Submitted:
14 November 2025
Posted:
19 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Germline Variants of FGFR Signaling in CCA: A Double-Edged Sword
2.1. Germline Variants Signaling Tumorigenesis (Tumor-Intrinsic Mechanisms)
2.1.1. Cancer Syndrome Genes
2.1.2. DNA Damage Repair Genes
2.1.3. Other Genes
2.1.4. Genes Participating in the FGF Signaling Nexus
2.1.4.1. DDR Genes Leading to FGF Signaling and Vice Versa→ FGF2/FGFR1
2.1.4.2. Inflammatory Pathway Genes Leading to FGF Signaling
2.1.4.3. Metabolism Genes Leading to FGF Signaling → FGF2/FGFR1:
2.1.4.4. Genes Encoding Receptor Tyrosine Kinases Leading to FGF Signaling→ FGF2/FGFR1:
2.1.5. Genes Linked to Chronic Onslaughts on the Biliary Epithelium.
2.1.5.1. Genes Associated with Chronic Infection
2.1.5.2. Genes Associated with Metabolite Toxicity
2.1.5.3. Genes Associated with Chronic Autoinflammatory Conditions
2.1.5.4. Genes Associated with Bile Toxicity
2.1.6. Genes Associated with Dedifferentiation Pathways
2.2. Germline Variants Shielding Tumorigenesis (Tumor-Extrinsic Mechanisms)
2.2.1. FGF/FGFR Signaling Regulates PD-L1 Expression
2.2.1. Combined Actions of FGF/VEGF Signaling in T Cell Exhaustion
3. Persistent FGF/FGFR Signaling - a Contributor of CCA Pathogenesis
4. Limitations in Studies Investigating Genetic Predisposition to CCA
5. Conclusion
6. Implications for Personalized Medicine and Future Directions
6.1. Personalized Therapeutic Strategies Based on Germline Vulnerability
6.1.2. Overcoming Germline-Driven Immune Evasion (The "Shield")
6.2. Future Directions and Clinical Translation
Author Contributions
Acknowledgements
References
- Rumgay, H. et al. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 161, 108–118 (2022). [CrossRef]
- Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). [CrossRef]
- Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013). [CrossRef]
- Vogel, A., Segatto, O., Stenzinger, A. & Saborowski, A. FGFR2 inhibition in cholangiocarcinoma. Annu. Rev. Med. 74, 293–306 (2023).a. [CrossRef]
- Kang, C. Infigratinib: First Approval. Drugs 81, 1355–1360 (2021). [CrossRef]
- Syed, Y. Y. Futibatinib: First Approval. Drugs 82, 1737–1743 (2022). [CrossRef]
- Patel, T. H. et al. FDA Approval Summary: Pemigatinib for Previously Treated, Unresectable Locally Advanced or Metastatic Cholangiocarcinoma with FGFR2 Fusion or Other Rearrangement. Clin. Cancer Res. 29, 838–842 (2023). [CrossRef]
- Stenzinger, A. et al. Molecular profiling in cholangiocarcinoma: A practical guide to next-generation sequencing. Cancer Treat. Rev. 122, 102649 (2024). [CrossRef]
- Tavolari, S. & Brandi, G. Mutational landscape of cholangiocarcinoma according to different etiologies: A review. Cells 12, (2023). [CrossRef]
- Zhang, Y. et al. The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nat. Commun. 13, 3061 (2022). [CrossRef]
- Carotenuto, M., Sacco, A., Forgione, L. & Normanno, N. Genomic alterations in cholangiocarcinoma: clinical significance and relevance to therapy. Explor Target Antitumor Ther 3, 200–223 (2022). [CrossRef]
- Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014). [CrossRef]
- Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007). [CrossRef]
- Torkamani, A. & Schork, N. J. Prediction of cancer driver mutations in protein kinases. Cancer Res. 68, 1675–1682 (2008). [CrossRef]
- Helsten, T. et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 22, 259–267 (2016).
- Krook, M. A. et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer 124, 880–892 (2021).
- Aitcheson, G., Mahipal, A. & John, B. V. Targeting FGFR in intrahepatic cholangiocarcinoma [iCCA]: leading the way for precision medicine in biliary tract cancer [BTC]? Expert Opin. Investig. Drugs 30, 463–477 (2021).
- Uson Junior, P. L. et al. Germline Cancer Susceptibility Gene Testing in Unselected Patients with Hepatobiliary Cancers: A Multi-Center Prospective Study. Cancer Prev Res (Phila Pa) 15, 121–128 (2022).
- Chen, L. et al. Examination on the risk factors of cholangiocarcinoma: A Mendelian randomization study. Front. Pharmacol. 13, 900424 (2022). [CrossRef]
- Tung, N. et al. Selection of germline genetic testing panels in patients with cancer: ASCO guideline. J. Clin. Oncol. 42, 2599–2615 (2024).
- Egan, J. B. et al. Molecular Modeling and Functional Analysis of Exome Sequencing-Derived Variants of Unknown Significance Identify a Novel, Constitutively Active FGFR2 Mutant in Cholangiocarcinoma. JCO Precis. Oncol. 2017, (2017).
- Tomczak, A. et al. Precision oncology for intrahepatic cholangiocarcinoma in clinical practice. Br. J. Cancer 127, 1701–1708 (2022). [CrossRef]
- Knudson, A. G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–162 (2001).
- Wang, G. et al. The Role of Single-Nucleotide Polymorphisms in Cholangiocarcinoma: A Systematic Review. Cancers (Basel) 14, (2022). [CrossRef]
- McGee, R. B. & Nichols, K. E. Introduction to cancer genetic susceptibility syndromes. Hematology Am Soc Hematol Educ Program 2016, 293–301 (2016).
- Mecklin, J. P., Järvinen, H. J. & Virolainen, M. The association between cholangiocarcinoma and hereditary nonpolyposis colorectal carcinoma. Cancer 69, 1112–1114 (1992).
- Vernez, M. et al. A case of Muir-Torre syndrome associated with mucinous hepatic cholangiocarcinoma and a novel germline mutation of the MSH2 gene. Fam. Cancer 6, 141–145 (2007).
- Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91, 1310–1316 (1999). [CrossRef]
- Golan, T. et al. Overall Survival and Clinical Characteristics of BRCA-Associated Cholangiocarcinoma: A Multicenter Retrospective Study. Oncologist 22, 804–810 (2017). [CrossRef]
- Pilarski, R. et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer 53, 177–182 (2014).
- Brandi, G. et al. Intrahepatic cholangiocarcinoma development in a patient with a novel BAP1 germline mutation and low exposure to asbestos. Cancer Genet. 248–249, 57–62 (2020).
- Zeng, L. et al. Combined effects of polymorphisms of DNA-repair protein genes and metabolic enzyme genes on the risk of cholangiocarcinoma. Jpn J Clin Oncol 43, 1190–1194 (2013).
- You, S.-H. et al. MYH rs3219476 and rs3219472 polymorphisms and risk of cholangiocarcinoma. Mol. Med. Report. 7, 347–351 (2013). [CrossRef]
- Mondaca, S., Nervi, B., Pinto, M. & Abou-Alfa, G. K. Biliary tract cancer prognostic and predictive genomics. Chin. Clin. Oncol. 8, 42 (2019).
- Yu, H. et al. Comprehensive germline and somatic genomic profiles of Chinese patients with biliary tract cancer. Front. Oncol. 12, 930611 (2022).
- Lin, J. et al. Mutational spectrum and precision oncology for biliary tract carcinoma. Theranostics 11, 4585–4598 (2021).
- Guo, L. et al. Genomic mutation characteristics and prognosis of biliary tract cancer. Am. J. Transl. Res. 14, 4990–5002 (2022).
- Wardell, C. P. et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 68, 959–969 (2018).
- Terashima, T. et al. Germline mutations in cancer-predisposition genes in patients with biliary tract cancer. Oncotarget 10, 5949–5957 (2019). [CrossRef]
- Maynard, H. et al. Germline alterations in patients with biliary tract cancers: A spectrum of significant and previously underappreciated findings. Cancer 126, 1995–2002 (2020).
- Samadder, J. et al. Landscape of germline mutations in hepatobiliary carcinoma: Unrealized risk, untapped clinical trial opportunities. J. Clin. Oncol. 37, 236–236 (2019). [CrossRef]
- Kumar-Sinha, C. et al. Genomics driven precision oncology in advanced biliary tract cancer improves survival. Neoplasia 42, 100910 (2023). [CrossRef]
- Wang, Y. et al. Mutation inactivation of Nijmegen breakage syndrome gene (NBS1) in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. PLoS ONE 8, e82426 (2013).
- Holzapfel, N. et al. Whole-genome sequencing of 20 cholangiocarcinoma cases reveals unique profiles in patients with cirrhosis and primary sclerosing cholangitis. J. Gastrointest. Oncol. 14, 379–389 (2023).
