Submitted:
28 November 2025
Posted:
01 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Test Samples
2.3. Test Method
2.4. Data Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
References
- Zenkert, D. An Introduction to Sandwich Structures, 2nd ed.; Dan Zenkert: Stockholm, Sweden, 1995. [Google Scholar]
- Wei, P.; Chen, J.; Zhang, Y.; Pu, L. Wood-based sandwich panels: A review. Wood Res. 2021, 66, 875–890. [Google Scholar] [CrossRef]
- Bais-Moleman, A.L.; Sikkema, R.; Vis, M.; Reumerman, P.; Theurl, M.C.; Erb, K.-H. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union. J. Clean. Prod. 2018, 172, 3942–3954. [Google Scholar] [CrossRef]
- Myllyviita, T.; Soimakallio, S.; Judl, J.; Seppälä, J. Wood substitution potential in greenhouse gas emission reduction Review on current state and application of displacement factors. For. Ecosyst. 2021, 8, 42. [Google Scholar] [CrossRef]
- Martins, R.H.B.; Barbirato, G.H.A.; Campos Filho, L.E.; Fiorelli, J.; Martins, R.H.B.; Barbirato, G.H.A.; Campos Filho, L.E.; Fiorelli, J. OSB sandwich panel with undulated core of balsa wood waste. Maderas. Cienc. Y Tecnol. 2023, 25. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, N. Investigation of elastic moduli of kraft paper honeycomb core sandwich panels. Composites Part B 2012, 43, 2107–2114. [Google Scholar] [CrossRef]
- Shalbafan, A.; Luedtke, J.; Welling, J.; Thoemen, H. Comparison of foam core materials in innovative lightweight wood-based panels. Eur. J. Wood Prod. 2012, 70, 287–292. [Google Scholar]
- Ugale, V.; Singh, K.; Mishra, N.; Kumar, P. Experimental studies on thin sandwich panels under impact and static loading. J. Reinf. Plast. Compos. 2013, 32, 420–434. [Google Scholar] [CrossRef]
- Kljak, J.; Brezovi, M. Influence of plywood structure on sandwich panel properties: Variability of veneer thickness ratio. Wood Res. 2007, 52, 77–78. [Google Scholar]
- Vladimirova, E.; Gong, M. Advancements and applications of wood-based sandwich panels in modern construction. Buildings 2004, 14, 2359. [Google Scholar] [CrossRef]
- Fernandez-Cabo, J.L.; Majano-Majano, A.; San-Salvador Ageo, L.; Ávila-Nieto, M. Development of a novel façade sandwich panel with low-density wood fibres core and wood-based panels as faces. Eur. J. Wood Wood Prod. 2011, 69, 459–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.M.; Shan, F.R.; Shang, J.B. Characteristic and prediction model of vertical density profile of fiberboard with fiberboard with “pretreatment-hot pressing” united technology. Wood Res. 2012, 57, 613–630. [Google Scholar]
- Chen, Z.; Yan, N.; Deng, J.; Smith, G. Flexural creep behavior of sandwich panels containing kraft paper honeycomb core and wood composite skins. Mater. Sci. Eng., A 2011, 528, 5621–5626. [Google Scholar] [CrossRef]
- Labans, E.; Kalniņs, K. Experimental validation of the stiffness optimization for plywood sandwich panels with rib-stiffened core. Wood Res. 2014, 59, 793–802. [Google Scholar]
- Susainathan, J.; Eyma, F.; De Luycker, E.; Cantarel, A.; Castanié, B. Manufacturing and quasi-static bending behavior of wood-based sandwich structures. Compos. Struct. 2017, 182, 487–504. [Google Scholar] [CrossRef]
- Li, J.H.; Hunt, J.F.; Gong, S.Q.; Cai, Z.Y. Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending. Compos. Struct. 2016, 136, 16–24. [Google Scholar] [CrossRef]
- Lakreb, N.; Bezzazi, B.; Pereira, H. Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates. Mater. Des. 2015, 65, 627–636. [Google Scholar] [CrossRef]
- Jin, M.; Hu, Y.; Wang, B. Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures. Compos. Struct. 2015, 124, 337–344. [Google Scholar] [CrossRef]
- Russ, A.; Schwartz, J.; Boháček, Š.; Lübke, H.; Ihnát, V.; Pažitný, A. Reuse of old corrugated cardboard in constructional and thermal insulating boards. Wood Res. 2013, 58, 505–510. [Google Scholar]
- McCracken, A.; Sadeghian, P. Corrugated cardboard core sandwich beams with bio-based flax fiber composite skins. J. Build. Eng. 2018, 20, 114–122. [Google Scholar] [CrossRef]
- Mohammadabadi, M.; Yadama, V.; Yao, L.; Bhattacharyya, D. Low-velocity impact response of wood-strand sandwich panels and their components. Holzforschung 2018, 72, 681–689. [Google Scholar] [CrossRef]
- Wang, H.; Ramakrishnan, K.R.; Shankar, K. Experimental study of the medium velocity impact response of sandwich panels with different cores. Mater. Des. 2016, 99, 68–82. [Google Scholar] [CrossRef]
- Abdalsalm, S.O. Impact damage analysis of balsa wood sandwich composites Thesis USA: Wayne state university; 2013.
