Submitted:
08 November 2025
Posted:
12 November 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Data for Which We Seek Underlying Explanations
-
0+:1 – Amounts of stuff in some individual galaxies. (Popular modeling associates the symbol z with redshift. Popular modeling associates redshifts of zero with the present universe. Popular modeling associates larger redshifts with earlier times in the history of the universe.)
- −
- −
- Redshifts of approximately six [22].
- −
- 5+:1 – Densities of the universe [9].
-
:1 – Amounts of stuff in observed or optically observable solar systems.
-
1:1 or 0:1 – Amounts of some depletion of cosmic microwave background radiation. (Ordinary-matter effects that associate with the depletion of cosmic microwave background radiation via hyperfine transitions in ordinary-matter hydrogen atoms might account for half of the observed depletion or for all the observed depletion. The case of half associates with 1:1. The case of all associates with 0:1.)
- −
- −
- Popular modeling suggests two observed multibillion-year eras regarding the so-called rate of expansion of the universe [47,48,49,50]. Chronologically, the first multibillion-year era associates with a positive rate of expansion that decreases as time increases. The second multibillion-year era associates with a positive rate of expansion that increases as time increases.
2.2. Six Isomers, of Which One Isomer Is a Set of Known Elementary Particles
- The popular modeling notion of matter-antimatter asymmetry (which is also known as baryon asymmetry) [55]. (For this notion, one dark-matter isomer underlies stuff that enables popular modeling to consider, in an adequately broad context, notions of matter-antimatter symmetry.)
- The 1:1 ratio that possibly pertains regarding some depletion of cosmic microwave background radiation. (For this notion, the stuff that associates with one dark-matter isomer includes hydrogen-like atoms that account for one-half of the relevant depletion of cosmic microwave background radiation.)
- A might-be approximate symmetry that would associate with matches between charged-lepton flavours and charged-lepton masses.
2.3. Objects, Interactions Between Objects, and Isomeric Reaches of Interactions
3. Results
3.1. Galaxy Formation and Galaxy Evolution
3.2. The Fives in 5+:1 Ratios of Dark-Matter Effects to Ordinary-Matter Effects
3.3. The Pluses in 5+:1 Ratios of Dark-Matter Effects to Ordinary-Matter Effects
3.4. Our Solar System and Other Optically Observable Solar Systems
3.5. Hyperfine Depletion of Cosmic Microwave Background Radiation
3.6. Eras in the Rate of Expansion of the Universe
4. Discussion
4.1. The Extent of the Assumptions That Our Work Makes and the Extent to Which Our Work Helps Explain Data
4.2. Opportunities to Interrelate Physics Constants and to Reduce the Number of So-Called Fundamental Physics Constants
4.3. Potential Future Directions for Physics
5. Conclusion
Data Availability Statement
Acknowledgments
Appendix A
Appendix A.1. Uses of the Word Isomer
Appendix A.2. Possible Symmetry or Approximate Symmetry Regarding the Factor of Two (That Associates with the Number, Six, of Isomers)
- People, informally, use the one-element term left-handed to describe the ordinary matter isomer.
- In more technical terms, the following popular modeling notions pertain for the ordinary-matter isomer. Left-chiral components of matter elementary fermions and right-chiral components of antimatter elementary fermions associate, via the so-called the gauge group, with doublets and with interactivity via the weak interaction. Right-chiral components of matter elementary fermions and left-chiral components of antimatter elementary fermions associate, via the so-called the gauge group, with singlets and with no interactivity via the weak interaction.
- Popular modeling associates the technical aspects with the weak interaction and with a breaking of PC, as in parity and charge, symmetry by the weak interaction.
- We posit that popular modeling might consider that the following notions pertain for the counterpart-to-ordinary-matter dark-matter isomer. Right-chiral components of antimatter elementary fermions and left-chiral components of matter elementary fermions associate, via an gauge group, with doublets and with interactivity via the weak interaction. Left-chiral components of antimatter elementary fermions and right-chiral components of matter elementary fermions associate, via the gauge group, with singlets and with no interactivity via the weak interaction. Popular modeling would associate these technical aspects with the weak interaction and with a breaking of PC, as in parity and charge, symmetry.
- Possibly, popular modeling would associate the combination of the ordinary-matter-isomer aspects and the counterpart-to-the-ordinary-matter dark-matter aspects with a symmetry related to the weak interaction.
