Submitted:
07 November 2025
Posted:
11 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Petroleum in Medicine: Practical Insights
3. Pharma Matrix of Crude Oil: Structure Insights
4. Translational Perspectives of Crude Oil – Derived Drug Discovery
5. Conclusion
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Pharmaceutical Federation (FIP). (2024). Policy statement of the International Pharmaceutical Federation on medicine shortages. The Hague: FIP. https://www.fip.org/file/4953 [ cited 2024].
- Bayer, A.G. (2024). Addressing Growing Healthcare Demand. https://www.bayer.com/en/investors/pharmaceutical-industry-megatrends.
- Buntz, B. (2024). Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials. Drug Discovery Trends https://www.drugdiscoverytrends.com/biotech-in-2025-precision-medicine-smarter-investments-and-more-emphasis-on-rwd-in-clinical-trials/.
- Ernst & Young LLP. (2024). Beyond Borders: EY Biotechnology Report 2024. https://www.ey.com/en_us/life-sciences/biotech-outlook.
- Doak, B.C., Over, B., Giordanetto, F., Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014, 21(9), 1115-42. [CrossRef] [PubMed]
- Zhu, W., Wang, Y., Niu, Y., Zhang, L., Liu, Z. Current Trends and Challenges in Drug-Likeness Prediction: Are They Generalizable and Interpretable? Health Data Sci. 2023, 3, 0098. [CrossRef] [PubMed] [PubMed Central]
- Kattuparambil, A.A., Chaurasia, D.K., Shekhar, S., Srinivasan, A., Mondal, S., Aduri, R., Jayaram, B. Exploring chemical space for “druglike” small molecules in the age of AI. Front Mol Biosci. 2025, 12, 1553667. [CrossRef] [PubMed] [PubMed Central]
- Brown, D. G. & Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? Journal of Medicinal Chemistry. 2016, 59(10), 4443–4458. [CrossRef]
- Waring, M.J., Arrowsmith, J., Leach, A.R., Leeson, P.D., Mandrell, S., Owen, R.M. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015, 14(7), 475-486. Epub 2015 Jun 19. [CrossRef] [PubMed]
- Lovering, F., Bikker, J., Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009, 52(21):6752-6. [CrossRef] [PubMed]
- Wei, W., Cherukupalli, S., Jing, L., Liu, X., and Zhan, P. Fsp3: A new parameter for drug-likeness. Drug Discovery Today 2020, 25(10), 1839–1845. [CrossRef]
- Dobson, P.D., Patel, Y., Kell, DB. ‘Metabolite-likeness’ as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov Today 2009, 14(1-2):31-40. Epub 2008 Dec 26. [CrossRef] [PubMed]
- World Health Organization. (2023). Global Summit on Traditional Medicine: Advancing Science, Innovation, and Well-being. https://www.paho.org/en/news/6-9-2023-who-global-summit-traditional-medicine-highlights-scientific-evidence-and-integration.
- Hunt, J.M. (1996) Petroleum Geochemistry and Geology, 2nd ed. W. H. Freeman and Co. New York. p. 743.
- Hsu, C.S., Walters, C.C., Isaksen, G.H., Schaps, M.E., Peters, K.E. (2003). Biomarker Analysis in Petroleum Exploration. In: Hsu CS, editor. Analytical Advances for Hydrocarbon Research. Boston (MA): Springer. p. 223–245. [CrossRef]
- Hess, J., Bednarz, D., Bae, J., and Pierce, J. Petroleum and health care: evaluating and managing health care’s vulnerability to petroleum supply shifts. American Journal of Public Health 2011, 101(9):1568–1579.
- McDonald, G. (2011). Georgius Agricola and the invention of petroleum. Bibliothèque d’Humanisme et Renaissance, 73(2), 351–363.
- Polo, M. (1871). The Book of Ser Marco Polo, the Venetian: Concerning the Kingdoms and Marvels of the East. Translated and edited by Yule H. London: John Murray. Available at Internet Archive.