- Petit, S.; Bouvet, C.; Bergerot, A.; Barrau, J.J. Impact and compression after impact ex perimental study of a composite laminate with a cork thermal shield. Compos. Sci. Technol. 2007, 67, 3286–3299. [Google Scholar] [CrossRef]
- Shin, K.B.; Lee, J.Y.; Cho, S.H. An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus. Compos. Struct. 2008, 84, 228–240. [Google Scholar] [CrossRef]
- Zhu, D.; Shi, H.; Fang, H.; Liu, W.; Qi, Y.; Bai, Y. Fiber reinforced composites sandwich panels with web reinforced wood core for building floor applications. Composites Part B 2018, 150, 196–211. [Google Scholar] [CrossRef]
- Edgars, L.; Kaspars, Z.; Kaspars, K. Structural performance of wood based sandwich panels in four point bending. Procedia Engineering 2017, 172, 628–633. [Google Scholar] [CrossRef]
- Qi, Y.; Fang, H.; Shi, H.; Liu, W.; Qi, Y.; Bai, Y. Bending performance of GFRP-wood sandwich beams with lattice-web reinforcement in flatwise and sidewise directions. Construct. Build. Mater. 2017, 156, 532–545. [Google Scholar]
- Wang, Z.Q.; Lu, X.N.; Huang, X.J. Reinforcement of laminated veneer lumber with ramie fibre. Adv. Mater. Res. 2011, 332, 41–44. [Google Scholar] [CrossRef]
- Keller, T.; Rothe, J.; Castro, J.D.; Osei-Antwi, M. GFRP-balsa sandwich bridge deck concept, design and experimental validation. J. Compos. Construct. 2014, 18, 301–310. [Google Scholar] [CrossRef]
- Shi, H.; Liu, W.; Fang, H.; Bai, Y.; Hui, D. Flexural responses and pseudo-ductile perfor mance of lattice-web reinforced GFRP-wood sandwich beams. Compos. B Eng. 2017, 108, 364–376. [Google Scholar]
- Nadir, Y.; Nagarajan, P.; Ameen, M.; et al. Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Construct. Build. Mater. 2016, 112, 547–555. [Google Scholar]
- Almutairi, A.D.; Bai, Y.; Ferdous, W. Flexural behaviour of GFRP-softwood sandwich panels for prefabricated building construction. Polym. 2023, 15, 2102. [Google Scholar] [CrossRef]
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T.; Szewczyk, M. Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures. Mater. 2025, 18, 207. [Google Scholar] [CrossRef]
- Li, J.; Hunt, J.F.; Gong, S.; Cai, Z. High strength wood-based sandwich panels reinforced with fiberglass and foam. BioResources 2014, 9, 1898–1913. [Google Scholar] [CrossRef]
- Smardzewski, J.; Kamisiński, T.; Dziurka, D.; Mirski, R.; Majewski, A.; Flach, A.; Pilch, A. Sound absorption of wood-based materials. Holzforschung 2015, 69, 431–439. [Google Scholar] [CrossRef]
- Arzola-Villegas, X.; Báez, C.; Lakes, R.; Stone, D.S.; O’Dell, J.; Shevchenko, P.; Xiao, X.; De Carlo, F.; Jakes, J.E. Convolutional neural network for segmenting micro-x-ray computed tomography images of wood cellular structures. Appl. Sci. 2023, 13, 8146. [Google Scholar] [CrossRef]
- Guiman, M.V.; Stanciu, M.D.; Roșca, I.C.; Georgescu, S.V.; Năstac, S.M.; Câmpean, M. Influence of the grain orientation of wood upon its sound absorption properties. Mater 2023, 16, 5998. [Google Scholar] [CrossRef]
- Thomas, D. Handbook of Acoustics, 2nd ed.; Springer-Verlag Berlin Heidelberg: Berlin, 2014. [Google Scholar]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Na, Y.; Jeff, L.; Johni, C.; Gilsoo, C. Sound Absorption Coefficients of Micro-Fiber Fabrics by Reverberation Room Method. Textile Research Journal 2007, 77, 330–335. [Google Scholar] [CrossRef]
- Berkel, A. (1970). Wood Material Technology, Faculty of Forestry Publications. Publication No. 147, Istanbul University, Istanbul, Turkey.