- Possibly, regarding the counterpart-to-the-ordinary-matter dark-matter stuff, nature would produce more antimatter stuff than matter stuff and popular modeling would associate the combination of the ordinary-matter-isomer aspects and the counterpart-to-the-ordinary-matter dark-matter isomer aspects with notions of matter-antimatter symmetry.
- The counterpart-to-the-ordinary-matter dark-matter stuff would include hydrogen-like atoms. While popular modeling regarding electromagnetism can feature two (as in left and right) orthogonal circular-polarization modes (or can feature two orthogonal linear-polarization modes), popular modeling notions of electromagnetic interactions do not necessarily depend on weak-interaction notions of left-chiral and right-chiral. One can leave to observational work the question as to whether counterpart-to-the-ordinary-matter dark-matter-stuff hydrogen-like atoms can absorb light that ordinary-matter stuff emitted.
Appendix A.3. Possible Approximate Symmetry Regarding the Factor of Three (That Associates with the Number, Six, of Isomers)
- The three neutrino flavour eigenstates do not equal the three neutrino mass eigenstates. We propose that the mismatch associates with an approximate symmetry.
- Eqs. (A1), (A2), (A3), and (A4) pertain regarding the masses of the three charged leptons. Flavour-1 associates with the electron. Flavour-2 associates with the muon. Flavour-3 associates with the tau. Similar equations (with ) pertain regarding the geometric-mean masses for the three quark generations (Table 3.9.10 in [58] or Table 14 in [59]). We note, as an aside, that the notion that is not zero might associate with an approximate symmetry.
- The weak interaction associates with interactions in which charged leptons change flavour and with interactions in which quarks change generation. We propose that the mismatch associates with an approximate symmetry.
Appendix A.4. The Evolution of MEA (as in Marginally-Electromagnetically-Active) Dark-Matter Stuff
Appendix A.5. Gravitational Multipole Expansions
- Scalar potential terms that associate with rest charges and with monopole (as in ) spatial potentials.
- Vector potential terms that associate with and that popular modeling can associate with dipole (as in ) spatial potentials.
- Vector potential terms that associate with and with monopole (as in ) spatial potentials.
References
- Zwicky, F. The Redshift of extragalactic Nebulae. Helvetica Physica Acta 1933, pp. 110–127. URL: https://ned.ipac.caltech.edu/level5/March17/Zwicky/translation.pdf.
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. The Astrophysical Journal 1937, 86, 217. [CrossRef]
- Garrett, K.; Duda, G. Dark Matter: A Primer. Advances in Astronomy 2011, 2011, 1–22. [CrossRef]
- Arbey, A.; Mahmoudi, F. Dark matter and the early Universe: A review. Progress in Particle and Nuclear Physics 2021, 119, 103865. [CrossRef]
- Foot, R. Mirror dark matter: Cosmology, galaxy structure and direct detection. International Journal of Modern Physics A 2014, 29, 1430013. [CrossRef]
- Hohmann, M.; Wohlfarth, M.N.R. Repulsive gravity model for dark energy. Physical Review D 2010, 81, 104006. [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Physics Reports 2012, 513, 1–189. [CrossRef]
- Ferri, A.C.; Melchiorri, A. Can future CMB data discriminate between a cosmological constant and dynamical dark energy? Journal of High Energy Astrophysics 2026, 50, 100504. [CrossRef]
- Workman, R.L.; Others. Review of Particle Physics. PTEP 2022, 2022, 083C01. [CrossRef]
- Simon, J.D.; Geha, M. Illuminating the darkest galaxies. Physics Today 2021, 74, 30–36. [CrossRef]
- Day, C. A primordial merger of galactic building blocks. Physics Today 2021, 2021, 0614a. [CrossRef]
- Tarumi, Y.; Yoshida, N.; Frebel, A. Formation of an Extended Stellar Halo around an Ultra-faint Dwarf Galaxy Following One of the Earliest Mergers from Galactic Building Blocks. The Astrophysical Journal Letters 2021, 914, L10. [CrossRef]
- Asencio, E.; Banik, I.; Mieske, S.; Venhola, A.; Kroupa, P.; Zhao, H. The distribution and morphologies of Fornax Cluster dwarf galaxies suggest they lack dark matter. Mon Not R Astron Soc 2022. [CrossRef]
- Meneghetti, M.; Davoli, G.; Bergamini, P.; Rosati, P.; Natarajan, P.; Giocoli, C.; Caminha, G.B.; Metcalf, R.B.; Rasia, E.; Borgani, S.; et al. An excess of small-scale gravitational lenses observed in galaxy clusters. Science 2020, 369, 1347–1351. [CrossRef]
- Simon, J.D.; Geha, M. The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J. 2007, 670, 313–331. [CrossRef]
- Hall, S. Ghost galaxy is 99.99 per cent dark matter with almost no stars. New Scientist 2016. URL: https://www.newscientist.com/article/2102584-ghost-galaxy-is-99-99-per-cent-dark-matter-with-almost-no-stars/.