- Yap, T. A. et al. Prevalence of germline findings among tumors from cancer types lacking hereditary testing guidelines. JAMA Netw. Open 5, e2213070 (2022).
- Chae, H. et al. Therapeutic relevance of targeted sequencing in management of patients with advanced biliary tract cancer: DNA damage repair gene mutations as a predictive biomarker. Eur. J. Cancer 120, 31–39 (2019). [CrossRef]
- Spizzo, G. et al. Frequency of BRCA mutation in biliary tract cancer and its correlation with tumor mutational burden (TMB) and microsatellite instability (MSI). JCO 37, 4085–4085 (2019).
- Hua, D. et al. Next-generation sequencing based detection of BRCA1 and BRCA2 large genomic rearrangements in Chinese cancer patients. Front. Oncol. 12, 898916 (2022).
- Ahn, D. H. & Bekaii-Saab, T. Biliary tract cancer and genomic alterations in homologous recombinant deficiency: exploiting synthetic lethality with PARP inhibitors. Chin. Clin. Oncol. 9, 6 (2020). [CrossRef]
- Paradiso, A. V. et al. Somatic BRCA mutation in a cholangiocarcinoma patient for HBOC syndrome detection. Front. Oncol. 10, 1292 (2020).
- Greer, S. U. et al. Germline variants of ATG7 in familial cholangiocarcinoma alter autophagy and p62. Sci. Rep. 12, 10333 (2022). [CrossRef]
- Muisuk, K. et al. Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing. Asian Pac. J. Cancer Prev. 16, 1737–1742 (2015). [CrossRef]
- Paolicchi, E. et al. A single nucleotide polymorphism in EZH2 predicts overall survival rate in patients with cholangiocarcinoma. Oncol. Lett. 6, 1487–1491 (2013).
- Khunluck, T. et al. Association of NRF2 Polymorphism with Cholangiocarcinoma Prognosis in Thai Patients. Asian Pac. J. Cancer Prev. 15, 299–304 (2014).
- Liu, D., Keijzers, G. & Rasmussen, L. J. DNA mismatch repair and its many roles in eukaryotic cells. Mutat. Res. Rev. Mutat. Res. 773, 174–187 (2017).
- Yang, X. et al. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma. BMC Med. 22, 42 (2024).
- Chang, P. Y. et al. Particle irradiation induces FGF2 expression in normal human lens cells. Radiat. Res. 154, 477–484 (2000).
- Fuks, Z. et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 54, 2582–2590 (1994).
- Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001). [CrossRef]
- Zhang, L. et al. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys. 77, 261–268 (2010).
- Nakayama, F. et al. Structural stability of human fibroblast growth factor-1 is essential for protective effects against radiation-induced intestinal damage. Int. J. Radiat. Oncol. Biol. Phys. 85, 477–483 (2013). [CrossRef]
- Kim, B. H. et al. Synergistic actions of FGF2 and bone marrow transplantation mitigate radiation-induced intestinal injury. Cell Death Dis. 9, 383 (2018). [CrossRef]
- Haimovitz-Friedman, A., Vlodavsky, I., Chaudhuri, A., Witte, L. & Fuks, Z. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res. 51, 2552–2558 (1991).
- Harfouche, G. et al. Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells. Stem Cells 28, 1639–1648 (2010). [CrossRef]
- Ader, I. et al. The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit. Oncogene 21, 6471–6479 (2002). [CrossRef]
- Marie, M. et al. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation. Int. J. Radiat. Biol. 88, 688–693 (2012).
- Qiu, H., Yashiro, M., Zhang, X., Miwa, A. & Hirakawa, K. A FGFR2 inhibitor, Ki23057, enhances the chemosensitivity of drug-resistant gastric cancer cells. Cancer Lett. 307, 47–52 (2011).
- Chen, G. et al. The fibroblast growth factor receptor 2-mediated extracellular signal-regulated kinase 1/2 signaling pathway plays is important in regulating excision repair cross-complementary gene 1 expression in hepatocellular carcinoma. Biomed. Rep. 1, 604–608 (2013).
- Ciniero, G. et al. Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1-XPF-mediated DNA repair. Cancer Chemother. Pharmacol. 87, 259–267 (2021).
- Slyskova, J. et al. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res. 46, 9537–9549 (2018). [CrossRef]
- Yu, X., Zhu, L., Wang, T. & Chen, J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front. Immunol. 14, 1037945 (2023).
- Gundlach, J.-P. et al. Paracrine Interaction of Cholangiocellular Carcinoma with Cancer-Associated Fibroblasts and Schwann Cells Impact Cell Migration. J. Clin. Med. 11, (2022). [CrossRef]
- Roy, S., Glaser, S. & Chakraborty, S. Inflammation and progression of cholangiocarcinoma: role of angiogenic and lymphangiogenic mechanisms. Front Med (Lausanne) 6, 293 (2019).
- Wu, T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim. Biophys. Acta 1755, 135–150 (2005). [CrossRef]
- Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).
- Chang, S.-H. et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 101, 591–596 (2004). [CrossRef]
- Folkman, J. & Hanahan, D. Switch to the angiogenic phenotype during tumorigenesis. Int Symp Princess Takamatsu Cancer Res Fund 22, 339–347 (1991).
- Nakanishi, M. & Rosenberg, D. W. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 35, 123–137 (2013).
- Vogel, L. K. et al. Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS ONE 9, e105254 (2014).
- Papafili, A. et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler. Thromb. Vasc. Biol. 22, 1631–1636 (2002).
- Brosens, L. A. A. et al. Increased cyclooxygenase-2 expression in duodenal compared with colonic tissues in familial adenomatous polyposis and relationship to the -765G -> C COX-2 polymorphism. Clin. Cancer Res. 11, 4090–4096 (2005).
- Moore, A. E., Young, L. E. & Dixon, D. A. A common single-nucleotide polymorphism in cyclooxygenase-2 disrupts microRNA-mediated regulation. Oncogene 31, 1592–1598 (2012). [CrossRef]
- Daraei, A., Salehi, R. & Mohamadhashem, F. PTGS2 (COX2) -765G>C gene polymorphism and risk of sporadic colorectal cancer in Iranian population. Mol. Biol. Rep. 39, 5219–5224 (2012).
- Chaiteerakij, R. et al. Association between variants in inflammation and cancer-associated genes and risk and survival of cholangiocarcinoma. Cancer Med. 4, 1599–1602 (2015).
- Luo, J.-C. et al. Dexamethasone inhibits basic fibroblast growth factor-stimulated gastric epithelial cell proliferation. Biochem. Pharmacol. 76, 841–849 (2008). [CrossRef]
- Tessner, T. G. et al. Basic fibroblast growth factor upregulates cyclooxygenase-2 in I407 cells through p38 MAP kinase. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G269-79 (2003). [CrossRef]
- Li, J., Luo, M., Wang, Y., Shang, B. & Dong, L. Celecoxib suppresses fibroblast growth factor-2 expression in pancreatic ductal adenocarcinoma PANC-1 cells. Oncol. Rep. 36, 1345–1352 (2016). [CrossRef]
- Finetti, F. et al. Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1. J. Biol. Chem. 283, 2139–2146 (2008).
- Zhou, M. et al. The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine 169, 156271 (2023).
- Colyn, L. et al. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J. Exp. Clin. Cancer Res. 41, 183 (2022). [CrossRef]
- Yang, R. et al. Insights into the role of STAT3 in intrahepatic cholangiocarcinoma (Review). Mol. Med. Report. 25, (2022). [CrossRef]
- Wehbe, H., Henson, R., Meng, F., Mize-Berge, J. & Patel, T. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res. 66, 10517–10524 (2006).
- Andersen, J. B. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021-1031.e15 (2012). [CrossRef]
- Thongchot, S. et al. Cancer-Associated Fibroblast-Derived IL-6 Determines Unfavorable Prognosis in Cholangiocarcinoma by Affecting Autophagy-Associated Chemoresponse. Cancers (Basel) 13, (2021).
- Kumari, N., Dwarakanath, B. S., Das, A. & Bhatt, A. N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37, 11553–11572 (2016). [CrossRef]
- Liu, Q. et al. Targeting interlukin-6 to relieve immunosuppression in tumor microenvironment. Tumour Biol. 39, 1010428317712445 (2017).
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33, 127–148 (2021).
- Fishman, D. et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376 (1998).
- Joshi, N. et al. Interleukin 6 -174G>C polymorphism and cancer risk: meta-analysis reveals a site dependent differential influence in Ancestral North Indians. Hum. Immunol. 75, 901–908 (2014).
- Surapaitoon, A. et al. Subsets of Inflammatory Cytokine Gene Polymorphisms are Associated with Risk of Carcinogenic Liver Fluke Opisthorchis viverrini-Associated Advanced Periductal Fibrosis and Cholangiocarcinoma. Korean J. Parasitol. 55, 295–304 (2017). [CrossRef]
- Sripa, B. et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology 50, 1273–1281 (2009).