- Rosenbaum. (1899). Naftalan. Int Dent J (Phila). 1:27–29. [PubMed Central]
- Nesterov, I.I. (2015). Perechen’ innovatsionnykh tekhnologii, v tom chisle proryvnykh tekhnologii, ne imeyushchikh analogov za rubezhom. Tyumen: Perechen’ innovatsionnykh tekhnologii. 73 p.
- Vtorushina, E.A., Kulkov, M.G., Salakhidinova, G.T., Butyrin, R.I., Aliyev, A. E., Nigametzyanov, I. Р. et al. Comparative Analysis of High-Viscosity Oils from the Khanty-Mansi Autonomous Okrug and the Naftalan Oil Field to Assess Their Balneological Potential. Petroleum Chemistry 2023, 63(5):640-653. [CrossRef]
- Vrzogić, P., Ostrogović, Z., and Alajbeg, A. (2003). Naphthalan—a natural medicinal product. Acta Dermatovenerol Croat. 11(3):178–184.
- Špoljarić Carević, S., Hrabač, P., Maričić, G., Tomić Babić, L., Ivković, J., KrnjevićPezić, G. et al. The Clinical Characteristics of Psoriatic Arthritis: A Cross-Sectional Study Based on the Psoriatic Arthritis Cohort of Special Hospital for Medical Rehabilitation – Naftalan, Croatia. Reumatizam 2023, 70(1):27. [CrossRef]
- Musaev, A.V., Guseinova, S.G. Neurophysiological and neurohumoral mechanisms of naftalan therapy for nervous system diseases. Azerbaycan Kurortologiya, Fizioterapiya və Reabilitasiya Jurnalı 2012, 2, 13–22.
- Farajova, A.I. Study of the effects of Naphthalan oil, White Naphthalan oil, and Artra ointment on blood lipoproteins in rats with experimental osteoarthritis. Azerb. J. Physiol. 2024, 39(2):11-18. [CrossRef]
- Gulieva, S.A, Gashimov, Sh.R. Complex treatment of patients with psoriasis at the Naftalan health resort. Vestn Dermatol Venerol. 1987, 11, 68–70. [PubMed]
- Abramovich, S.G., Drobyshev, V.A., Koneva, E.S., Makhova A.A. The Efficacy of the Comprehensive Use of Naphthalan and Non-Selective Chromotherapy in the Treatment of Patients with Gonarthrosis. Drug Res (Stuttg) 2020, 70(4):170-173. [CrossRef]
- Adigozalova, V.A., Hashimova, U.F., Polyakova, L.P. Composition and Properties of the Unique Oil from Azerbaijan’s Naftalan Oil field. Russ J Gen Chem. 2019, 89, 631–640. [CrossRef]
- Newman, D.J., Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020, 83(3):770–803. [CrossRef]
- Mamedaliev, Y. G. On the theory of the mechanism of action of Naftalan oil, Proceedings of the Academy of Sciences of the Azerbaijan SSR, 1946, 5:560–562.