- van Dokkum, P.; Abraham, R.; Brodie, J.; Conroy, C.; Danieli, S.; Merritt, A.; Mowla, L.; Romanowsky, A.; Zhang, J. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44. Astrophysical Journal 2016, 828, L6. [CrossRef]
- Webb, K.A.; Villaume, A.; Laine, S.; Romanowsky, A.J.; Balogh, M.; van Dokkum, P.; Forbes, D.A.; Brodie, J.; et al. Still at odds with conventional galaxy evolution: the star formation history of ultradiffuse galaxy Dragonfly 44. Monthly Notices of the Royal Astronomical Society 2022, 516, 3318–3341. [CrossRef]
- Powell, D.M.; McKean, J.P.; Vegetti, S.; Spingola, C.; White, S.D.M.; Fassnacht, C.D. A million-solar-mass object detected at a cosmological distance using gravitational imaging. Nature Astronomy 2025. [CrossRef]
- Behroozi, P.; Wechsler, R.; Hearin, A.; Conroy, C. UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0-10. Monthly Notices of The Royal Astronomical Society 2019, 488, 3143–3194. [CrossRef]
- Genzel, R.; Schreiber, N.M.F.; Ubler, H.; Lang, P.; Naab, T.; Bender, R.; Tacconi, L.J.; Wisnioski, E.; Wuyts, S.; Alexander, T.; et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 2017, 543, 397–401. [CrossRef]
- Herrera-Camus, R.; Schreiber, N.M.F.; Price, S.H.; Ubler, H.; Bolatto, A.D.; Davies, R.L.; Fisher, D.; Genzel, R.; Lutz, D.; Naab, T.; et al. Kiloparsec view of a typical star-forming galaxy when the Universe was ∼1 Gyr old. Astronomy and Astrophysics 2022, 665, L8. [CrossRef]
- Pina, P.E.M.; Fraternali, F.; Adams, E.A.K.; Marasco, A.; Oosterloo, T.; Oman, K.A.; Leisman, L.; di Teodoro, E.M.; Posti, L.; Battipaglia, M.; et al. Off the Baryonic Tully-Fisher Relation: A Population of Baryon-dominated Ultra-diffuse Galaxies. Astrophysical Journal 2019, 883, L33. [CrossRef]
- Pina, P.E.M.; Fraternali, F.; Oosterloo, T.; Adams, E.A.K.; Oman, K.A.; Leisman, L. No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905. Mon. Not. R. Astron Soc. 2021. [CrossRef]
- Guo, Q.; Hu, H.; Zheng, Z.; Liao, S.; Du, W.; Mao, S.; Jiang, L.; Wang, J.; Peng, Y.; Gao, L.; et al. Further evidence for a population of dark-matter-deficient dwarf galaxies. Nature Astronomy 2019, 4, 246–251. [CrossRef]
- van Dokkum, P.; Danieli, S.; Abraham, R.; Conroy, C.; Romanowsky, A.J. A Second Galaxy Missing Dark Matter in the NGC 1052 Group. Astrophysical Journal 2019, 874, L5. [CrossRef]
- Comeron, S.; Trujillo, I.; Cappellari, M.; Buitrago, F.; Garduno, L.E.; Zaragoza-Cardiel, J.; Zinchenko, I.A.; Lara-Lopez, M.A.; Ferre-Mateu, A.; Dib, S. The massive relic galaxy NGC 1277 is dark matter deficient. From dynamical models of integral-field stellar kinematics out to five effective radii, 2023. [CrossRef]
- van Dokkum, P.; Shen, Z.; Keim, M.A.; Trujillo-Gomez, S.; Danieli, S.; Chowdhury, D.D.; Abraham, R.; Conroy, C.; Kruijssen, J.M.D.; et al. A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature 2022, 605, 435–439. [CrossRef]
- Romanowsky, A.J.; Cabrera, E.; Janssens, S.R. A Candidate Dark Matter Deficient Dwarf Galaxy in the Fornax Cluster Identified through Overluminous Star Clusters. Research Notes of the AAS 2024, 8, 202. [CrossRef]
- Buzzo, M.L.; Forbes, D.A.; Romanowsky, A.J.; Haacke, L.; Gannon, J.S.; et al. A new class of dark matter-free dwarf galaxies? I. Clues from FCC 224, NGC 1052-DF2 and NGC 1052-DF4. Preprint, 2025. [CrossRef]
- Jimenez-Vicente, J.; Mediavilla, E.; Kochanek, C.S.; Munoz, J.A. Dark Matter Mass Fraction in Lens Galaxies: New Estimates from Microlensing. Astrophysical Journal 2015, 799, 149. [CrossRef]
