Submitted:
17 November 2025
Posted:
18 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Effect of Climate Change on Host Fish
4. Climate Change and Fish Production
5. Climate Change and Parasites
Acknowledgments
Conflicts of Interest
References
- Brander, K.; Cochrane, K.; Barange, M.; Soto, D. Climate change implications for fisheries and aquaculture. Climate change impacts on fisheries aquaculture: A global analysis 2017, 1, 45–62. [Google Scholar] [CrossRef]
- Pachauri, R. K.; Allen, M. R.; Barros, V. R.; Broome, J.; Cramer, W.; Christ, R.; Church, J. A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change; Ipcc, 2014. Available in: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf. Accessed in: Jan 20, 2025.
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecology letters 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Ojima, R.; Marandola Jr, E. Mudanças climáticas e as cidades: novos e antigos debates na busca da sustentabilidade urbana e social; Editora Blucher, 2013.
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Patz, J. A.; Graczyk, T. K.; Geller, N.; Vittor, A. Y. Effects of environmental change on emerging parasitic diseases. International journal for parasitology 2000, 30, 1395–1405. [Google Scholar] [CrossRef]
- Charron, D. F.; Thomas, M. K.; Waltner-Toews, D.; Aramini, J. J.; Edge, T.; Kent, R. A.; Maarouf, A. R.; Wilson, J. Vulnerability of waterborne diseases to climate change in Canada: a review. Journal of Toxicology Environmental Health, Part A 2004, 67, 1667–1677. [Google Scholar] [CrossRef]
- Confalonieri, U. E.; Margonari, C.; Quintão, A. F. Environmental change and the dynamics of parasitic diseases in the Amazon. Acta tropica 2014, 129, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F. Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. International Journal for Parasitology: parasites wildlife 2015, 4, 452–461. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, R. S.; Campbell-Lendrum, D.; Corvalán, C. Climate change and human health: impacts, vulnerability and public health. Public health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Lafferty, K. D. Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology today 1997, 13, 251–255. [Google Scholar] [CrossRef]
- McMichael, A. J.; Woodruff, R. E.; Hales, S. Climate change and human health: present and future risks. The Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Pascual, M.; Dobson, A. Seasonal patterns of infectious diseases. PLoS Medicine 2005, 2, e5. [Google Scholar] [CrossRef]
- Reeves, W. C.; Hardy, J. L.; Reisen, W. K.; Milby, M. M. Potential effect of global warming on mosquito-borne arboviruses. Journal of medical entomology 1994, 31, 323–332. [Google Scholar] [CrossRef]
- Byers, J. E. Marine parasites and disease in the era of global climate change. Annual Review of Marine Science 2021, 13, 397–420. [Google Scholar] [CrossRef]
- Araujo, A.; Rangel, A.; Ferreira, L. F. R. Climatic change in northeastern Brazil: paleoparasitological data. Memórias do Instituto Oswaldo Cruz 1993, 88, 577–579. [Google Scholar] [CrossRef]
- Dunn, R. R.; Davies, T. J.; Harris, N. C.; Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proceedings of the Royal Society B: Biological Sciences 2010, 277, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Nava, A.; Shimabukuro, J. S.; Chmura, A. A.; Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR journal 2017, 58, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A. R. S. d.; Motta-Veiga, M. Análise dos impactos sociais e à saúde de grandes empreendimentos hidrelétricos: lições para uma gestão energética sustentável. Ciência Saúde Coletiva 2012, 17, 1387–1398. [Google Scholar] [CrossRef]
- Rosado-García, F. M.; Guerrero-Flórez, M.; Karanis, G.; Hinojosa, M. D. C.; Karanis, P. Water-borne protozoa parasites: the Latin American perspective. International Journal of Hygiene Environmental Health 2017, 220, 783–798. [Google Scholar] [CrossRef]