- Roziņš, R.; Brencis, R.; Spulle, U.; Spulle-Meiere, I. Sound Absorption Properties of the Patented Wood, Lightweight Stabilised Blockboard. Rural Sustainability Res. 2023, 50, 59–66. [Google Scholar] [CrossRef]
- Altunok, M.; Ayan, S. Determination of Sound Absorption Coefficient Values on The Laminated Panels. J. Polytec. 2012, 15, 117–125. [Google Scholar]
- da Silva Bertolini, M.; de Morais, C.A.G.; Christoforo, A.L.; Bertoli, S.R.; dos Santos, W.N.; Lahr, F.A.R. Acoustic absorption and thermal insulation of wood panels: Influence of porosity. BioResources 2019, 14, 3746–3757. [Google Scholar] [CrossRef]
- Yan, Z.; Pu, Z.; Haijun, F.; Yi, Z. Experiment study on sound properties of carbon fiber composite material. IOP Conference Series: Materials Science and Engineering 2019, 542, 012001. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-absorption coefficient of bark-based insulation panels. Polym. 2020, 12, 1012. [Google Scholar] [CrossRef]
- Özyurt, H. Sound Absorption Efficiency of Plywood-Carbon Fiber Composites: A New Frontier in Wood Material Science. BioResources 2025, 20, 934–943. [Google Scholar] [CrossRef]
- Yang, H.S.; Kim, D.J.; Kim, H.J. Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology 2003, 86, 117–121. [Google Scholar] [CrossRef]
- Ayan, S. 2012. Determination of acoustical properties of heat treated laminated wooden panels. PhD The sis. Gazi University. 179p.
- Kaya, A.İ.; Dalgar, T. Acoustic Properties of Natural Fibers in Terms of Sound Insulation. Journal of Mehmet Akif Ersoy University Institute of Science and Technology 2017, 8, 25–37. [Google Scholar]
- Fiore, V.; Di Bella, G.; Valenza, A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099. [Google Scholar] [CrossRef]
- Pai, A.R.; Jagtap, R.N. Surface morphology and mechanical properties of some unique natural fiber reinforced polymer composites-a review. J. Mater. Environ. Sci. 2015, 6, 902–917. [Google Scholar]
- TS EN 323/1: 1999; Wood based panels - determination of unit volume weight, TSE Standard, Ankara Türkiye, 1999.