- Sripa, B. et al. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl. Trop. Dis. 6, e1654 (2012). [CrossRef]
- Lokau, J., Agthe, M. & Garbers, C. Generation of Soluble Interleukin-11 and Interleukin-6 Receptors: A Crucial Function for Proteases during Inflammation. Mediators Inflamm. 2016, 1785021 (2016).
- Galicia, J. C. et al. Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes Immun. 5, 513–516 (2004).
- Kim, L. H. et al. Identification of novel SNPs in the interleukin 6 receptor gene (IL6R). Hum. Mutat. 21, 450–451 (2003). [CrossRef]
- Qi, L., Rifai, N. & Hu, F. B. Interleukin-6 receptor gene variations, plasma interleukin-6 levels, and type 2 diabetes in U.S. Women. Diabetes 56, 3075–3081 (2007). [CrossRef]
- Reich, D. et al. Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels. Am. J. Hum. Genet. 80, 716–726 (2007).
- Müllberg, J. et al. The soluble interleukin-6 receptor is generated by shedding. Eur. J. Immunol. 23, 473–480 (1993).
- Müllberg, J. et al. The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J. Immunol. 152, 4958–4968 (1994). [CrossRef]
- Lamas, J. R. et al. Influence of IL6R rs8192284 polymorphism status in disease activity in rheumatoid arthritis. J. Rheumatol. 37, 1579–1581 (2010).
- Marinou, I., Walters, K., Winfield, J., Bax, D. E. & Wilson, A. G. A gain of function polymorphism in the interleukin 6 receptor influences RA susceptibility. Ann. Rheum. Dis. 69, 1191–1194 (2010). [CrossRef]
- Esteve, E. et al. Polymorphisms in the interleukin-6 receptor gene are associated with body mass index and with characteristics of the metabolic syndrome. Clin Endocrinol (Oxf) 65, 88–91 (2006). [CrossRef]
- Jiang, C. Q. et al. Interleukin-6 receptor gene polymorphism modulates interleukin-6 levels and the metabolic syndrome: GBCS-CVD. Obesity (Silver Spring) 18, 1969–1974 (2010).
- Wang, H. et al. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J. Clin. Endocrinol. Metab. 90, 1123–1129 (2005).
- Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).
- Prayong, P. et al. An Interleukin-6 Receptor Polymorphism is Associated with Opisthorchiasis-Linked Cholangiocarcinoma Risk in Thailand. Asian Pac. J. Cancer Prev. 15, 5443–5447 (2014).
- Ben Jemaa, A., Sallami, S., Ramarli, D., Colombatti, M. & Oueslati, R. The proinflammatory cytokine, IL-6, and its interference with bFGF signaling and PSMA in prostate cancer cells. Inflammation 36, 643–650 (2013). [CrossRef]
- Ishikawa, H. et al. Accelerated proliferation of myeloma cells by interleukin-6 cooperating with fibroblast growth factor receptor 3-mediated signals. Oncogene 24, 6328–6332 (2005).
- Lee, J. G. & Kay, E. P. NF-κB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest. Ophthalmol. Vis. Sci. 53, 1530–1538 (2012).
- Jee, S.-H. et al. Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J. Invest. Dermatol. 123, 1169–1175 (2004). [CrossRef]
- Hillaire, M. L. B., Lawrence, P. & Lagrange, B. IFN-γ: A Crucial Player in the Fight Against HBV Infection? Immune Netw. 23, e30 (2023).
- Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265, 106–109 (1994). [CrossRef]
- Zhou, F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 28, 239–260 (2009).
- Zhang, S. et al. Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol. Res. 7, 1237–1243 (2019).
- Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004). [CrossRef]
- Ahn, E.-Y., Pan, G., Vickers, S. M. & McDonald, J. M. IFN-gammaupregulates apoptosis-related molecules and enhances Fas-mediated apoptosis in human cholangiocarcinoma. Int. J. Cancer 100, 445–451 (2002).
- Loeuillard, E., Conboy, C. B., Gores, G. J. & Ilyas, S. I. Immunobiology of cholangiocarcinoma. JHEP Rep. 1, 297–311 (2019).
- O’Sullivan, T. et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012). [CrossRef]
- Gessani, S. & Belardelli, F. IFN-gamma expression in macrophages and its possible biological significance. Cytokine Growth Factor Rev. 9, 117–123 (1998). [CrossRef]
- Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007). [CrossRef]
- Caldenhoven, E. et al. Lineage-specific activation of STAT3 by interferon-gamma in human neutrophils. J. Leukoc. Biol. 65, 391–396 (1999). [CrossRef]
- Ochiai, K., Ishihara, C. & Tomioka, H. Signal transduction through interferon-gamma receptor on human eosinophils. Int. Arch. Allergy Immunol. 118, 443–446 (1999).
- Harada, K., Isse, K. & Nakanuma, Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J. Clin. Pathol. 59, 184–190 (2006).
- Schneider-Matyka, D. et al. The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women. Medicina (Kaunas) 56, (2020).
- Dold, L. et al. IL-6-Dependent STAT3 Activation and Induction of Proinflammatory Cytokines in Primary Sclerosing Cholangitis. Clin. Transl. Gastroenterol. 14, e00603 (2023).
- Zhou, T. et al. Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur. J. Gastroenterol. Hepatol. 32, 276–284 (2020).
- Rosen, H. R., Winkle, P. J., Kendall, B. J. & Diehl, D. L. Biliary interleukin-6 and tumor necrosis factor-alpha in patients undergoing endoscopic retrograde cholangiopancreatography. Dig. Dis. Sci. 42, 1290–1294 (1997). [CrossRef]
- Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).
- Ravichandran, G. et al. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. J. Hepatol. 71, 773–782 (2019).
- Shuai, K., Stark, G. R., Kerr, I. M. & Darnell, J. E. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261, 1744–1746 (1993).
- Qing, Y. & Stark, G. R. Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J. Biol. Chem. 279, 41679–41685 (2004).
- Zhou, J. et al. A regulatory polymorphism in interferon-gamma receptor 1 promoter is associated with the susceptibility to chronic hepatitis B virus infection. Immunogenetics 61, 423–430 (2009).
- Canedo, P. et al. The interferon gamma receptor 1 (IFNGR1) -56C/T gene polymorphism is associated with increased risk of early gastric carcinoma. Gut 57, 1504–1508 (2008).
- Marcos-Pinto, R. et al. First-degree relatives of early-onset gastric cancer patients show a high risk for gastric cancer: phenotype and genotype profile. Virchows Arch. 463, 391–399 (2013).
- Hou, L. et al. Polymorphisms in Th1-type cell-mediated response genes and risk of gastric cancer. Carcinogenesis 28, 118–123 (2007).
- Wang, L., Wang, Y., Song, Z., Chu, J. & Qu, X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J. Interferon Cytokine Res. 35, 273–280 (2015).
- Slattery, M. L., Lundgreen, A., Bondurant, K. L. & Wolff, R. K. Interferon-signaling pathway: associations with colon and rectal cancer risk and subsequent survival. Carcinogenesis 32, 1660–1667 (2011).
- Lu, S. et al. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival. PLoS ONE 9, e111061 (2014).
- Aref, S. et al. Predictive value of interferon γ receptor gene polymorphisms for hepatocellular carcinoma susceptibility. Asian Pac. J. Cancer Prev. 22, 1821–1826 (2021).
- Han, X. et al. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages. FEBS Lett. 590, 53–67 (2016).
- Adachi, Y. et al. Inhibition of FGFR Reactivates IFNγ Signaling in Tumor Cells to Enhance the Combined Antitumor Activity of Lenvatinib with Anti-PD-1 Antibodies. Cancer Res. 82, 292–306 (2022).
- Yan, C. et al. Clonorchis sinensis excretory/secretory products promote the secretion of TNF-alpha in the mouse intrahepatic biliary epithelial cells via Toll-like receptor 4. Parasit. Vectors 8, 559 (2015).
- Alpini, G. et al. Increased susceptibility of cholangiocytes to tumor necrosis factor-alpha cytotoxicity after bile duct ligation. Am J Physiol, Cell Physiol 285, C183-94 (2003).
- Shivakumar, P. et al. Preferential TNFα signaling via TNFR2 regulates epithelial injury and duct obstruction in experimental biliary atresia. JCI Insight 2, e88747 (2017).
- Ayres, R. C., Neuberger, J. M., Shaw, J., Joplin, R. & Adams, D. H. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 34, 1245–1249 (1993).
- Cruickshank, S. M., Southgate, J., Selby, P. J. & Trejdosiewicz, L. K. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro. J. Hepatol. 29, 550–558 (1998). [CrossRef]
- Barbara, J. A., Van ostade, X. & Lopez, A. Tumour necrosis factor-alpha (TNF-alpha): the good, the bad and potentially very effective. Immunol. Cell Biol. 74, 434–443 (1996).