- Short, E. E.; Caminade, C.; Thomas, B. N. Climate change contribution to the emergence or re-emergence of parasitic diseases. Infectious Diseases: Research Treatment 2017, 10, 1178633617732296. [Google Scholar] [CrossRef]
- Fecchio, A.; Wells, K.; Bell, J. A.; Tkach, V. V.; Lutz, H. L.; Weckstein, J. D.; Clegg, S. M.; Clark, N. J. Climate variation influences host specificity in avian malaria parasites. Ecology Letters 2019, 22, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, D.; Šimková, A.; Jarkovský, J.; Gelnar, M. Parasite communities of freshwater fish under flood conditions. Parasitology Research 2003, 89, 272–283. [Google Scholar] [CrossRef]
- Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev. sci. tech. Off. int. Epiz 2008, 27, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J. R.; Dobson, A. P.; Johnson, P. T. J.; Kilpatrick, A. M.; Paull, S. H.; Raffel, T. R.; Ruiz-Moreno, D.; Thomas, M. B. Frontiers in climate change–disease research. Trends in ecology evolution 2011, 26, 270–277. [Google Scholar] [CrossRef]
- Godfrey, G. H. Effect of temperature and moisture on nematode root knot. JOURNAL OF AGRICULTURAL RESEARCH 1926, 33, 0223–0254. [Google Scholar]
- Lesage, V.; Hammill, M. O. The status of the Grey Seal, Halichoerus grypus, in yhe Northwest Atlantic. THE CANADIAN FIELD-NATURALIST 2001, 115, 653–662. [Google Scholar] [CrossRef]
- Byers, J. E. Marine Parasites and Disease in the Era of Global Climate Change. Annual Review ofMarine Science 2021, 397, 420. [Google Scholar] [CrossRef] [PubMed]
- Lauringson, M.; Nousiainen, I.; Kahar, S.; Burimski, O.; Gross, R.; Kaart, T.; Vasemägi, A. Climate change-driven disease in sympatric hosts: Temporal dynamics of parasite burden and proliferative kidney disease in wild brown trout and Atlantic salmon. Journal Fish Diseases 2021, 44, 689–699. [Google Scholar] [CrossRef]
- Ros, A.; Baer, J.; Basen, T.; Chucholl, C.; Schneider, E.; Teschner, R.; Brinker, A. Current and projected impacts of the parasite Tetracapsuloides bryosalmonae (causative to proliferative kidney disease) on Central European salmonid populations under predicted climate change. Freshwater Biology 2021, 66, 1182–1199. [Google Scholar] [CrossRef]
- Borgwardt, F.; Unfer, G.; Auer, S.; Waldner, K.; El-Matbouli, M.; Bechter, T. Direct and indirect climate change impacts on brown trout in central Europe: How thermal regimes reinforce physiological stress and support the emergence of diseases. Frontiers in Environmental Science 2020, 59. [Google Scholar] [CrossRef]
- Bruneaux, M.; Visse, M.; Gross, R.; Pukk, L.; Saks, L.; Vasemägi, A. Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Functional Ecology 2017, 31, 216–226. [Google Scholar] [CrossRef]
- Bolin, J. A.; Evans, K.; Schoeman, D. S.; Spillman, C. M.; Moore, T. S.; Hartog, J. R.; Cummins, S. F.; Scales, K. L. A warming western boundary current increases the prevalenceof commercially disruptive parasites in broadbill swordfish. Fisheries Oceanography 2024, 33. [Google Scholar] [CrossRef]
- da Costa, J. C.; de Souza, S. S.; Castro, J. C.; Amanajás, R. D.; Val, A. L. Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Scientific Reports 2021, 11. [Google Scholar] [CrossRef]
- da Costa, J. C.; Val, A. L. Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Science of the Total Environment 2020, 726. [Google Scholar] [CrossRef]
- Marcotegui, P.; Merlo, M.; Irigoitia, M. M.; Gutiérrez, M. P.; Buratti, C.; Pon, J. P. S.; Parietti, M.; Timi, J. T. Local extinction of a parasite of Magellanic penguins? The effect of a warming hotspot on a ‘cold’ trematode. Parasitology 2025, 152, 275–283. [Google Scholar] [CrossRef]
