Submitted:
15 November 2025
Posted:
17 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. SU(3) Polarization Picture, Stokes operators and Degree of Polarization
3. SU(3) Depolarisation Dynamics for single mode fields
3.1. Master Equation for the Pure Dephasing Dynamics
4. Formalism of Geometric Phase for three level Quantum System
4.1. Parametraisation of the Bloch Sphere for the Three Level System
5. Geometric Phase For Three Level Open Quantum System
References
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1984, 392, 45–57. [Google Scholar]
- Fowles, G. Introduction to Modern Optics; Dover Books on Physics Series, Dover Publications, 1989. [Google Scholar]
- Aharonov, Y.; Anandan, J. Phase change during a cyclic quantum evolution. Physical Review Letters 1987, 58, 1593. [Google Scholar] [CrossRef] [PubMed]
- Samuel, J.; Bhandari, R. General setting for Berry’s phase. Physical Review Letters 1988, 60, 2339. [Google Scholar] [CrossRef] [PubMed]
- Mukunda, N.; Simon, R. Quantum kinematic approach to the geometric phase. I. General formalism. Annals of Physics 1993, 228, 205–268. [Google Scholar] [CrossRef]
- Klimov, A.; Romero, J.; Sánchez-Soto, L.; Messina, A.; Napoli, A. Quantum light depolarization: the phase-space perspective. Physical Review A 2008, 77, 033853. [Google Scholar] [CrossRef]
- Klimov, A. B: Quantum Semiclass. Opt. 7, 283 (2005) JL Romero, G. Bjork, AB Klimov, LL Sanchez-Soto. Phys. Rev. A 2005, 72, 062310. [Google Scholar]
- Agarwal, G.S. Utility of 3×3 polarization matrices for partially polarized transverse electromagnetic fields. Journal of Modern Optics 2005, 52, 651–654. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L.; Sánchez-Soto, L.L.; Messina, A.; Napoli, A. Quantum light depolarization: The phase-space perspective. Phys. Rev. A 2008, 77, 033853. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, Y.H.; Xu, H.; Hu, L.y.; Wang, Z.S.; Chen, Z.Q.; Guo, L.P. Geometric phase of mixed states for three-level open systems. Phys. Rev. A 2010, 82, 062108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