- Bahra, P., Rainger, G. E., Wautier, J. L., Nguyet-Thin, L. & Nash, G. B. Each step during transendothelial migration of flowing neutrophils is regulated by the stimulatory concentration of tumour necrosis factor-alpha. Cell Adhes. Commun. 6, 491–501 (1998). [CrossRef]
- Higuchi, T. et al. Polymorphism of the 5’-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 51, 605–612 (1998).
- van Heel, D. A. et al. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF(-kappa)B transcription factors. Hum. Mol. Genet. 11, 1281–1289 (2002).
- Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).
- Okamura, K. et al. Endogenous basic fibroblast growth factor-dependent induction of collagenase and interleukin-6 in tumor necrosis factor-treated human microvascular endothelial cells. J. Biol. Chem. 266, 19162–19165 (1991).
- Griffioen, A. W. et al. The angiogenic factor bFGF impairs leukocyte adhesion and rolling under flow conditions. Angiogenesis 2, 235–243 (1998).
- Kim, H.-R. et al. FGF-2 inhibits TNF-α mediated apoptosis through upregulation of Bcl2-A1 and Bcl-xL in ATDC5 cells. BMB Rep. 45, 287–292 (2012).
- Chiang, J. Y. L. & Ferrell, J. M. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 4, 47–63 (2020). [CrossRef]
- Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999). [CrossRef]
- Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 103, 3920–3925 (2006).
- Lu, T. T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).
- Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17, 1581–1591 (2003).
- Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000). [CrossRef]
- Byun, S. et al. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J. Biol. Chem. 294, 8732–8744 (2019).
- Carambia, A. & Schuran, F. A. The aryl hydrocarbon receptor in liver inflammation. Semin. Immunopathol. 43, 563–575 (2021). [CrossRef]
- Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).
- Cella, M. & Colonna, M. Aryl hydrocarbon receptor: Linking environment to immunity. Semin. Immunol. 27, 310–314 (2015). [CrossRef]
- Ohashi, H. et al. The aryl hydrocarbon receptor-cytochrome P450 1A1 pathway controls lipid accumulation and enhances the permissiveness for hepatitis C virus assembly. J. Biol. Chem. 293, 19559–19571 (2018).
- Kim, Y.-C. et al. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle. Nat. Commun. 9, 540 (2018).
- Raja, A., Park, I., Haq, F. & Ahn, S.-M. FGF19-FGFR4 Signaling in Hepatocellular Carcinoma. Cells 8, (2019).
- Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19, 347–358 (2011).
- Zhao, H. et al. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation. Oncotarget 7, 13575–13586 (2016).
- Teng, Y. et al. FGF19 Protects Hepatocellular Carcinoma Cells against Endoplasmic Reticulum Stress via Activation of FGFR4-GSK3β-Nrf2 Signaling. Cancer Res. 77, 6215–6225 (2017). [CrossRef]
- Henriksson, E. & Andersen, B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 11, 601349 (2020).
- Cheng, X. et al. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR). Toxicol. Appl. Pharmacol. 278, 65–71 (2014). [CrossRef]
- Wenzlaff, A. S. et al. CYP1A1 and CYP1B1 polymorphisms and risk of lung cancer among never smokers: a population-based study. Carcinogenesis 26, 2207–2212 (2005). [CrossRef]
- Hagiwara, T. et al. Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Res. 65, 2979–2982 (2005).
- Qin, J. et al. Association between the CYP1A1 A2455G polymorphism and risk of cancer: evidence from 272 case-control studies. Tumour Biol. 35, 3363–3376 (2014).
- Schlessinger, J. & Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron 9, 383–391 (1992).
- Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).
- Latko, M. et al. Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 8, (2019). [CrossRef]
- Zheng, J. et al. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front. Chem. 10, 860985 (2022). [CrossRef]
- Terai, H. et al. Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol. Cancer Res. 11, 759–767 (2013). [CrossRef]
- Marek, L. et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol. 75, 196–207 (2009).
- Ware, K. E. et al. Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression. PLoS ONE 5, e14117 (2010).
- Salokas, K. et al. Physical and functional interactome atlas of human receptor tyrosine kinases. EMBO Rep. 23, e54041 (2022).
- Yokote, H. et al. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc Natl Acad Sci USA 102, 18866–18871 (2005).
- Trivier, E. & Ganesan, T. S. RYK, a catalytically inactive receptor tyrosine kinase, associates with EphB2 and EphB3 but does not interact with AF-6. J. Biol. Chem. 277, 23037–23043 (2002).
- Halford, M. M. et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat. Genet. 25, 414–418 (2000).
- Green, J., Nusse, R. & van Amerongen, R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb. Perspect. Biol. 6, (2014).
- Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004). [CrossRef]
- Wong, H.-C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003).
- Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–R406 (1998).
- Strochlic, L. et al. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS ONE 7, e29976 (2012).
- Zhang, B. et al. Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol. Brain 5, 7 (2012). [CrossRef]
- Fukuda, T. et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA 105, 3047–3052 (2008).
- Billiard, J. et al. The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol. Endocrinol. 19, 90–101 (2005).
- Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162, 899–908 (2003).
- Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006).
- Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003).
- Shimokawa, T. et al. Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res. 63, 6116–6120 (2003).
- Chamorro, M. N. et al. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73–84 (2005).
- Katoh, M. & Katoh, M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 5, 1059–1064 (2006).
- Zhang, J. et al. Targeting the Oncogenic FGF-FGFR Axis in Gastric Carcinogenesis. Cells 8, (2019). [CrossRef]
- Zhang, J. et al. FGF18-FGFR2 signaling triggers the activation of c-Jun-YAP1 axis to promote carcinogenesis in a subgroup of gastric cancer patients and indicates translational potential. Oncogene 39, 6647–6663 (2020). [CrossRef]
- Ooki, A. & Yamaguchi, K. The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration. Gastric Cancer 24, 1169–1183 (2021).
- Liu, W. et al. Relationship of EGFR mutations, expression, amplification, and polymorphisms to epidermal growth factor receptor inhibitors in the NCI60 cell lines. Clin. Cancer Res. 13, 6788–6795 (2007).
- Gebhardt, F., Zänker, K. S. & Brandt, B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J. Biol. Chem. 274, 13176–13180 (1999).
- Gebhardt, F., Bürger, H. & Brandt, B. Modulation of EGFR gene transcription by secondary structures, a polymorphic repetitive sequence and mutations--a link between genetics and epigenetics. Histol. Histopathol. 15, 929–936 (2000).
- Johnson, A. C., Ishii, S., Jinno, Y., Pastan, I. & Merlino, G. T. Epidermal growth factor receptor gene promoter. Deletion analysis and identification of nuclear protein binding sites. J. Biol. Chem. 263, 5693–5699 (1988).
- Liu, W. et al. A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res. 65, 46–53 (2005).
- Moriai, T., Kobrin, M. S. & Korc, M. Cloning of a variant epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 191, 1034–1039 (1993).
- Moriai, T., Kobrin, M. S., Hope, C., Speck, L. & Korc, M. A variant epidermal growth factor receptor exhibits altered type alpha transforming growth factor binding and transmembrane signaling. Proc Natl Acad Sci USA 91, 10217–10221 (1994).
- Wu, W.-J. et al. EGFR Q787Q polymorphism is a germline variant and a prognostic factor for lung cancer treated with tkis. Front. Oncol. 12, 816801 (2022).
- Ma, X., Ma, Z., Jiao, X. & Hejtmancik, J. F. Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways. Sci. Rep. 7, 9992 (2017).
- Jun, G. et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 5, e1000584 (2009).
- Zheng, M.-F., Ji, Y., Wu, X.-B., Ye, S.-G. & Chen, J.-Y. EphB4 gene polymorphism and protein expression in non-small-cell lung cancer. Mol. Med. Report. 6, 405–408 (2012).
- Gonzalez, R. D. et al. RYK Gene Expression Associated with Drug Response Variation of Temozolomide and Clinical Outcomes in Glioma Patients. Pharmaceuticals (Basel) 16, (2023).
- Chevessier, F. et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum. Mol. Genet. 13, 3229–3240 (2004).
- Afzal, A. R. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422 (2000).
- Schwabe, G. C. et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am. J. Hum. Genet. 67, 822–831 (2000).
- Gui, B. et al. Heterozygous recurrent mutations inducing dysfunction of ROR2 gene in patients with short stature. Front. Cell Dev. Biol. 9, 661747 (2021).
- Meng, L.-Q. Essential role of polymorphism of Gab1, EGFR, and EGF for the susceptibility of biliary tract cancer. Tumour Biol. 35, 12497–12508 (2014).
- Meng, L., Tian, Z., Wang, Y., Liu, Y. & Liu, J. Predictive and prognostic molecular markers for cholangiocarcinoma in Han Chinese population. Int. J. Clin. Exp. Med. 8, 13680–13689 (2015).