- Klemme, I.; Hyvärinen, P.; Karvonen, A. Cold water reduces the severity of parasite-inflicted damage: support for wintertime recuperation in aquatic hosts. Oecologia 2021, 195, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.; Chaudhary, R.; Haider, M.; Naseem, I. How climate change affects parasites: the case of trematode parasite Clinostomum complanatum and its fish host Trichogaster fasiatus. Journal Parasite Disease 2020, 44, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Scharsack, J. P.; Wieczorek, B.; Schmidt-Drewello, A.; Büscher, J.; Franke, F.; Moore, A.; Branca, B.; Witten, A.; Stoll, M.; Bornberg-Bauer, E.; et al. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Global Change Biology 2020, 27, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Godwin, S. C.; Fast, M. D.; Kuparinen, A.; Medcalf, K. E.; Hutchings, J. A. Increasing temperatures accentuate negative fitness consequences of a marine parasite. Scientific Reports 2020, 10. [Google Scholar] [CrossRef]
- de Melo H. P, S; Takemoto, R. M.; Gonçalves, G. S. R.; Frederico, R. G.; Virgilio, L. R. Effects of climate change on the distribution of Hoplias malabaricus and its ecto- and endoparasite species in South America. Aquatic ecology 2024, 58, 999–1011. [Google Scholar] [CrossRef]
- Maicher, C.; Le Bailly, M. The impact of climate change upon intestinal parasites in central Europe during the 4th millennium BCE. Quaternary Science Reviews 2024, 338. [Google Scholar] [CrossRef]
- Lanfranchi, A. L.; Canel, D.; Alarcos, A. J.; Levy, E.; Braicovich, P. E.; Marcotegui, P.; Timi, J. T. Parasite assemblages as indicators of stability in stock structure of Cynoscion guatucupa (Sciaenidae) after a quarter of century of exploitation in a marine warming hotspot. Rev Fish Biol Fisheries 2024, 34, 1149–1166. [Google Scholar] [CrossRef]
- Porter, M.; Barton, B. P.; Williams, J.; Randall, J.; Ovaskainen, O.; Crook, D. A.; Shamsi, S. Influence of body size and environmental conditions on parasite assemblages of the black-spotted croaker (Protonibea diacanthus) (Teleostei: Sciaenidae) in northern Australia. Parasitology 2024, 151, 864–874. [Google Scholar] [CrossRef]
- Wood, C. L. W., R. L.; Preisser, W. C.; Leslie, K. L.; Mastick, N.; Greene, C.; Maslenikov, K. P.; ; Tornabene, L. J. M. K., J. M.; Essington, T. E. A reconstruction of parasite burden reveals one century of climate-associated parasite decline. PNAS Ecology 2023, 120. [Google Scholar] [CrossRef]
- Burraco, P.; Orizaola, G.; Monaghan, P.; Metcalfe, N. B. Climate change and ageing in ectotherms. Global Change Biology 2020, 26, 5371–5381. [Google Scholar] [CrossRef]
- Pörtner, H. O. Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Research Part II: Topical Studies in Oceanography 2006, 53, 1071–1104. [Google Scholar] [CrossRef]
- Sures, B.; Nachev, M.; Selbach, C.; Marcogliese, D. J. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Aquatic Toxicology Vectors 2017, 10, 1–19. [Google Scholar] [CrossRef]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B. M.; Andersen, H. E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology Evolution 2020, 4, 1060–1068. [Google Scholar] [CrossRef]
- Topal, A.; Özdemir, S.; Arslan, H.; Çomaklı, S. How does elevated water temperature affect fish brain?(A neurophysiological and experimental study: Assessment of brain derived neurotrophic factor, cFOS, apoptotic genes, heat shock genes, ER-stress genes and oxidative stress genes). Fish Shellfish Immunology 2021, 115, 198–204. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 2021, 98, 1496–1508. [Google Scholar] [CrossRef]
- Novacek, M. J., Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery, in: National Academy of Sciences Colloquium The Future of Evolution. Irvine, California 2001. [CrossRef]
- Franke, A.; Beemelmanns, A.; Miest, J. J. Are fish immunocompetent enough to face climate change? Biology Latters 2024, 20. [Google Scholar] [CrossRef]
- Feidantsis, K.; Georgoulis, I.; Zachariou, A.; Campaz, B.; Christoforou, M.; Pörtner, H. O.; Michaelidis, B. Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. Journal of Comparative Physiology B 2020, 190, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Oxidative stress, inflammation, and disease. In Oxidative stress and biomaterials, Elsevier, 2016; pp 35-58. DOI: B978-0-12-803269-5.00002-4.
- Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology medicine 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.-Y.; Cho, S.-H.; Kwon, S.-H.; Eom, C.-Y.; Jeong, M. S.; Lee, W.; Kim, S.-Y.; Heo, S.-J.; Ahn, G.; Lee, K. P. The roles of NF-κB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish embryos. Fish shellfish immunology 2017, 68, 525–529. [Google Scholar] [CrossRef]
- Poynter, S.; Dixon, B. Bony Fish Immunology. Elsevier Ltd 2017, 1–7. [Google Scholar] [CrossRef]
- Press, C. M.; Evensen, Ø. The morphology of the immune system in teleost fishes. Fish shellfish immunology 1999, 9, 309–318. [Google Scholar] [CrossRef]
- Alvarez-Pellitero, P. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Veterinary immunology imunopathology 2008, 126, 171–198. [Google Scholar] [CrossRef]
- Tort, L.; Balasch, J. C.; Mackenzie, S. Fish immune system. A crossroads between innate and adaptive responses. Inmunología 2003, Imunologia. 22, 277-286.
- Filipe, J. F.; Herrera, V.; Curone, G.; Vigo, D.; Riva, F. Floods, hurricanes, and other catastrophes: a challenge for the immune system of livestock and other animals. Frontiers in veterinary science 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Makrinos, D. L.; Bowden, T. J. Natural environmental impacts on teleost immune function. Fish Shellfish Immunology 2016, 53, 50–57. [Google Scholar] [CrossRef]
- Stankus, A. State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquaculture Newsletter 2021, (63), 17-18. Available in: https://www.fao.org/fishery/en/openasfa/403fc2bd-ab68-4549-b8fc-6f7b6fff9336. Accessed in: May 30, 2025.
- Tacon, A. G. J. Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science Aquaculture 2020, 28, 43–56. [Google Scholar] [CrossRef]
- Valladão, G. M. R.; Gallani, S. U.; Pilarski, F. South American fish for continental aquaculture. Reviews in Aquaculture 2018, 10, 351–369. [Google Scholar] [CrossRef]
- Methling, C.; Aluru, N.; Vijayan, M. M.; Steffensen, J. F. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types. Comparative Biochemistry Physiology Part A: Molecular Integrative Physiology 2010, 156, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Jesus, T. F.; Moreno, J. M.; Repolho, T.; Athanasiadis, A.; Rosa, R.; Almeida-Val, V. M. F.; Coelho, M. M. Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenario. PLoS One 2017, 12, e0181325. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, A.; Rintamäki, P.; Jokela, J.; Valtonen, E. T. Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. International journal for parasitology 2010, 40, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J. Y.; Markkandan, K.; Han, K.; Kwon, M. G.; Seo, J. S.; Yoo, S.; Hwang, S. D.; Ji, B. Y.; Son, M.; Park, J. Temperature-dependent immune response of olive flounder (Paralichthys olivaceus) infected with viral hemorrhagic septicemia virus (VHSV). Genes genomics 2018, 40, 315–320. [Google Scholar] [CrossRef]
- Kayansamruaj, P.; Pirarat, N.; Hirono, I.; Rodkhum, C. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Veterinary microbiology 2014, 172, (1–2). [Google Scholar] [CrossRef]
- Bhanumathi, K.; Sasirekhamani, M. Sustaining Aquatic Resources: Climatic Changes Impacts and Adaptation Strategies in Aquaculture and Fisheries. Paradigm Shift: Multidisciplinary Research for a Chanching World 2024, 2, 77–84. [Google Scholar]
- De Silva, S. S.; Soto, D. Climate change and aquaculture: potential impacts, adaptation and mitigation. Climate change implications for fisheries aquaculture: overview of current scientific knowledge. FAO Fisheries Aquaculture Technical Paper 2009, 530, 151–212. [Google Scholar]
- Schmittner, A. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 2005, 434, 628–633. [Google Scholar] [CrossRef]
- Eiras, J. C. Elementos da Ictioparasitologia 1994. Porto : Fundação Eng. António de Almeida.