- ASTM E1050-19: 2019; Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Özyurt, H.; Özdemir, F. Laminated wood composite design with improved acoustic properties. BioResources 2022, 17, 460–468. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ashori, A.; Rezvani, M.H.; Ghamsari, F.A. Acoustical properties of plywood/waste tire rubber composite panels. Measu. 2016, 94, 382–387. [Google Scholar] [CrossRef]
- Çavuş, V.; Kara, M. Experimental determination of sound transmission loss of some wood species. Kastamonu University Journal of Forestry Faculty 2020, 20, 190–199. [Google Scholar] [CrossRef]
- Karlinasari, L.; Hermawan, D.; Maddu, A.; Martiandi, B.; Hadi, Y.S. Development of partıcleboard from tropıcal fast-growıng specıes for acoustic panel. Journal of Tropical Forest Science 2012, 24, 64–69. [Google Scholar]
- Smardzewski, J.; Kamisiński, T.; Dziurka, D.; Mirski, R.; Majewski, A.; Flach, A.; Pilch, A. Sound absorption of wood-based materials. Holzforschung 2015, 69, 431–439. [Google Scholar] [CrossRef]
- Ivanova, Y.; Vitchev, P.; Hristodorova, D. Study on the influence of some factors on the sound absorption characteristics of wood from scots pine. Chip and Chipless Woodworkıng Processes 2018, 11, 65–72. [Google Scholar]
- Muslu, M.S. The effect of cutting direction and water based varnish type on sound absorption coefficient in some native wood species. Maderas. Ciencia y tecnología 2025, 27. [Google Scholar] [CrossRef]





| No | Material Name | Density (gr/cm3) |
Where used in the panel |
|---|---|---|---|
| 1 | OSB-2 Class | 0.630 | core layer |
| 2 | PPWD | 0.500 | face layer and bottom layer |
| 3 | BFRP | 2.800 | face layer betwen core layer, and bottom layer between layer |
| 4 | GFRP | 2.500 | face layer betwen core layer, and bottom layer between layer |
| 5 | Jute Fabric | 1.300 | face layer betwen core layer, and bottom layer between layer |
| Group | Code | Face Layer | FRP Types | Core Layer | Bottom Layer |
|---|---|---|---|---|---|
| A | PP-B-O-B-PP | PP (PPWD) | B (BFRP) | O (OSB-2 class) | PP (PPWD) |
| B | PP-J-O-J-PP | PP (PPWD) | J (Jute Fabric) | O (OSB-2 class) | PP (PPWD) |
| C | PP-G-O-G-PP | PP (PPWD) | G (GFRP) | O (OSB-2 class) | PP (PPWD) |
| D | PP-O-PP | PP (PPWD) | - | O (OSB-2 class) | PP (PPWD) |
| Values | Groups | |||
|---|---|---|---|---|
| A | B | C | D | |
| X | 0.566 | 0.529 | 0.552 | 0.512 |
| S | 0.006 | 0.003 | 0.004 | 0.003 |
| X min | 0.558 | 0.522 | 0.558 | 0.508 |
| X max | 0.578 | 0.534 | 0.545 | 0.517 |
| N | 10 | 10 | 10 | 10 |
| Note: X: average value; S: the standard deviation; X min: minimum value; and X max: maximum value. | ||||
| Groups | Frekans (Hz) | Xmin | Xmax | Xmean | Std. Dev. | V (%) |
|---|---|---|---|---|---|---|
| A | 200 | 0.67 | 0.68 | 0.67 | 0.00 | 0.00 |
| 400 | 0.53 | 0.54 | 0.54 | 0.00 | 0.00 | |
| 600 | 0.20 | 0.20 | 0.20 | 0.00 | 0.00 | |
| 800 | 0.52 | 0.53 | 0.52 | 0.00 | 0.00 | |
| 1000 | 0.43 | 0.44 | 0.43 | 0.00 | 0.00 | |
| 1200 | 0.09 | 0.09 | 0.09 | 0.00 | 0.00 | |