- Rustagi, T. & Dasanu, C. A. Risk factors for gallbladder cancer and cholangiocarcinoma: similarities, differences and updates. J. Gastrointest. Cancer 43, 137–147 (2012).
- Zheng, S. et al. Liver fluke infection and cholangiocarcinoma: a review. Parasitol. Res. 116, 11–19 (2017).
- Labib, P. L., Goodchild, G. & Pereira, S. P. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer 19, 185 (2019).
- Dienes, H. P. et al. Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis. Virchows Arch. 431, 119–124 (1997).
- Vesterhus, M. & Karlsen, T. H. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J. Gastroenterol. 55, 588–614 (2020).
- Cazares, J., Koga, H. & Yamataka, A. Choledochal cyst. Pediatr. Surg. Int. 39, 209 (2023).
- Cai, H. et al. Cholelithiasis and the risk of intrahepatic cholangiocarcinoma: a meta-analysis of observational studies. BMC Cancer 15, 831 (2015).
- Nordenstedt, H., Mattsson, F., El-Serag, H. & Lagergren, J. Gallstones and cholecystectomy in relation to risk of intra- and extrahepatic cholangiocarcinoma. Br. J. Cancer 106, 1011–1015 (2012).
- Melum, E. et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat. Genet. 43, 17–19 (2011).
- Ji, S.-G. et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269–273 (2017).
- Folseraas, T. et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57, 366–375 (2012).
- Ueda, Y., Kondo, N. & Kinashi, T. MST1/2 balance immune activation and tolerance by orchestrating adhesion, transcription, and organelle dynamics in lymphocytes. Front. Immunol. 11, 733 (2020). [CrossRef]
- Katagiri, K. et al. Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J. 28, 1319–1331 (2009). [CrossRef]
- Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999). [CrossRef]
- Li, J. et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J. Clin. Invest. 124, 3241–3251 (2014). [CrossRef]
- Lewis, J. T., Talwalkar, J. A., Rosen, C. B., Smyrk, T. C. & Abraham, S. C. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Am. J. Surg. Pathol. 34, 27–34 (2010).
- Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466 (2012).
- Thursz, M., Yallop, R., Goldin, R., Trepo, C. & Thomas, H. C. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet 354, 2119–2124 (1999).
- Thursz, M. Genetic susceptibility in chronic viral hepatitis. Antiviral Res. 52, 113–116 (2001).
- Kaewpitoon, N., Kaewpitoon, S.-J., Pengsaa, P. & Sripa, B. Opisthorchis viverrini: the carcinogenic human liver fluke. World J. Gastroenterol. 14, 666–674 (2008).
- Sripa, B. et al. The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer. Trends Parasitol. 28, 395–407 (2012).
- Huang, Y. et al. A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proc Natl Acad Sci USA 104, 985–990 (2007).
- Zhou, Y. et al. Hepatitis viruses infection and risk of intrahepatic cholangiocarcinoma: evidence from a meta-analysis. BMC Cancer 12, 289 (2012).
- Ralphs, S. & Khan, S. A. The role of the hepatitis viruses in cholangiocarcinoma. J. Viral Hepat. 20, 297–305 (2013). [CrossRef]
- Wang, Y., Yuan, Y. & Gu, D. Hepatitis B and C virus infections and the risk of biliary tract cancers: a meta-analysis of observational studies. Infect. Agents Cancer 17, 45 (2022). [CrossRef]
- An, P., Zeng, Z. & Winkler, C. A. The Loss-of-Function S267F Variant in HBV Receptor NTCP Reduces Human Risk for HBV Infection and Disease Progression. J. Infect. Dis. 218, 1404–1410 (2018).
- Hu, H.-H. et al. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut 65, 1514–1521 (2016). [CrossRef]
- Nfor, O. N. et al. Hepatitis B virus infection in Taiwan: The role of NTCP rs2296651 variant in relation to sex. J. Viral Hepat. 25, 1116–1120 (2018). [CrossRef]
- Wu, W. et al. Genetic variants in NTCP exon gene are associated with HBV infection status in a Chinese Han population. Hepatol. Res. 48, 364–372 (2018). [CrossRef]
- Yang, J. et al. A genetic variant of the NTCP gene is associated with HBV infection status in a Chinese population. BMC Cancer 16, 211 (2016).
- Wang, P. et al. Genetic variations of NTCP are associated with susceptibility to HBV infection and related hepatocellular carcinoma. Oncotarget 8, 105407–105424 (2017).
- Xu, H., Zhao, M., He, J. & Chen, Z. Association between cytotoxic T-lymphocyte associated protein 4 gene +49 A/G polymorphism and chronic infection with hepatitis B virus: a meta-analysis. J. Int. Med. Res. 41, 559–567 (2013).
- Liao, S.-Y., Lerman, M. I. & Stanbridge, E. J. Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development. BMC Dev. Biol. 9, 22 (2009).
- Fan, M. et al. New Gene Variants Associated with the Risk of Chronic HBV Infection. Virol. Sin. 35, 378–387 (2020).
- Kearney, C. J., Randall, K. L. & Oliaro, J. DOCK8 regulates signal transduction events to control immunity. Cell. Mol. Immunol. 14, 406–411 (2017).
- Kunimura, K., Uruno, T. & Fukui, Y. DOCK family proteins: key players in immune surveillance mechanisms. Int. Immunol. 32, 5–15 (2020).
- Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).
- Chen, X.-M. et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J. Immunol. 175, 7447–7456 (2005).
- Huang, Y.-H. et al. Expression of toll-like receptors and type 1 interferon specific protein MxA in biliary atresia. Lab. Invest. 87, 66–74 (2007).
- Ma, Z., Zhang, E., Yang, D. & Lu, M. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell. Mol. Immunol. 12, 273–282 (2015). [CrossRef]
- Zhang, E. & Lu, M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med. Microbiol. Immunol. 204, 11–20 (2015). [CrossRef]
- Chen, D. et al. Gene polymorphisms of TLR2 and TLR3 in HBV clearance and HBV-related hepatocellular carcinoma in a Chinese male population. Int. J. Biol. Markers 32, e195–e201 (2017).
- Al-Qahtani, A. et al. Toll-like receptor 3 polymorphism and its association with hepatitis B virus infection in Saudi Arabian patients. J. Med. Virol. 84, 1353–1359 (2012).
- Huang, X. et al. Genetic polymorphisms in Toll-like receptor 3 gene are associated with the risk of hepatitis B virus-related liver diseases in a Chinese population. Gene 569, 218–224 (2015).
- Rong, Y. et al. Association of Toll-like receptor 3 polymorphisms with chronic hepatitis B and hepatitis B-related acute-on-chronic liver failure. Inflammation 36, 413–418 (2013).
- Zhu, J. et al. Toll like receptor7 polymorphisms in relation to disease susceptibility and progression in Chinese patients with chronic HBV infection. Sci. Rep. 7, 12417 (2017).
- He, D. et al. Interaction of TLR-IFN and HLA polymorphisms on susceptibility of chronic HBV infection in Southwest Han Chinese. Liver Int. 35, 1941–1949 (2015).
- Walsh, M. J. et al. Blockade of innate inflammatory cytokines TNFα, IL-1β, or IL-6 overcomes virotherapy-induced cancer equilibrium to promote tumor regression. Immunother. Adv. 3, ltad011 (2023). [CrossRef]
- Saxena, R., Chawla, Y. K., Verma, I. & Kaur, J. Effect of IL-12B, IL-2, TGF-β1, and IL-4 polymorphism and expression on hepatitis B progression. J. Interferon Cytokine Res. 34, 117–128 (2014).
- Chang, L. et al. The association between three IL-6 polymorphisms and HBV-related liver diseases: a meta-analysis. Int. J. Clin. Exp. Med. 8, 17036–17045 (2015).
- Chen, D.-Q. et al. Association of candidate susceptible loci with chronic infection with hepatitis B virus in a Chinese population. J. Med. Virol. 82, 371–378 (2010).
- Cheong, J. Y. et al. Association between chronic hepatitis B virus infection and interleukin-10, tumor necrosis factor-alpha gene promoter polymorphisms. J. Gastroenterol. Hepatol. 21, 1163–1169 (2006).
- Frodsham, A. J. et al. Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. Proc Natl Acad Sci USA 103, 9148–9153 (2006).
- Gong, Q. M. et al. Association study of IFNAR2 and IL10RB genes with the susceptibility and interferon response in HBV infection. J. Viral Hepat. 16, 674–680 (2009).
- Ma, N. et al. Role of IFN-ks, IFN-ks related genes and the DEPDC5 gene in Hepatitis B virus-related liver disease. J. Viral Hepat. 21, e29-38 (2014).
- Romporn, S., Hirankarn, N., Tangkijvanich, P. & Kimkong, I. Association of IFNAR2 and IL10RB genes in chronic hepatitis B virus infection. Tissue Antigens 82, 21–25 (2013).