- Jimenez-Vicente, J.; Mediavilla, E.; Munoz, J.A.; Kochanek, C.S. A Robust Determination of the Size of Quasar Accretion Disks Using Gravitational Microlensing. Astrophysical Journal 2012, 751, 106. [CrossRef]
- Chan, M.H. Two mysterious universal dark matter–baryon relations in galaxies and galaxy clusters. Physics of the Dark Universe 2022, 38, 101142. [CrossRef]
- Lokas, E.L.; Mamon, G.A. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy. Monthly Notices of The Royal Astronomical Society 2003, 343, 401–412. [CrossRef]
- Rasia, E.; Tormen, G.; Moscardini, L. A dynamical model for the distribution of dark matter and gas in galaxy clusters. Monthly Notices of The Royal Astronomical Society 2004, 351, 237–252. [CrossRef]
- Rudnick, L. The Stormy Life of Galaxy Clusters: astro version. Preprint, 2019. [CrossRef]
- Rudnick, L. The stormy life of galaxy clusters. Physics Today, 2019. DOI: 10.1063/pt.3.4112,. [CrossRef]
- Bidin, C.M.; Carraro, G.; Mendez, R.A.; Smith, R. No evidence of dark matter in the solar neighborhood, 2012. [CrossRef]
- Leane, R.K.; Smirnov, J. Exoplanets as Sub-GeV Dark Matter Detectors. Physical Review Letters 2021, 126, 161101. [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [CrossRef]
- Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 2018, 555, 71–74. [CrossRef]
- Panci, P. 21-cm line Anomaly: A brief Status. In Proceedings of the 33rd Rencontres de Physique de La Vallee d’Aoste, 2019, [arXiv:astro-ph.CO/1907.13384]. URL: https://cds.cern.ch/record/2688533,. [CrossRef]
- Hills, R.; Kulkarni, G.; Meerburg, P.D.; Puchwein, E. Concerns about modelling of the EDGES data. Nature 2018, 564, E32–E34. [CrossRef]
- Melia, F. The anomalous 21-cm absorption at high redshifts. The European Physical Journal C 2021, 81. [CrossRef]
- Spinelli, M.; Bernardi, G.; Santos, M.G. On the contamination of the global 21 cm signal from polarized foregrounds. Monthly Notices of the Royal Astronomical Society 2019. [CrossRef]
- Singh, S.; Nambissan T., J.; Subrahmanyan, R.; Udaya Shankar, N.; Girish, B.S.; Raghunathan, A.; Somashekar, R.; Srivani, K.S.; Sathyanarayana Rao, M. On the detection of a cosmic dawn signal in the radio background. Nature Astronomy 2022, 6, 607–617. [CrossRef]
- Busca, N.G.; Delubac, T.; Rich, J.; Bailey, S.; Font-Ribera, A.; Kirkby, D.; Goff, J.M.L.; Pieri, M.M.; Slosar, A.; Aubourg, E.; et al. Baryon acoustic oscillations in the Lya forest of BOSS quasars. Astronomy and Astrophysics 2013, 552. [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae Ω. Astrophysical Journal 1999, 517, 565–586. [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal 1998, 116, 1009–1038. [CrossRef]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophysical Journal 2004, 607, 665–687. [CrossRef]
- DESI Collaboration.; Lodha, K.; Calderon, R.; Matthewson, W.L.; Shafieloo, A.; Ishak, M.; et al. Extended Dark Energy analysis using DESI DR2 BAO measurements, 2025. [CrossRef]
- DES Collaboration.; Abbott, T.M.C.; Acevedo, M.; Adamow, M.; Aguena, M.; et al. Dark Energy Survey: implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data, 2025. [CrossRef]
- Feynman, R.P.; Gell-Mann, M. Theory of the Fermi Interaction. Physical Review 1958, 109, 193–198. [CrossRef]
- Weinberg, S. A Model of Leptons. Physical Review Letters 1967, 19, 1264–1266. [CrossRef]