- Martynova, G.S., Nanajanova, R.G., Velimetova, N.I., Zeinalov, S.Q., Babayeva, N.I., Muradkhanova, L.R. On some aspects of Naftalan oil properties. Chem Probl. 2022, 2(20), 122-132. [CrossRef]
- Bauer, M.R., Di Fruscia, P., Lucas, S.C.C., Michaelides, I.N., Nelson, J.E., Storer, R.I. et al. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Medicinal Chemistry 2021, 12(4):448–471. [CrossRef]
- Tajabadi, F.M., Campitelli, M.R., and Quinn, R.J. (2013). Scaffold Flatness: Reversing the Trend. Springer Science Reviews. 1:141–151. [CrossRef]
- Schwertfeger, H., Fokin, A.A., Schreiner, PR. (2008). Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew Chem Int Ed Engl. 47(6):1022-36. [CrossRef] [PubMed]
- Dane, C., Cumbers, G.A., Allen, B., Montgomery. A.P., Danon, J.J., Kassiou, M. Unlocking therapeutic potential: the role of adamantane in drug discovery. Aust J Chem. 2024, 77, CH24075. [CrossRef]
- Wanka, L., Iqbal, K., and Schreiner, P.R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev. 2013, 113(5):3516-3604. [CrossRef]
- Alexander, R., Kagi, R.I., Noble, R.A. Identification of the bicyclic sesquiterpenes drimane and eudesmane in petroleum. Journal of the Chemical Society, Chemical Communications 1983, 5, 226–228. [CrossRef]
- Jansen, B.J.M., de Groot, A. Occurrence, biological activity, and synthesis of drimane sesquiterpenoids. Natural Product Reports 2004. 21(4), 449–477. [CrossRef]
- Watanabe, K., Sato, M. & Osada, H. Recent advances in the chemo-biological characterization of decalin natural products and unraveling of the workings of Diels–Alderases. Fungal Biol Biotechnol. 2022, 9 (9). [CrossRef]
- Feng, X., Sippel, C., Knaup, F.H., Bracher, A., Staibano, S., Romano, M.F., Hausch, F. A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. Journal of Medicinal Chemistry 2020, 63(1):231–240. [CrossRef]
- Mara, P., Nelson, R.K., Reddy, C.M. et al. Sterane and hopane biomarkers capture microbial transformations of complex hydrocarbons in young hydrothermal Guaymas Basin sediments. Commun Earth Environ. 2022, 3, 250. [CrossRef]
- Levental, I., Levental, K.R., Heberle, F.A. (). Lipid rafts: controversies resolved, mysteries remain. Nat Rev Mol Cell Biol. 2020, 21:353-374. [CrossRef]
- Warda, M., Tekin, S., Gamal, M., Khafaga, N., Çelebi, F., Tarantino, G. (). Lipid rafts: novel therapeutic targets for metabolic, neurodegenerative, oncological, and cardiovascular diseases. Lipids Health Dis. 2025, 24 (1):147. [CrossRef]
- Mitchison-Field, L.M., Belin, B.J. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol. 2023, 74:102315. Epub 2023 Apr 13. [CrossRef] [PubMed] [PubMed Central]
- Kolchina, G.Y., Bakhtina, A.Y., Movsumzade, M.M., and Loginova, M.E. Calculations and determination of the parameters of Naftalan-oil components and assessment of their state and putative activities. Oil & Gas Chemistry 2022, 1–2, 30–35. [CrossRef]
- Farmani, Z., Vetere, A., Poidevin, C., Auer, A.A., and Schrader, W. Studying Natural Buckyballs and Buckybowls in Fossil Materials. Angew Chem Int Ed. 2020, 132(35): 15118-15123. [CrossRef]
- Huseynov, D.A., Martynova, G.S., and Zeinalov, S.G. About naphthenic oil and aspects of its healing properties. Azerbaijan Chemical Journal 2024, 2:114–126. [CrossRef]
- Ritchie, T.J., Macdonald, S.J., Young, R.J., & Pickett, S.D. The impact of aromatic ring count on compound developability: further insights by examining carboaromatic, heteroaromatic, and aliphatic ring types. Drug Discovery Today 2011, 16(3–4), 164–171. [CrossRef]