- Talaat, R. M., Dondeti, M. F., El-Shenawy, S. Z. & Khamiss, O. A. Association between IL-10 gene promoter polymorphism and hepatitis B viral infection in an Egyptian population. Biochem. Genet. 52, 387–402 (2014).
- Zhang, T. C. et al. A meta-analysis of the relation of polymorphism at sites -1082 and -592 of the IL-10 gene promoter with susceptibility and clearance to persistent hepatitis B virus infection in the Chinese population. Infection 39, 21–27 (2011). [CrossRef]
- Mohsen, R. T., Al-azzawi, R. H. & Ad’hiah, A. H. Single nucleotide polymorphisms of interleukin-35 subunit genes predict host susceptibility to chronic hepatitis B virus infection among Iraqi patients. Meta Gene 25, 100735 (2020).
- Li, S. et al. Genetic polymorphism of interleukin-16 influences susceptibility to HBV-related hepatocellular carcinoma in a Chinese population. Infect. Genet. Evol. 11, 2083–2088 (2011).
- Karra, V. K. et al. IL-18 polymorphisms in hepatitis B virus related liver disease. Cytokine 73, 277–282 (2015).
- Li, N. et al. IL21 and IL21R polymorphisms and their interactive effects on serum IL-21 and IgE levels in patients with chronic hepatitis B virus infection. Hum. Immunol. 74, 567–573 (2013).
- Karataylı, S. C. et al. Interleukin-28 gene polymorphisms may contribute to HBsAg persistence and the development of HBeAg-negative chronic hepatitis B. Liver Int. 35, 846–853 (2015).
- Xia, Q., Zhou, L., Liu, D., Chen, Z. & Chen, F. Relationship between TNF- gene promoter polymorphisms and outcomes of hepatitis B virus infections: a meta-analysis. PLoS ONE 6, e19606 (2011).
- Du, T. et al. Association of TNF-alpha promoter polymorphisms with the outcomes of hepatitis B virus infection in Chinese Han population. J. Viral Hepat. 13, 618–624 (2006). [CrossRef]
- Liu, M. et al. Association of interferon-gamma gene haplotype in the Chinese population with hepatitis B virus infection. Immunogenetics 58, 859–864 (2006). [CrossRef]
- Ma, N. et al. Role of Functional IFNL4, IFNLR1, IFNA, IFNAR2 Polymorphisms in Hepatitis B virus-related liver disease in Han Chinese population. J. Viral Hepat. 25, 306–313 (2018).
- Eskandari, E., Metanat, M., Pahlevani, E. & Nakhzari-Khodakheir, T. Association between TGFβ1 polymorphisms and chronic hepatitis B infection in an Iranian population. Rev. Soc. Bras. Med. Trop. 50, 301–308 (2017).
- Gerold, G., Moeller, R. & Pietschmann, T. Hepatitis C virus entry: protein interactions and fusion determinants governing productive hepatocyte invasion. Cold Spring Harb. Perspect. Med. 10, (2020).
- Petit, J.-M. et al. Cell surface expression of LDL receptor in chronic hepatitis C: correlation with viral load. Am. J. Physiol. Endocrinol. Metab. 293, E416-20 (2007).
- Gao, F., Ihn, H. E., Medina, M. W. & Krauss, R. M. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum. Mol. Genet. 22, 1424–1431 (2013).
- Steba, G. S. et al. SNP rs688 within the low-density lipoprotein receptor (LDL-R) gene associates with HCV susceptibility. Liver Int. 39, 463–469 (2019). [CrossRef]
- Naga, M. et al. Low-density lipoprotein receptor genetic polymorphism in chronic hepatitis C virus Egyptian patients affects treatment response. World J. Gastroenterol. 21, 11141–11151 (2015).
- Hennig, B. J. W. et al. Association of low-density lipoprotein receptor polymorphisms and outcome of hepatitis C infection. Genes Immun. 3, 359–367 (2002). [CrossRef]
- Li, H., Liu, Z., Han, Q., Li, Y. & Chen, J. Association of genetic polymorphism of low-density lipoprotein receptor with chronic viral hepatitis C infection in Han Chinese. J. Med. Virol. 78, 1289–1295 (2006).
- Sun, S., Jin, G. & Kang, H. CD81 and CLDN1 polymorphisms and hepatitis C virus infection susceptibility: a case control study. Gene 567, 87–91 (2015). [CrossRef]
- Song, Y. et al. STAT3 signaling pathway plays importantly genetic and functional roles in HCV infection. Mol. Genet. Genomic Med. 7, e821 (2019).
- Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).
- Ahlenstiel, G., Booth, D. R. & George, J. IL28B in hepatitis C virus infection: translating pharmacogenomics into clinical practice. J. Gastroenterol. 45, 903–910 (2010). [CrossRef]
- Hegazy, D. et al. Interleukin 12B gene polymorphism and apparent resistance to hepatitis C virus infection. Clin. Exp. Immunol. 152, 538–541 (2008). [CrossRef]
- McCarthy, J. J. et al. Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroenterology 138, 2307–2314 (2010).
- Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).
- Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–45, 1345.e1 (2010).
- Arumugam, D., Semalaiyappan, J., Mookiah, B. & Kuttiatt, V. S. Genetic Polymorphisms of IL-18 and Their Association with Infectious Diseases– An Update. Curr. Genet. Med. Rep. 13, 5 (2025).
- Agrawal, S. & Kandimalla, E. R. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem. Soc. Trans. 35, 1461–1467 (2007).
- Horsmans, Y. et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 42, 724–731 (2005). [CrossRef]
- Wang, C.-H. et al. TLR7 and TLR8 gene variations and susceptibility to hepatitis C virus infection. PLoS ONE 6, e26235 (2011).
- Wang, C.-H. et al. Functional polymorphisms of TLR8 are associated with hepatitis C virus infection. Immunology 141, 540–548 (2014). [CrossRef]
- Androutsopoulos, V. P., Tsatsakis, A. M. & Spandidos, D. A. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9, 187 (2009). [CrossRef]
- Prawan, A., Kukongviriyapan, V., Tassaneeyakul, W., Pairojkul, C. & Bhudhisawasdi, V. Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. Eur. J. Cancer Prev. 14, 245–250 (2005). [CrossRef]
- Ketterer, B. Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat. Res. 202, 343–361 (1988). [CrossRef]
- Perera, F. P. Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst 88, 496–509 (1996).
- Mannervik, B. et al. Nomenclature for human glutathione transferases. Biochem. J. 282 ( Pt 1), 305–306 (1992).
- Seidegård, J., Vorachek, W. R., Pero, R. W. & Pearson, W. R. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85, 7293–7297 (1988). [CrossRef]
- Pemble, S. et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 300 ( Pt 1), 271–276 (1994).
- Board, P. G., Webb, G. C. & Coggan, M. Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann. Hum. Genet. 53, 205–213 (1989).
- Ali-Osman, F., Akande, O., Antoun, G., Mao, J. X. & Buolamwini, J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J. Biol. Chem. 272, 10004–10012 (1997).
- Watson, M. A., Stewart, R. K., Smith, G. B., Massey, T. E. & Bell, D. A. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19, 275–280 (1998).
- Harries, L. W., Stubbins, M. J., Forman, D., Howard, G. C. & Wolf, C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18, 641–644 (1997). [CrossRef]
- Hashibe, M. et al. Meta- and pooled analyses of GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes and risk of head and neck cancer. Cancer Epidemiol. Biomarkers Prev. 12, 1509–1517 (2003).
- Varela-Lema, L. et al. Meta-analysis and pooled analysis of GSTM1 and CYP1A1 polymorphisms and oral and pharyngeal cancers: a HuGE-GSEC review. Genet. Med. 10, 369–384 (2008). [CrossRef]
- Sull, J. W., Ohrr, H., Kang, D. R. & Nam, C. M. Glutathione S-transferase M1 status and breast cancer risk: a meta-analysis. Yonsei Med. J. 45, 683–689 (2004). [CrossRef]
- White, D. L., Li, D., Nurgalieva, Z. & El-Serag, H. B. Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am. J. Epidemiol. 167, 377–389 (2008). [CrossRef]
- Shi, X., Zhou, S., Wang, Z., Zhou, Z. & Wang, Z. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer 59, 155–163 (2008).
- Honjo, S. et al. Genetic and environmental determinants of risk for cholangiocarcinoma via Opisthorchis viverrini in a densely infested area in Nakhon Phanom, northeast Thailand. Int. J. Cancer 117, 854–860 (2005).
- Menon, D. & Board, P. G. A role for glutathione transferase Omega 1 (GSTO1-1) in the glutathionylation cycle. J. Biol. Chem. 288, 25769–25779 (2013).