- Koskivaara, M. V., E. T.; Prost, M. Dactylogyrids on the gills of roach in central Finland: features of infection and species composition. International Journal of Parasitology 1991, 21, 565–572. [Google Scholar] [CrossRef]
- Cascarano, M. C.; Stavrakidis-Zachou, O.; Mladineo, I.; Thompson, K. D.; Papandroulakis, N.; Katharios, P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021, 10. [Google Scholar] [CrossRef]
- Pounds, J. A.; Bustamante, M. R.; Coloma, L. A.; Consuegra, J. A.; Fogden, M. P. L.; Foster, P. N.; La Marca, E.; Masters, K. L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef]
- Chame, M.; Batouli-Santos, A. L.; Brandão, M. L. As migrações humanas e animais ea introdução de parasitas exóticos invasores que afetam a saúde humana no Brasil. FUMDHAMentos 2008, 7, 47–62. [Google Scholar]
- Lafferty, K. D.; Shaw, J. C. Comparing mechanisms of host manipulation across host and parasite taxa. Journal of Experimental Biology 2013, 216(1), 56–66. [Google Scholar] [CrossRef]
- Carlson, C. J.; Burgio, K. R.; Dougherty, E. R.; Phillips, A. J.; Bueno, V. M.; Clements, C. F.; Castaldo, G.; Dallas, T. A.; Cizauskas, C. A.; Cumming, G. S. Parasite biodiversity faces extinction and redistribution in a changing climate. Science advances 2017, 3, e1602422. [Google Scholar] [CrossRef]
- Poulin, R. Global warming and temperaturemediated increases in cercarial emergence in trematode parasites. Parasitology 2006, 132, 143–151. [Google Scholar] [CrossRef]
- Studer, A.; Thieltges, D. W.; Poulin, R. Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Marine Ecology Progress Series 2010, 415, 11–22. [Google Scholar] [CrossRef]
- Lõhmus, M.; Björklund, M. Climate change: what will it do to fish—parasite interactions? Biological Journal of the Linnean Society 2015, 116, 397–411. [Google Scholar] [CrossRef]
- Pietrock, M.; Marcogliese, D. J. Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 2023, 19, 293–299. [Google Scholar] [CrossRef]
- Marcogliese, D. J. Climate Change and Parasitism in Aquatic Ecosystems; Smit, N. J., Sures, B., Eds.; 2025. [CrossRef]
- Morley, N. J.; Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 2013, 140, 1211–1224. [Google Scholar] [CrossRef]
- Buchmann, K.; Lindenstrøm, T. Interactions between monogenean parasites and their fish hosts. International journal for parasitology 2002, 32, 309–319. [Google Scholar] [CrossRef]
- Ogawa, K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 2015, 142, 178–195. [Google Scholar] [CrossRef]
- WOO, P. T.; GREGORY, D. W. B. Diseases and disorders of finfish in cage culture. CABI 2014. [Google Scholar]
- Macnab, V.; Barber, I. Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biology 2012, 18, 1540–1548. [Google Scholar] [CrossRef]
- Costa, J. C. V., A. L. Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Science of the Total Environment 2020, 726. [Google Scholar] [CrossRef]
- Harvell, C. D. , Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., Samuel, M. D. Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science’s Compass Review 2002, 296. [Google Scholar] [CrossRef]
- Peuß, R.; Box, A. C.; Chen, S.; Wang, Y.; Tsuchiya, D.; Persons, J. L.; Kenzior, A.; Maldonado, E.; Krishnan, J.; Scharsack, J. P. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nature ecology evolution 2020, 4, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Scharsack, J. P.; Wieczorek, B.; Schmidt-Drewello, A.; Büscher, J.; Franke, F.; Moore, A.; Branca, A.; Witten, A.; Stoll, M.; Bornberg-Bauer, E. Climate change facilitates a parasite's host exploitation via temperature-mediated immunometabolic processes. Global Change Biology 2020, 27, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Haines, A. P., J. A. Health Effects of Climate Change. Journal of the American Medical Association 2004, 291, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Seppälä, O.; Valtonen, E. T. Temperature and intraspecific variation affect host–parasite interactions. Oecologia 2023, 202, 567–578. [Google Scholar] [CrossRef]