- Boucenna, S.M.; Morisi, S. Theories relating baryon asymmetry and dark matter. Frontiers in Physics 2014, 1. [CrossRef]
- Bilenky, S. Neutrino oscillations: from an historical perspective to the present status. Journal of Physics: Conference Series 2016, 718, 062005. [CrossRef]
- Abe, K.; Akutsu, R.; Ali, A.; et al. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020, 580, 339–344. [CrossRef]
- Buckholtz, T.J. Models for Physics of the Very Small and Very Large; Vol. 14, Atlantis Studies in Mathematics for Engineering and Science, Springer, 2016. Series editor: Charles K. Chui. [CrossRef]
- Buckholtz, T.J. Models That Link and Suggest Data about Elementary Particles, Dark Matter, and the Cosmos. Technical report, 2022. [CrossRef]
- Girmohanta, S.; Shrock, R. Fitting a self-interacting dark matter model to data ranging from satellite galaxies to galaxy clusters. Physical Review D 2023, 107, 063006. [CrossRef]
- Zhang, X.; Yu, H.B.; Yang, D.; An, H. Self-interacting Dark Matter Interpretation of Crater II. The Astrophysical Journal Letters 2024, 968, L13. [CrossRef]
- Cross, D.; Thoron, G.; Jeltema, T.E.; Swart, A.; Hollowood, D.L.; et al. Examining the self-interaction of dark matter through central cluster galaxy offsets. Monthly Notices of the Royal Astronomical Society 2024, 529, 52–58. [CrossRef]
- Spergel, D.N.; Steinhardt, P.J. Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters 2000, 84, 3760–3763. [CrossRef]
- Yang, D.; Nadler, E.O.; Yu, H.B. Testing the parametric model for self-interacting dark matter using matched halos in cosmological simulations. Physics of the Dark Universe 2025, 47, 101807. [CrossRef]
- Alonso-Alvarez, G.; Cline, J.M.; Dewar, C. Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers. Physical Review Letters 2024, 133, 021401. [CrossRef]
- Zhang, X.; Yu, H.B.; Yang, D.; Nadler, E.O. The GD-1 Stellar Stream Perturber as a Core-collapsed Self-interacting Dark Matter Halo. The Astrophysical Journal Letters 2025, 978, L23. [CrossRef]
- Buen-Abad, M.A.; Chacko, Z.; Flood, I.; Kilic, C.; et al. Atomic Dark Matter, Interacting Dark Radiation, and the Hubble Tension. 2024. [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; et al. In the realm of the Hubble tension - a review of solutions. Classical and Quantum Gravity 2021, 38, 153001. [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.J.; Jang, I.S.; Lee, A.J.; Owens, K.A. Status Report on the Chicago-Carnegie Hubble Program (CCHP): Measurement of the Hubble Constant Using the Hubble and James Webb Space Telescopes. The Astrophysical Journal 2025, 985, 203. [CrossRef]
- Banik, I.; Kalaitzidis, V. Testing the local void hypothesis using baryon acoustic oscillation measurements over the last 20 yr. Monthly Notices of the Royal Astronomical Society 2025, 540, 545–561. [CrossRef]
- Wanjek, C. Dark Matter Appears to be a Smooth Operator. Mercury 2020, 49, 10–11. URL: https://astrosociety.org/news-publications/mercury-online/mercury-online.html/article/2020/12/10/dark-matter-appears-to-be-a-smooth-operator.
- Wood, C. A New Cosmic Tension: The Universe Might Be Too Thin. Quanta Magazine 2020. URL: https://www.quantamagazine.org/a-new-cosmic-tension-the-universe-might-be-too-thin-20200908/.
- Temming, M. Dark matter clumps in galaxy clusters bend light surprisingly well. Science News 2020. URL: https://www.sciencenews.org/article/dark-matter-clumps-galaxy-clusters-bend-light-surprisingly-well.