- Marahatta, S. B. et al. Polymorphism of glutathione S-transferase omega gene and risk of cancer. Cancer Lett. 236, 276–281 (2006). [CrossRef]
- Sazci, A. et al. Methylenetetrahydrofolate reductase gene polymorphisms in patients with nonalcoholic steatohepatitis (NASH). Cell Biochem. Funct. 26, 291–296 (2008). [CrossRef]
- Songserm, N. et al. MTHFR polymorphisms and Opisthorchis viverrini infection: a relationship with increased susceptibility to cholangiocarcinoma in Thailand. Asian Pac. J. Cancer Prev. 12, 1341–1345 (2011).
- Ko, K. H. et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) and thymidylate synthase enhancer region (TSER) as a risk factor of cholangiocarcinoma in a Korean population. Anticancer Res. 26, 4229–4233 (2006).
- Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).
- Hoblinger, A., Grunhage, F., Sauerbruch, T. & Lammert, F. Association of the c.3972C>T variant of the multidrug resistance-associated protein 2 Gene (MRP2/ABCC2) with susceptibility to bile duct cancer. Digestion 80, 36–39 (2009).
- Parida, L. & Patel, T. N. Systemic impact of heavy metals and their role in cancer development: a review. Environ. Monit. Assess. 195, 766 (2023).
- Kasmi, S. et al. Carcinogenic effect of arsenic in digestive cancers: a systematic review. Environ. Health 22, 36 (2023).
- Reyes, D., Ganesan, N., Boffetta, P. & Labgaa, I. Arsenic-contaminated drinking water and cholangiocarcinoma. Eur. J. Cancer Prev. 32, 10–17 (2023).
- Challenger, Frederick. Biological Methylation. Chem. Rev. 36, 315–361 (1945). [CrossRef]
- Hayakawa, T., Kobayashi, Y., Cui, X. & Hirano, S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 79, 183–191 (2005).
- De Chaudhuri, S. et al. Genetic variants associated with arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) methyltransferase, and glutathione S-transferase omega genes. Environ. Health Perspect. 116, 501–505 (2008).
- Agusa, T., Fujihara, J., Takeshita, H. & Iwata, H. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int. J. Mol. Sci. 12, 2351–2382 (2011). [CrossRef]
- Loffredo, C. A., Aposhian, H. V., Cebrian, M. E., Yamauchi, H. & Silbergeld, E. K. Variability in human metabolism of arsenic. Environ. Res. 92, 85–91 (2003). [CrossRef]
- Schläwicke Engström, K. et al. Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ. Health Perspect. 115, 599–605 (2007). [CrossRef]
- Marnell, L. L. et al. Polymorphisms in the human monomethylarsonic acid (MMA V) reductase/hGSTO1 gene and changes in urinary arsenic profiles. Chem. Res. Toxicol. 16, 1507–1513 (2003).
- Marcos, R. et al. Metabolic profile in workers occupationally exposed to arsenic: role of GST polymorphisms. J. Occup. Environ. Med. 48, 334–341 (2006).
- Chiou, H. Y. et al. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat. Res. 386, 197–207 (1997).
- Li, J., Zhao, C. & Shen, Y. Autoimmune cholangitis and cholangiocarcinoma. J. Gastroenterol. Hepatol. 27, 1783–1789 (2012). [CrossRef]
- Paillet, J. et al. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J. Exp. Med. 218, (2021).
- Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).
- Gao, J., Qiao, L. & Wang, B. Primary biliary cirrhosis is a generalized autoimmune epithelitis. Int. J. Mol. Sci. 16, 6432–6446 (2015). [CrossRef]
- Hov, J. R. et al. Genetic associations in Italian primary sclerosing cholangitis: heterogeneity across Europe defines a critical role for HLA-C. J. Hepatol. 52, 712–717 (2010).
- Karlsen, T. H. et al. Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J. Hepatol. 46, 899–906 (2007). [CrossRef]
- Spurkland, A. et al. HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens 53, 459–469 (1999).
- Wiencke, K. et al. Primary sclerosing cholangitis is associated with extended HLA-DR3 and HLA-DR6 haplotypes. Tissue Antigens 69, 161–169 (2007).
- Broomé, U., Glaumann, H., Hultcrantz, R. & Forsum, U. Distribution of HLA-DR, HLA-DP, HLA-DQ antigens in liver tissue from patients with primary sclerosing cholangitis. Scand. J. Gastroenterol. 25, 54–58 (1990). [CrossRef]
- Chapman, R. W., Kelly, P. M., Heryet, A., Jewell, D. P. & Fleming, K. A. Expression of HLA-DR antigens on bile duct epithelium in primary sclerosing cholangitis. Gut 29, 422–427 (1988). [CrossRef]
- Janse, M. et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 53, 1977–1985 (2011).
- Stallhofer, J. et al. Analysis of IL2/IL21 gene variants in cholestatic liver diseases reveals an association with primary sclerosing cholangitis. Digestion 84, 29–35 (2011).
- Hirschfield, G. M. et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360, 2544–2555 (2009).
- Krawczyk, M. et al. Macrophage stimulating protein variation enhances the risk of sporadic extrahepatic cholangiocarcinoma. Dig. Liver Dis. 45, 612–615 (2013).
- Wadsworth, C. A. et al. Polymorphisms in natural killer cell receptor protein 2D (NKG2D) as a risk factor for cholangiocarcinoma. J. Clin. Exp. Hepatol. 9, 171–175 (2019). [CrossRef]
- Melum, E. et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology 47, 90–96 (2008).
- Karlsen, T. H. et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138, 1102–1111 (2010).
- Cheung, A. C., Lorenzo Pisarello, M. J. & LaRusso, N. F. Pathobiology of biliary epithelia. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1220–1231 (2018).
- Alvaro, D., Gigliozzi, A. & Attili, A. F. Regulation and deregulation of cholangiocyte proliferation. J. Hepatol. 33, 333–340 (2000).
- O’Hara, S. P., Tabibian, J. H., Splinter, P. L. & LaRusso, N. F. The dynamic biliary epithelia: molecules, pathways, and disease. J. Hepatol. 58, 575–582 (2013).
- Popper, H., Kent, G. & Stein, R. Ductular cell reaction in the liver in hepatic injury. J Mt Sinai Hosp N Y 24, 551–556 (1957).
- LaRusso, N. F. Morphology, physiology, and biochemistry of biliary epithelia. Toxicol. Pathol. 24, 84–89 (1996).
- Ferkingstad, E. et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat. Commun. 9, 5101 (2018).
- Mariotti, V., Fiorotto, R., Cadamuro, M., Fabris, L. & Strazzabosco, M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 3, 100251 (2021).
- Sinha, A. et al. ABCB4 Mutations in Adults Cause a Spectrum Cholestatic Disorder Histologically Distinct from Other Biliary Disease. Dig. Dis. Sci. 67, 5551–5561 (2022).
- Kruk, B., Milkiewicz, M., Raszeja-Wyszomirska, J., Milkiewicz, P. & Krawczyk, M. A common variant in the hepatobiliary phospholipid transporter ABCB4 modulates liver injury in PBC but not in PSC: prospective analysis in 867 patients. Orphanet J. Rare Dis. 17, 419 (2022).
- Keitel, V., Donner, M., Winandy, S., Kubitz, R. & Häussinger, D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun. 372, 78–84 (2008).
- Colombo, C. Liver disease in cystic fibrosis. Curr. Opin. Pulm. Med. 13, 529–536 (2007).
- Sheth, S. et al. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum. Genet. 113, 286–292 (2003).
- Pall, H. et al. Primary sclerosing cholangitis in childhood is associated with abnormalities in cystic fibrosis-mediated chloride channel function. J. Pediatr. 151, 255–259 (2007).
- Beuers, U. et al. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52, 1489–1496 (2010).
- Blanco, P. G. et al. Induction of colitis in cftr-/- mice results in bile duct injury. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G491-6 (2004).
- Plowman, P. N. & Plowman, C. E. Onco-ontogeny recapitulates phylogeny - a consideration. Oncogene 40, 1542–1550 (2021).
- Brace, C. L. Ontogeny and phylogeny. stephen J. gould. Am. Anthropol. 80, 982–984 (1978).
- Maehle, A.-H. Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec. R. Soc. Lond. 65, 359–378 (2011).
- Tata, P. R. et al. Developmental history provides a roadmap for the emergence of tumor plasticity. Dev. Cell 44, 679-693.e5 (2018).
- Tu, S.-M. et al. Stem cell origin of cancer: implications of oncogenesis recapitulating embryogenesis in cancer care. Cancers (Basel) 15, (2023). [CrossRef]
- Hanahan, D. Hallmarks of cancer: New Dimensions. Cancer Discov. 12, 31–46 (2022). [CrossRef]
- Sharma, A., Blériot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and progression. Nat. Rev. Cancer 22, 593–602 (2022).
- Tu, S.-M. Origin of cancers. Clinical perspectives and implications of a stem-cell theory of cancer. Cancer Treat. Res. 154, v–239 (2010).