- Wells, K.; Flynn, R. Managing host-parasite interactions in humans and wildlife in times of global change. Parasitology Research 2022, 121, 3361–3375. [Google Scholar] [CrossRef]


| Parasite Group/ Genus or Specie | Host | Major goals |
Major finding | Reference |
|---|---|---|---|---|
| Dinoflagelatta: Syndiniophyceae | ||||
|
Hematodinium sp. H. perezi |
Homarus americanus; Chionoecete sopilio; Callinectes sapidus | To examine how climate change affects ecological processes and interactions, including parasitism, especially in marine systems. |
|
[28] |
| Cnidaria Malacosporea | ||||
| Tetracapsuloides bryosalmonae |
Salmo salar; Salmo trutta |
To investigate how climate change influences the temporal dynamics of parasite load and clinical signs of proliferative kidney disease (PKD) in two species of sympatric salmonid fish: brown trout and Atlantic salmon. |
|
[29] |
| Tetracapsuloides bryosalmonae |
Salmo salar; Salmo trutta |
To investigate the impacts of proliferative kidney disease (PKD), caused by the parasite Tetracapsuloides bryosalmonae, on salmonid populations in Central Europe, considering the effects of climate change. |
|
[30] |
| Tetracapsuloides bryosalmonae | Salmo trutta | To assess how climate change, through increased water temperature, directly and indirectly affects brown trout in Austria, with a focus on proliferative kidney disease (PKD) emergence and physiological heat stress. |
|
[31] |
| Tetracapsuloides bryosalmonae | Salmo trutta | To investigate how infection by the parasite that causes proliferative kidney disease (PKD) affects the physiology of fry brown trout in a natural environment, focusing on thermal tolerance and aerobic performance, in the context of climate change. |
|
[32] |
| ||||
|
Kudoa musculoliquefaciens |
Xiphias gladius |
To investigate the environmental factors that influence the prevalence and intensity of infection by the parasite Kudoa musculoliquefaciens in swordfish caught at the Eastern Tuna and Billfish Fisheries (ETBF), focusing on how the warming of the Australian Eastern Current may increase the risk of myoliquefaction. |
|
[33] |
| ||||
| Monogenea (2 species) |
Colossoma macropomum |
To investigate whether different periods of exposure to climate change scenarios (7 and 30 days) and two degrees of parasitism (low and high) would affect the environment-parasite-host interaction and the host antioxidant and ion regulatory responses. |
|
[34] |
| Monogenea (3 species) |
Colossoma macropomum | To investigate the combined effects of an extreme climate scenario (predicted for 2100) and different levels of parasitism by monogenea on the hematological and immunological response of the host, a keystone species in Amazonian aquaculture. |
|
[35] |
| ||||
| Cardiocephaloides physalis | Engraulis anchoita | To corroborate the specific identity of metacercariae from anchovies as C. physalis and to assess if changes in parasitism did occur in both fish and seabird hosts and the congruence between them, analysing the possible causes for such changes in a scenario of a rapid regional tropicalization. |
|
[36] |
|
Diplostomum pseudospathaceum |
Salmo salar Salmo trutta |
To investigate how water temperature affects parasite damage (parasite virulence) in trematode-infected salmonid fish, focusing on the possibility of host recovery during periods of cold water. |
|
[37] |
|
Clinostomum complanatum |
Trichogaster fasciatus |