- Taylor, R.D., MacCoss, M., Lawson, A.D.G. Rings in drugs. J Med Chem. 2014, 57(14):5845–5859. [CrossRef]
- Menzikov, S.A., Zaichenko, D.M., Moskovtsev, A.A., Morozov, S.G., and Kubatiev, A.A. Phenols and GABAAreceptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol. 2024, 15:1272534. [CrossRef]
- Páez-Martínez, N., Ambrosio, E., García-Lecumberri, C., Rocha, L., Montoya, G.L, and Cruz, S.L. Toluene and TCE decrease binding to mu-opioid receptors, but not to benzodiazepine and NMDA receptors in mouse brain. Ann N Y Acad Sci. 2008, 1139:390-401. [CrossRef]
- Pajouhesh, H., and Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005, 2(4):541-553. [CrossRef]
- Zhang, Y., Schulz, F., Rytting, B.M., Walters, C.C., Kaiser, K., Metz, J.N. et al. Elucidating the Geometric Substitution of Petroporphyrins by Spectroscopic Analysis and Atomic Force Microscopy Molecular Imaging. Energy Fuels 2019, 33(7):6088-6097. Epub 2019 Jun 12. [CrossRef] [PubMed] [PubMed Central]
- Amos-Tautua, B.M., Songca, S.P., and Oluwafemi, O.S. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules. 2019, 24(13):2456. [CrossRef]
- Chen, J., Zhu, Y., Kaskel, S. Porphyrin-based metal–organic frameworks for biomedical applications. Angew Chem Int Ed. 2021, 60(11):5010–5035. [CrossRef]
- Tazeev, D., Musin, L., Mironov, N., Milordov, D., Tazeeva, E., Yakubova, S. et al. (). Complexes of Transition Metals with Petroleum Porphyrin Ligands: Preparation and Evaluation of Catalytic Ability. Catalysts 2021, 11:1506. [CrossRef]
- Gayko, G., Cholcha, W., Kietzmann, M. (2000) Zur antientzündlichen, antibakteriellen und antimykotischen Wirkung von dunklem sulfonierten Schieferöl (Ichthammol) [Anti-inflammatory, antibacterial and antimycotic effects of dark sulfonated shale oil (ichthammol)]. Berl Munch Tierarztl Wochenschr. 113(10):368-73. German. [PubMed]
- Heuser, E., Becker, K., Idelevich, E.A. Bactericidal Activity of Sodium Bituminosulfonate against Staphylococcus aureus. Antibiotics (Basel). 2022, 11(7):896. [CrossRef] [PubMed] [PubMed Central]
- Makhoba, X.H., Viegas, C.Jr., Mosa, R.A., Viegas, F.P.D., and Pooe, O.J. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. Drug Des Devel Ther. 2020, 14, 3235–3249.
- Ma, X.H., Shi, Z., Tan, C., Jiang, Y., Go, M.L., Low, B.C. et al. In-silico approaches to multi-target drug discovery: computer aided multi-target drug design, multi-target virtual screening. Pharm Res. 2010, 27(5):739-749. [CrossRef]
- Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015, 6:205. [CrossRef]
- Marshall, A.G., Rodgers, R.P. Petroleomics: The next grand challenge for chemical analysis. Acc Chem Rem. 2004, 37(1):53-9. [CrossRef] [PubMed]
- Palacio Lozano, D.C., Thomas, M.J., Jones, H.E., Barrow, M.P. (2020). Petroleomics: Tools, Challenges, and Developments. Annu Rev Anal Chem (Palo Alto Calif). 13(1):405-430. Epub 2020 Mar 20. [CrossRef] [PubMed]
- Xu, J., Hagler, A. Chemoinformatics and Drug Discovery. Molecules 2002, 7, 566–600. [CrossRef]
- Chen, Y., Kirchmair, J. Cheminformatics in Natural Product-based Drug Discovery. Mol Inform. 2020, 39(12):e2000171. Epub 2020 Sep 6. [CrossRef] [PubMed] [PubMed Central]
- Atanasov, A.G., Zotchev, S.B., Dirsch, V.M. et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021, 20, 200–216. [CrossRef]
- Conrado, G.G., da Rosa, R., Reis, R.D. et al. Building Natural Product–Based Libraries for Drug Discovery: Challenges and Opportunities from a Brazilian Pharmaceutical Industry Perspective. Rev. Bras. Farmacogn. 2024, 34, 706–721. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