- Fatma, H. & Siddique, H. R. Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked? Cancer Metastasis Rev. 43, 423–440 (2024).
- Yang, J., Sontag, D., Kung, S. & Minuk, G. Y. Fibroblast Growth Factor 19 Induced Changes in Non-malignant Cholangiocytes. J. Clin. Transl. Hepatol. 9, 909–916 (2021).
- Crawford, J. M. Development of the intrahepatic biliary tree. Semin. Liver Dis. 22, 213–226 (2002). [CrossRef]
- P. Lemaigre, F. Development of the biliary tract. Mech. Dev. 120, 81–87 (2003).
- Allen, R. A. & Lisa, J. R. Combined liver cell and bile duct carcinoma. Am. J. Pathol. 25, 647–655 (1949).
- Roskams, T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25, 3818–3822 (2006). [CrossRef]
- Komuta, M. et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 47, 1544–1556 (2008). [CrossRef]
- Sasaki, M. et al. Clinicopathological significance of “subtypes with stem-cell feature” in combined hepatocellular-cholangiocarcinoma. Liver Int. 35, 1024–1035 (2015).
- Chiba, T. et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 133, 937–950 (2007).
- Vernet, A., Corthier, G., Dubos-Ramaré, F. & Parodi, A. L. Relationship between levels of Clostridium difficile toxin A and toxin B and cecal lesions in gnotobiotic mice. Infect. Immun. 57, 2123–2127 (1989).
- Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013). [CrossRef]
- Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).
- Oo, Y. H. et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 57, 1044–1051 (2012). [CrossRef]
- Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).
- Kamihira, T. et al. Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific diseases. Hepatology 41, 151–159 (2005). [CrossRef]
- Guicciardi, M. E. et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J. Hepatol. 69, 676–686 (2018).
- Kaffe, E. et al. β-Catenin and interleukin-1β-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67, 1903–1919 (2018).
- Kruglov, E. A., Nathanson, R. A., Nguyen, T. & Dranoff, J. A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G765-71 (2006).
- O’Hara, S. P. et al. Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. J. Biol. Chem. 286, 30352–30360 (2011).
- Harada, K. et al. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin. Exp. Immunol. 157, 261–270 (2009).
- Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).
- Elsegood, C. L. et al. Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 62, 1272–1284 (2015).
- Van Hul, N. et al. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am. J. Pathol. 179, 1839–1850 (2011).
- Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011). [CrossRef]
- Irvine, K. M. et al. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. Fibrogenesis Tissue Repair 8, 19 (2015). [CrossRef]
- Xu, T. et al. Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-ɑvβ6 integrin in liver fibrosis. Cell Death Dis. 11, 199 (2020).
- Böhm, F. et al. FGF receptors 1 and 2 control chemically induced injury and compound detoxification in regenerating livers of mice. Gastroenterology 139, 1385–1396 (2010). [CrossRef]
- Fearon, A. E. et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience 24, 103143 (2021). [CrossRef]
- Maddaluno, L., Urwyler, C. & Werner, S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 144, 4047–4060 (2017). [CrossRef]
- Padrissa-Altés, S. et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 64, 1444–1453 (2015).
- Alvarez-Sola, G. et al. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1326–1334 (2018).
- Calmont, A. et al. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev. Cell 11, 339–348 (2006).
- Takase, H. M. et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 27, 169–181 (2013).
- Steiling, H. et al. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene 22, 4380–4388 (2003).
- Itoh, N., Nakayama, Y. & Konishi, M. Roles of fgfs as paracrine or endocrine signals in liver development, health, and disease. Front. Cell Dev. Biol. 4, 30 (2016).
- Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).
- Tiwari, A., Trivedi, R. & Lin, S.-Y. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J. Biomed. Sci. 29, 83 (2022). [CrossRef]
- Chmiel, P., Gęca, K., Rawicz-Pruszyński, K., Polkowski, W. P. & Skórzewska, M. FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 11, (2022).
- Sridharan, V. et al. FGFR mRNA Expression in Cholangiocarcinoma and Its Correlation with FGFR2 Fusion Status and Immune Signatures. Clin. Cancer Res. 28, 5431–5439 (2022). [CrossRef]
- Cai, C., Wang, X., Fu, Q. & Chen, A. The VEGF expression associated with prognosis in patients with intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. World J. Surg. Oncol. 20, 40 (2022). [CrossRef]
- Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).
- Deng, H. et al. Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma. Liver Cancer 9, 338–357 (2020).
- Im, J. H. et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat. Commun. 11, 4064 (2020).
- Kato, Y. et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 14, e0212513 (2019). [CrossRef]
- Bourhis, M., Palle, J., Galy-Fauroux, I. & Terme, M. Direct and Indirect Modulation of T Cells by VEGF-A Counteracted by Anti-Angiogenic Treatment. Front. Immunol. 12, 616837 (2021).
- Skrypnik, D., Mostowska, A., Jagodziński, P. P. & Bogdański, P. Association of rs699947 (-2578 C/A) and rs2010963 (-634 G/C) Single Nucleotide Polymorphisms of the VEGF Gene, VEGF-A and Leptin Serum Level, and Cardiovascular Risk in Patients with Excess Body Mass: A Case-Control Study. J. Clin. Med. 9, (2020).
- Renner, W., Kotschan, S., Hoffmann, C., Obermayer-Pietsch, B. & Pilger, E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J. Vasc. Res. 37, 443–448 (2000). [CrossRef]
- Choi, S. H. et al. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet. 12, e1005874 (2016). [CrossRef]
- Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).
- Zhang, Y. et al. Association between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and breast cancer susceptibility: a meta-analysis. Oncotarget 8, 3454–3470 (2017).
- Ulaganathan, V. K., Sperl, B., Rapp, U. R. & Ullrich, A. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570–574 (2015).
- Vazgiourakis, V. M. et al. Implication of VEGFR2 in systemic lupus erythematosus: a combined genetic and structural biological approach. Clin. Exp. Rheumatol. 31, 97–102 (2013).
- Glubb, D. M. et al. Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin. Cancer Res. 17, 5257–5267 (2011).
- Dong, G. et al. Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci. 103, 561–568 (2012).
- Yanai, M. et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev. Dyn. 237, 1268–1283 (2008).
- Janssen, B. V. et al. Comprehensive classification of anatomical variants of the main biliary ducts. Br. J. Surg. 108, 458–462 (2021).
- Chiasson-MacKenzie, C. et al. Distinct phenotypic consequences of cholangiocarcinoma-associated FGFR2 alterations depend on biliary epithelial cell state. BioRxiv (2025). [CrossRef]
- Islek, A. & Tumgor, G. Biliary atresia and congenital disorders of the extrahepatic bile ducts. World J. Gastrointest. Pharmacol. Ther. 13, 33–46 (2022).
- Zweers, S. J. L. B. et al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55, 575–583 (2012).
- Yang, C. et al. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS ONE 7, e33870 (2012).
- Dolegowska, K., Marchelek-Mysliwiec, M., Nowosiad-Magda, M., Slawinski, M. & Dolegowska, B. FGF19 subfamily members: FGF19 and FGF21. J. Physiol. Biochem. 75, 229–240 (2019).
- Kurosu, H. et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007). [CrossRef]
- Chiang, J. Y. L. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).
- Bertolini, A., Fiorotto, R. & Strazzabosco, M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin. Immunopathol. 44, 547–564 (2022).
- Chefetz, I. et al. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum. Genet. 118, 261–266 (2005).
- Biagioli, M. et al. GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cell. Mol. Gastroenterol. Hepatol. 8, 447–473 (2019). [CrossRef]
- Fiorucci, S., Distrutti, E., Carino, A., Zampella, A. & Biagioli, M. Bile acids and their receptors in metabolic disorders. Prog. Lipid Res. 82, 101094 (2021). [CrossRef]
- Sánchez, A. & Fabregat, I. Growth factor- and cytokine-driven pathways governing liver stemness and differentiation. World J. Gastroenterol. 16, 5148–5161 (2010).
- Li, R., Li, D. & Nie, Y. IL-6/gp130 signaling: a key unlocking regeneration. Cell Regen (Lond) 12, 16 (2023).
- Moustakas, A. & Heldin, C.-H. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J. Clin. Med. 5, (2016).
- Schaub, J. R. et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).
- Cai, X., Tacke, F., Guillot, A. & Liu, H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front. Immunol. 14, 1192840 (2023).
- Mizuno, S. & Osaki, E. Molecular Basis of Fibrogenesis and Angiogenesis During Chronic Liver Disease: Impact of TGF-β and VEGF on Pathogenic Pathways. in Liver diseases: A multidisciplinary textbook (eds. Radu-Ionita, F. et al.) 65–74 (Springer International Publishing, 2020). [CrossRef]
- Cao, J. et al. Intrahepatic cholangiocarcinoma: genomic heterogeneity between eastern and western patients. JCO Precis. Oncol. 4, (2020).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
