AMF | ** | ** | ** | ** | ** | ** | ** | * | |
| (b) Mabbon soil | |||||||||
| 0% CF | Non-AMF | 15.1 d | 52.4 e | 4.7 | 6.7 d | 70 a | 73 a | 28.17 f | 2.98 d |
| AMF | 21.2 c | 69.9 d | 7.1 | 11.6 c | 63 b | 64 b | 40.43 e | 6.83 c | |
| 50% CF | Non-AMF | 23.7 c | 78.9 d | 11.6 | 13.3 c | 57 c | 63 b | 75.14 d | 9.39 b |
| AMF | 34.3 b | 121.8 c | 13.6 | 17.1 b | 54 d | 60 c | 84.68 c | 12.46 a | |
| 100%CF | Non-AMF | 35.3 b | 190.0 b | 17.4 | 19.4 a | 52 e | 56 d | 98.41 b | 12.77 a |
| AMF | 40.7 a | 200.2 a | 17.7 | 18.2 a | 51 e | 54 d | 112.13 a | 13.04 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliser x AMF | ** | ** | ns | ** | * | ** | ** | * | |
| (c) Pakthongchai soil | |||||||||
| 0% CF | Non-AMF | 15.4 d | 44.0 f | 4.2 e | 7.0 d | 67 a | 73 a | 31.73 f | 3.98 d |
| AMF | 22.5 c | 59.9 e | 6.9 d | 9.7 c | 61 b | 66 b | 45.10 e | 6.51 c | |
| 50% CF | Non-AMF | 23.8 c | 83.0 d | 10.6 c | 14.2 b | 56 c | 61 c | 74.48 d | 9.28 b |
| AMF | 34.1 b | 119.0 c | 15.0 b | 18.1 a | 54 c | 59 d | 85.04 c | 12.44 a | |
| 100%CF | Non-AMF | 34.8 b | 186.1 b | 16.9 a | 18.2 a | 52 d | 55 e | 101.07 b | 13.09 a |
| AMF | 40.5 a | 209.7 a | 17.1 a | 19.1 a | 51 d | 54 e | 115.81 a | 12.82 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliser x AMF | ** | ** | ** | * | ** | ** | ** | * | |
| Treatment |
Dry Weight of Ear (g plant−1) |
Dry Weight of Grain (g plant−1) |
Size of Ear (mm) |
Maize Yield (g plant−1) |
Harvest Index (%) |
||||
| Fertiliser | AMF |
Unhusked Ear |
Husked Ear |
Width | Length |
Biological Yield |
Grain Yield 1/ |
||
| (a) Korat soil | |||||||||
| 0% CF | Non-AMF | 4.44 f | 2.98 f | 2.44 e | 19.2 d | 83.4 f | 30.14 f | 2.78 e | 0.09 e |
| AMF | 10.28 e | 7.77 e | 5.60 d | 27.2 c | 91.2 e | 50.86 e | 6.38 d | 0.13 d | |
| 50% CF | Non-AMF | 23.77 d | 19.93 d | 13.35 c | 27.2 c | 105.7 d | 84.38 d | 15.22 c | 0.18 c |
| AMF | 31.64 c | 29.45 c | 21.89 b | 32.2 b | 124.0 c | 96.44 c | 24.95 b | 0.26 b | |
| 100% CF | Non-AMF | 44.35 b | 42.73 b | 35.71 a | 37.3 a | 132.1 b | 109.80 b | 40.71 a | 0.37 a |
| AMF | 49.92 a | 47.20 a | 38.08 a | 37.7 a | 138.4 a | 122.83 a | 43.41 a | 0.35 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliser x AMF | * | ** | ** | ** | * | * | ** | ** | |
| (b) Mabbon soil | |||||||||
| 0% CF | Non-AMF | 5.60 f | 3.25 f | 2.37 f | 17.3 e | 49.2 f | 31.16 f | 2.70 f | 0.09 d |
| AMF | 9.86 e | 6.86 e | 5.15 e | 25.2 d | 60.6 e | 47.26 e | 5.87 e | 0.13 d | |
| 50% CF | Non-AMF | 25.38 d | 22.11 d | 18.60 d | 31.6 c | 71.8 d | 84.53 d | 21.20 d | 0.25 c |
| AMF | 30.67 c | 30.45 c | 26.25 c | 36.4 b | 113.6 c | 97.13 c | 29.92 c | 0.31 b | |
| 100% CF | Non-AMF | 47.13 b | 45.91 b | 39.64 b | 42.3 a | 125.7 b | 115.19 b | 45.19 b | 0.39 a |
| AMF | 52.63 a | 49.68 a | 43.99 a | 42.7 a | 136.9 a | 125.17 a | 50.15 a | 0.40 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliser x AMF | * | ** | * | ** | ** | ** | ** | ** | |
| (c) Pakthongchai soil | |||||||||
| 0% CF | Non-AMF | 7.66 f | 4.86 f | 3.86 f | 21.8 f | 67.5 f | 35.71 f | 4.40 f | 0.12 e |
| AMF | 11.14 e | 9.05 e | 7.29 e | 26.0 e | 85.9 e | 51.61 e | 8.31 e | 0.16 d | |
| 50% CF | Non-AMF | 23.92 d | 21.11 d | 16.60 d | 32.6 d | 97.3 d | 83.77 d | 18.92 d | 0.23 c |
| AMF | 32.87 c | 29.57 c | 24.24 c | 36.3 c | 127.9 c | 97.48 c | 27.64 c | 0.28 b | |
| 100% CF | Non-AMF | 45.92 b | 43.59 b | 37.77 b | 42.3 b | 136.4 b | 116.16 b | 43.05 b | 0.37 a |
