Submitted:
04 November 2025
Posted:
05 November 2025
You are already at the latest version
Abstract
Keywords:
MSC: 83F05; 83C47; 83D05
1. Introduction
2. Relational Time and Covariant Lapse
- for all sectors (so strong fields slow clocks, ), or
- includes higher-order terms (e.g., ) that bound V from below, or
- the linear coupling is treated as an effective interaction valid only below a cutoff .
3. Quaternionic Time and Sectoral Couplings
Linearization.
Magnetar Mixing (EM–Gravity).
4. Phenomenological Implications
5. Symmetry Structure, Limits, and Outlook
Appendix A. Empirical Constraints and Derived Relations
Appendix A.1. Unified Quantum–Geometric Dynamics and Limiting Reductions
Appendix A.1.1. Action of ∇T
Appendix A.1.2. Operator Realization
Inner Product, Slice Choice, and Unitarity.
Appendix A.1.3. Backreaction Hierarchy
Appendix A.1.4. Phenomenological Connection
Appendix A.1.5. Reduction to General Relativity
Appendix A.1.6. Reduction to Quantum Mechanics
Appendix A.1.7. Intermediate Regime (Toy Model)
Appendix A.2. Differential Relations for Measurable Observables
Appendix A.3. Composite Time Dilation
Appendix A.4. Numerical Estimate
Appendix A.5. Empirical Constraint Synthesis
| Domain | Observable & FMT Constraint | Bound / Sensitivity |
|---|---|---|
| Muon Storage Rings [24] | Observable: Lifetime dilation at , –10 T. Constraint: . Agreement with special relativity to demands TeV for . | |
| Optical Clocks [19,20] | Observable: Frequency ratio of identical clocks under controlled EM fields or shielding. Constraint: . | – GeV |
| GPS / Transportable Clocks [25] | Observable: Redshift and time-dilation corrections at orbital altitude ( m). Constraint: Geomagnetic T gives for TeV-scale , consistent with stability. | |
| Astrophysical / Cosmological [21,22,23] | Observable: Primordial nucleosynthesis rates and CMB acoustic peaks. Constraint: Cosmic-mean lapse with . Bounds from and imply GeV. | |
| Strong-Field Astrophysics [28] | Observable: Black-hole ringdown or pulsar timing in T regions. Constraint: , altering timescales by parts in if GeV. | |
| Laboratory Test (Proposed) | Observable: Two co-located ultra-stable clocks, one in high-Q cavity ( J m−3), one shielded. Constraint: Predicts . Null result at implies GeV. | Target |
References
- Will, C.M. The confrontation between general relativity and experiment. Living Reviews in Relativity 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Gourgoulhon, E. 3+1 formalism and bases of numerical relativity. Classical and Quantum Gravity 2012, 29, 245005. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press, 2004. First paperback edition with corrections, 2011. [CrossRef]
- Chou, C.W.; Hume, D.B.; Rosenband, T.; Wineland, D.J. Optical Clocks and Relativity. Science 2010, 329, 1630–1633. [Google Scholar] [CrossRef]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Physics Reports 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Adler, S.L. Quaternionic Quantum Mechanics and Quantum Fields. Reviews of Modern Physics 1995, 67, 1–52. [Google Scholar] [CrossRef]
- Delva, P.; Puchades, N.; Bertone, E.; Meynadier, F.; Poncin-Lafitte, C.L.; Wolf, P.; Bonnin, X.; Laurent, P.; Guillemot, P.; Léon, T.; et al. Test of gravitational redshift with stable clocks in space. Nature Physics 2018, 14, 927–931. [Google Scholar] [CrossRef]
- Blas, D.; Pujolàs, O.; Sibiryakov, S. Models of nonrelativistic quantum gravity: The good, the bad, and the healthy. Physical Review Letters 2011, 107, 051101. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Einstein-Aether waves. Physical Review D 2001, 64, 024028. [Google Scholar] [CrossRef]
- Yagi, K.; Blas, D.; Yunes, N.; Barausse, E. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Physical Review D 2014, 89, 084067. [Google Scholar] [CrossRef]
- Ashtekar, A.; Rovelli, C. Reparametrization and relational time in generally covariant systems. Classical and Quantum Gravity 1992, 9, 1121–1130. [Google Scholar] [CrossRef]
- Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Physical Review D 1983, 27, 2885–2892. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz- and parity-violating modification of electrodynamics. Physical Review D 1990, 41, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Esposito-Farèse, G. Tensor-multi-scalar theories of gravitation. Classical and Quantum Gravity 1992, 9, 2093–2176. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Physics Reports 2019, 796, 1–113. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) Theories. Living Reviews in Relativity 2010, 13, 3. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Reviews of Modern Physics 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Oelker, E.; Ye, J. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 2022, 602, 420–424. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Reviews of Modern Physics 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics 2020, 641, A6. [Google Scholar] [CrossRef]
- Psaltis, D.; et al. Testing general relativity with the Event Horizon Telescope. Living Reviews in Relativity 2020, 23, 7. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Casertano, S.; et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s-1 Mpc-1 uncertainty from the Hubble Space Telescope and the SH0ES team. The Astrophysical Journal Letters 2022, 934, L7. [Google Scholar] [CrossRef]
- Bailey, J.; Borer, K.; Combley, F.; Drumm, H.; Farley, F.J.M.; Field, J.H.; Flegel, W.; Hattersley, P.M.; Krienen, F.; Lange, F.; et al. Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature 1977, 268, 301–305. [Google Scholar] [CrossRef]
- Ashby, N. Relativity in the Global Positioning System. Living Reviews in Relativity 2003, 6, 1. [Google Scholar] [CrossRef]
- Woodard, R.P. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 2015, 10, 32243. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Reviews of Modern Physics 2021, 93, 025008. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