- Said, K.; Colless, M.; Magoulas, C.; Lucey, J.R.; Hudson, M.J. Joint analysis of 6dFGS and SDSS peculiar velocities for the growth rate of cosmic structure and tests of gravity. Monthly Notices of The Royal Astronomical Society 2020, 497, 1275–1293. [CrossRef]
- Boruah, S.S.; Hudson, M.J.; Lavaux, G. Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints. Monthly Notices of The Royal Astronomical Society 2020. [CrossRef]
- Chae, K.H.; Lelli, F.; Desmond, H.; McGaugh, S.S.; Li, P.; Schombert, J.M. Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. The Astrophysical Journal 2020, 904, 51. [CrossRef]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; et al. Cosmology intertwined III: fσ8 and S8. Astroparticle Physics 2021, 131, 102604. [CrossRef]
- Terasawa, R.; Li, X.; Takada, M.; Nishimichi, T.; Tanaka, S.; et al. Exploring the baryonic effect signature in the Hyper Suprime-Cam Year 3 cosmic shear two-point correlations on small scales: The S8 tension remains present. Physical Review D 2025, 111, 063509. [CrossRef]
- Wright, A.H.; Stolzner, B.; Asgari, M.; Bilicki, M.; Giblin, B.; et al. KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey, 2025. [CrossRef]
- Navas, S.; et al. Review of particle physics. Phys. Rev. D 2024, 110, 030001. [CrossRef]
- Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56. Astrophysical Journal 2004, 606, 819–824. [CrossRef]
- Silich, E.M.; Bellomi, E.; Sayers, J.; ZuHone, J.; Chadayammuri, U.; et al. ICM-SHOX. I. Methodology Overview and Discovery of a Gas-Dark Matter Velocity Decoupling in the MACS J0018.5+1626 Merger. The Astrophysical Journal 2024, 968, 74. [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity 2014, 17. [CrossRef]
- Uniyal, A.; Dihingia, I.K.; Mizuno, Y.; Rezzolla, L. The future ability to test theories of gravity with black-hole shadows. Nature Astronomy 2025. [CrossRef]
- Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP. Physics Reports 2013, 532, 119–244. [CrossRef]
- Lorentz, H. Simplified Theory of Electrical and Optical Phenomena in Moving Systems. Proceedings of the Royal Netherlands Academy of Arts and Sciences 1899, 1, 427–442. URL (indirect): https://ui.adsabs.harvard.edu/abs/1898KNAB....1..427L/abstract.
- Jackson, J.D. Classical Electrodynamics, third ed.; WILEY, 1998. URL: https://www.wiley.com/en-us/Classical Electrodynamics, 3rd Edition-p-9780471309321.
- Heaviside, O. Electromagnetic Theory; Number v. 1 in AMS Chelsea Publishing Series, American Mathematical Society, 2003. ISBN: 9780821835579.
- Medina, J.R. Gravitoelectromagnetism (GEM): A Group Theoretical Approach. PhD thesis, Drexel University, 2006. URL: https://core.ac.uk/download/pdf/190333514.pdf.
- Papini, G. Some Classical and Quantum Aspects of Gravitoelectromagnetism. Entropy 2020, 22, 1089. [CrossRef]
| Handedness | Quark generations | Lepton flavours | Stuff | ||
| 0 | 0 | Left | 1, 2, 3 | 1, 2, 3 | OM (SEA) |
| 0 | 3 | Right | 1, 2, 3 | 1, 2, 3 | DM (SEA) |
| 1 | 1 | Left | 1, 2, 3 | 3, 1, 2 | DM (MEA) |
| 1 | 4 | Right | 1, 2, 3 | 3, 1, 2 | DM (MEA) |
| 2 | 2 | Left | 1, 2, 3 | 2, 3, 1 | DM (MEA) |
| 2 | 5 | Right | 1, 2, 3 | 2, 3, 1 | DM (MEA) |
| Interaction component | ||
| Two-body gravitational monopole pull interactions | 1 | 6 |
| Two-body gravitational dipole push interactions | 3 | 2 |
| Two-body gravitational quadrupole pull interactions | 6 | 1 |
| Two-body electromagnetic dynamics-properties interactions | 6 | 1 |
| Sensing of one-body blackbody temperature | 6 | 1 |
| One-atom hyperfine absorption of light (0:1 data) | 6 | 1 |
| One-atom hyperfine absorption of light (1:1 data) | 3 or 1 | 2 or 6, respectively |
| Strong-force pull and push interactions | TBD (possibly 6) | TBD (possibly 1) |
| Weak interactions | TBD | TBD |
| Higgs mechanism interactions that enable non-zero mass | TBD | TBD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