To investigate the influence of climatic variables, especially air temperature, on the prevalence of the trematode parasite in its intermediate host, fish, over seven years (2007–2013) in the Aligarh region, India. |
|
[38] |
| ||||
|
Schistocephalus solidus |
Gasterosteus aculeatus |
To investigate how the increase in temperature, associated with climate change, affects the interaction between the ectothermic three-spiny spiny fish and the parasite, focusing on the immunometabolic effects on the host. |
|
[39] |
| ||||
|
Lepeophtheirus salmonis |
Solmo salar | To investigate how the increase in water temperature influences the impacts of the marine parasite (salmon lice) on the growth, body condition and survival of Atlantic salmon, a fish of ecological and economic importance. |
|
[40] |
| ||||
| Monogenea (2 species) Digenea (3 species) |
Hoplias malabaricus | To develop tools to assist in monitoring, conservation, and actions that contribute to the biodiversity of parasites in South America |
|
[41] |
| Digenea (2 species) Cestoda (1 species) Nematoda (1 specie) |
Fishes | To know about the dispersion of zoonoses via food and to know the relationships between zoonotic cycles, anthropization and climate. |
|
[42] |
| Monogenea (2 species) Digenea (5 species) Cestoda (4 specie) Nematoda (5 species) Acanthocephala (2 species) Copepoda (2 species) |
Cynoscion guatucupa |
To evaluate the possible changes in the structure of parasitic communities of the fish host over approximately 25 years in the northern Argentine Sea, using parasites as biological markers ("tags") to investigate the stability of the stock structure of this species in a marine region characterized by accelerated warming. |
|
[43] |
| Monogenea (1 specie) Digenea (5 species) Nematoda (3 species) Copepoda (2 species) |
Protonibea diacanthus | This study showed as parasites respond the environmental changes and their impacts on hosts as prevalence, abundance a distribution parasite. Also was consider dissolved oxygen, temperature, salinity and ammonia into parameters. |
|
[44] |
| Monogenea; Trematoda; Cestoda; Acanthocephala; Nematoda; Hirudinea and Copepoda |
Clupea pallasii; Embiotoca lateralis; Hydrolagus colliei; Hypomesus pretiosus; Merluccius productus; Parophrys vetulus; Sebastes caurinus and Gabus chalcogrammus | To determine how parasite populations have changed over the past century and whether these changes are linked to environmental factors, particularly climate change. |
|
[45] |
| Great Group | Number of the species | Habitat loss (mean) | Habitat loss range (5-95t%) | % Committed to extinction |
|---|---|---|---|---|
| 0% dispersal | ||||
| Acanthocephala | 14 | −16.6% | (−50.6%, −0.2%) | 3.8%/4.4%/4.9% |
| Astigmata | 18 | −19.0% | (−43.6%, −4.0%) | 4.4%/5.1%/5.3% |
| Cestoda | 25 | −13.6% | (−29.1%, −2.9%,) | 4.0%/3.6%/3.7% |
| Ixodida | 141 | −31.9% | (−57.0%, −1.9%) | 8.1%/9.2%/9.8% |
| Nematoda | 147 | −28.0% | (−74.4%, −2.6%) | 5.4%/7.9%/9.3% |
| Phthiraptera | 5 | −55.8% | (−71.5%, −34.4%) | 10.5%/18.5%/19.3% |
| Siphonaptera | 67 | −40.6% | (−69.5%, −11.0%) | 10.0%/12.2%/12.9% |
| Trematoda | 40 | −17.8% | (−47.4%, −0.4%) | 3.8%/4.8%/6.0% |
| 100% dispersal | ||||
| Acanthocephala | 14 | 48.80% | (−10.4%, +129.0%) | 0.21%/0.54%/0.60% |
| Astigmata | 18 | 13.80% | (−41.2%, +64.4%) | 1.3%/2.0%/2.3% |
| Cestoda | 25 | 57.10% | (+3.7%, +131.1%) | 0.07%/0.07%/0.07% |
| Ixodida | 141 | −8.6% | (−54.1%, +67.7%) | 4.9%/5.7%/6.4% |
| Nematoda | 147 | 18.70% | (−53.6%, +87.6%) | 1.3%/2.5%/3.3% |
| Phthiraptera | 5 | 110.50% | (−57.7%, +514.8%) | 4.6%/6.2%/7.4% |
| Siphonaptera | 67 | −5.0% | (−50.0%, +43.8%) | 1.9%/4.1%/4.6% |
| Trematoda | 40 | 82.20% | (−30.4%, +242.4%) | 0.11%/1.0%/1.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