| 1400 | 0.12 | 0.13 | 0.12 | 0.00 | 0.00 | |
| 1600 | 0.16 | 0.17 | 0.16 | 0.00 | 0.00 | |
| 1800 | 0.20 | 0.20 | 0.20 | 0.00 | 0.00 | |
| 2000 | 0.11 | 0.11 | 0.11 | 0.00 | 0.00 | |
| 2200 | 0.07 | 0.08 | 0.07 | 0.00 | 0.00 | |
| 2400 | 0.05 | 0.05 | 0.05 | 0.00 | 0.00 | |
| B | 200 | 0.41 | 0.52 | 0.48 | 0.06 | 0.00 |
| 400 | 0.36 | 0.45 | 0.42 | 0.05 | 0.00 | |
| 600 | 0.24 | 0.30 | 0.28 | 0.04 | 0.00 | |
| 800 | 0.08 | 0.22 | 0.13 | 0.07 | 0.01 | |
| 1000 | 0.14 | 0.17 | 0.16 | 0.02 | 0.00 | |
| 1200 | 0.73 | 0.93 | 0.85 | 0.11 | 0.01 | |
| 1400 | 0.53 | 0.67 | 0.62 | 0.08 | 0.01 | |
| 1600 | 0.31 | 0.40 | 0.37 | 0.05 | 0.00 | |
| 1800 | 0.08 | 0.10 | 0.10 | 0.01 | 0.00 | |
| 2000 | 0.23 | 0.30 | 0.27 | 0.04 | 0.00 | |
| 2200 | 0..32 | 0.40 | 0.37 | 0.05 | 0.00 | |
| 2400 | 0.06 | 0.08 | 0.07 | 0.01 | 0.00 | |
| C | 200 | 0.43 | 0.62 | 0.55 | 0.11 | 0.01 |
| 400 | 0.41 | 0.49 | 0.44 | 0.04 | 0.00 | |
| 600 | 0.25 | 0.46 | 0.38 | 0.12 | 0.01 | |
| 800 | 0.32 | 0.34 | 0.33 | 0.01 | 0.00 | |
| 1000 | 0.14 | 0.18 | 0.16 | 0.02 | 0.00 | |
| 1200 | 0.18 | 0.19 | 0.18 | 0.00 | 0.00 | |
| 1400 | 0.48 | 0.55 | 0.51 | 0.03 | 0.00 | |
| 1600 | 0.07 | 0.08 | 0.07 | 0.01 | 0.00 | |
| 1800 | 0.09 | 0.14 | 0.12 | 0.03 | 0.00 | |
| 2000 | 0.08 | 0.24 | 0.13 | 0.10 | 0.01 | |
| 2200 | 0.31 | 0.33 | 0.32 | 0.01 | 0.00 | |
| 2400 | 0.07 | 0.09 | 0.08 | 0.02 | 0.00 | |
| D | 200 | 0.51 | 0.54 | 0.53 | 0.02 | 0.00 |
| 400 | 0.41 | 0.43 | 0.42 | 0.01 | 0.00 | |
| 600 | 0.15 | 0.16 | 0.16 | 0.00 | 0.00 | |
| 800 | 0.40 | 0.42 | 0.41 | 0.01 | 0.00 | |
| 1000 | 0.33 | 0.35 | 0.34 | 0.01 | 0.00 | |
| 1200 | 0.07 | 0.08 | 0.08 | 0.00 | 0.00 | |
| 1400 | 0.10 | 0.10 | 0.10 | 0.00 | 0.00 | |
| 1600 | 0.13 | 0.14 | 0.13 | 0.00 | 0.00 | |
| 1800 | 0.15 | 0.16 | 0.16 | 0.00 | 0.00 | |
| 2000 | 0.09 | 0.09 | 0.09 | 0.00 | 0.00 | |
| 2200 | 0.06 | 0.06 | 0.06 | 0.00 | 0.00 | |
| 2400 | 0.04 | 0.05 | 0.05 | 0.00 | 0.00 |
| Source | Sum of Squares | DF | Mean Square | F Value | P < 0.05) |
|---|---|---|---|---|---|
| Corrected Model | 5.485a | 47 | 0.117 | 72.046 | 0.000 |
| Intercept | 10.718 | 1 | 10.718 | 6616.182 | 0.000 |
| Fiber reinforced Polymers Types (A) | 0.319 | 3 | 0.106 | 65.680 | 0.000 |
| Frequency (B) | 2.559 | 11 | 0.233 | 143.598 | 0.000 |
| AXB | 2.607 | 33 | 0.079 | 48.774 | 0.000 |
| Error | 0.156 | 96 | 0.002 | ||
| Corrected Total | 5.641 | 143 | |||
| Total | 16.359 | 144 | |||
| a. R Squared = .972 (Adjusted R Squared = .959) | |||||
| Source of variance | Mean Values (α) | HG |
|---|---|---|
| Fabric Jute (Group B) | 0.34 | A |
| GFRP (Group C) | 0.27 | B |
| BFRP (Group B) | 0.26 | B |
| Unreinforced (Group D) | 0.21 | C |
| Source of variance | Mean Values (α) | HG |
|---|---|---|
| 200 | 0.56 | A |
| 400 | 0.45 | B |
| 600 | 0.25 | E |
| 800 | 0.35 | C |
| 1000 | 0.28 | DE |
| 1200 | 0.30 | D |
| 1400 | 0.34 | C |
| 1600 | 0.18 | FG |
| 1800 | 0.15 | GH |
| 2000 | 0.14 | H |
| 2200 | 0.21 | F |
| 2400 | 0.06 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