| AMF | 50.88 a | 47.45 a | 41.96 a | 45.9 a | 145.9 a | 128.63 a | 47.83 a | 0.37 a | |
| F test | |||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | ** | ** | ** | ** | ** | |
| Fertiliser x AMF | * | ** | * | * | ** | * | ** | ** | |
| Treatment | RMD of Maize Growth (%) | RMD of Maize Yield (%) |
AMF Root Colonisation (%) |
Soil AMF Spore (Spores/100 g) |
| (a) Korat soil | ||||
| 0% CF | 40.68 a | 55.96 a | 67.27 a | 808 a |
| 50% CF | 13.46 b | 38.84 b | 52.72 b | 933 a |
| 100% CF | 6.25 c | 5.38 c | 37.32 c | 596 b |
| F test | ** | ** | ** | ** |
| (b) Mabbon soil | ||||
| 0% CF | 32.42 a | 54.04 a | 65.30 a | 785 a |
| 50% CF | 14.30 b | 29.21 b | 54.27 b | 835 a |
| 100% CF | 6.85 c | 10.84 c | 39.54 c | 601 b |
| F test | ** | ** | ** | * |
| (c) Pakthongchai soil | ||||
| 0% CF | 30.36 a | 47.04 a | 69.46 a | 912 a |
| 50% CF | 13.95 b | 30.84 b | 48.43 b | 865 a |
| 100% CF | 9.18 c | 9.96 c | 36.88 c | 532 c |
| F test | ** | ** | ** | ** |
| AMF Root Colonisation (%) | RMD of Maize Growth (%) | RMD of Maize Yield (%) |
| 0.701 ** | 0.673 ** |
| Treatment | Photosynthetic Physiological Parameter | Plant Nutrient Content (g plant−1) | ||||||
| Fertiliser | AMF | SPAD | Pn | Tr | Gs | Total N | Total P | Total K |
| (a) Korat soil | ||||||||
| 0% CF | Non-AMF | 24.55 d | 23.46 d | 5.07 | 0.256 e | 0.258 e | 0.021 d | 0.303 e |
| AMF | 30.31 c | 29.23 c | 5.51 | 0.312 d | 0.312 d | 0.027 cd | 0.425 d | |
| 50% CF | Non-AMF | 30.91 c | 29.28 c | 6.05 | 0.328 c | 0.493 c | 0.035 bc | 0.639 c |
| AMF | 35.42 b | 33.22 b | 7.02 | 0.355 bc | 0.587 b | 0.045 a | 0.767 b | |
| 100% CF | Non-AMF | 35.78 b | 35.27 b | 7.22 | 0.370 b | 0.648 b | 0.040 ab | 0.764 b |
| AMF | 39.01 a | 38.67 a | 7.40 | 0.410 a | 0.748 a | 0.047 a | 0.876 a | |
| F test | ||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | ** | ** | * | ** | * | ** | |
| Fertiliser x AMF | ** | * | ns | * | ** | * | ** | |
| (b) Mabbon soil | ||||||||
| 0% CF | Non-AMF | 24.64 c | 20.53 d | 5.09 | 0.291 | 0.233 f | 0.021 c | 0.286 e |
| AMF | 31.70 b | 25.76 c | 5.34 | 0.322 | 0.310 e | 0.025 c | 0.379 d | |
| 50% CF | Non-AMF | 30.65 b | 26.73 c | 5.90 | 0.363 | 0.482 d | 0.039 b | 0.649 c |
| AMF | 35.40 a | 30.41 b | 6.80 | 0.375 | 0.581 bc | 0.051 a | 0.780 b | |
| 100% CF | Non-AMF | 32.34 b | 29.57 bc | 7.01 | 0.372 | 0.643 b | 0.042 b | 0.756 b |
| AMF | 37.26 a | 35.95 a | 7.68 | 0.419 | 0.732 a | 0.054 a | 0.879 a | |
| F test | ||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | * | ** | ** | ** | * | ** | |
| Fertiliser x AMF | ** | * | ns | ns | ** | * | ** | |
| (c) Pakthongchai soil | ||||||||
| 0% CF | Non-AMF | 25.63 e | 22.48 d | 5.12 d | 0.311 d | 0.266 e | 0.024 c | 0.318 e |
| AMF | 28.98 d | 25.13 cd | 5.58 c | 0.325 d | 0.351 d | 0.034 b | 0.430 d | |
| 50% CF | Non-AMF | 31.31 c | 28.25 c | 5.49 cd | 0.377 c | 0.478 c | 0.034 b | 0.643 c |
| AMF | 35.61 b | 32.21 b | 6.87 b | 0.415 b | 0.573 bc | 0.047 a | 0.746 b | |
| 100% CF | Non-AMF | 34.78 b | 33.17 b | 6.59 b | 0.384 c | 0.620 b | 0.039 b | 0.755 b |
| AMF | 39.11 a | 38.18 a | 8.00 a | 0.442 a | 0.780 a | 0.049 a | 0.933 a | |
| F test | ||||||||
| Fertiliser | ** | ** | ** | ** | ** | ** | ** | |
| AMF | ** | * | ** | * | ** | ** | ** | |
| Fertiliser x AMF | ** | ** | * | * | ** | ** | ** | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).