Submitted:
01 November 2025
Posted:
04 November 2025
You are already at the latest version
Abstract
Keywords:
I. Introduction
III. Einstein and Debye Temperatures in Intercalated Graphite Samples
V. Discussion
4. Conclusions
Acknowledgements
References
- Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
- Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high- T c superconducting lanthanum and yttrium hydrides at high pressure. Proceedings of the National Academy of Sciences 114, 6990–6995 (2017).
- Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
- Somayazulu, M. et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys Rev Lett 122, 027001 (2019).
- He, X.-L. et al. Predicted hot superconductivity in LaSc 2 H 24 under pressure. Proceedings of the National Academy of Sciences 121, (2024).
- Minkov, V. S., Prakapenka, V. B., Greenberg, E. & Eremets, M. I. A Boosted Critical Temperature of 166 K in Superconducting D 3 S Synthesized from Elemental Sulfur and Hydrogen. Angewandte Chemie 132, 19132–19136 (2020).
- Sun, D. et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat Commun 12, 6863 (2021).
- Cai, W.; et al. Superconductivity above 180 K in Ca-Mg Ternary Superhydrides at Megabar Pressures. http://arxiv.org/abs/2312.06090 (2023).
- Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat Commun 12, 5075 (2021).
- Lilia, B. et al. The 2021 room-temperature superconductivity roadmap. Journal of Physics: Condensed Matter 34, 183002 (2022).
- Drozdov, A. P. , Eremets, M. I. & Troyan, I. A. Superconductivity above 100 K in PH3 at high pressures. http://arxiv.org/abs/1508.06224 (2015).
- Chen, W. et al. High-Temperature Superconducting Phases in Cerium Superhydride with a Tc up to 115 K below a Pressure of 1 Megabar. Phys Rev Lett 127, 117001 (2021).
- Troyan, I. A., Semenok, D. V., Sadakov, A. V., Lyubutin, I. . S. & Pudalov, V. M. PROGRESS, PROBLEMY I PERSPEKTIVY KOMNATNO-TEMPERATURNOY SVERKhPROVODIMOSTI. Žurnal èksperimentalʹnoj i teoretičeskoj fiziki 166, 74–88 (2024).
- Chen, W. et al. Enhancement of superconducting properties in the La–Ce–H system at moderate pressures. Nat Commun 14, 2660 (2023).
- Zhou, D. et al. Superconducting praseodymium superhydrides. Sci Adv 6, 1–9 (2020).
- Guo, J. et al. Unusual metallic state in superconducting A15-type La4H23. Natl Sci Rev. [CrossRef]
- Semenok, D. V. et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Materials Today 33, 36–44 (2020).
- Troyan, I. A. et al. High-temperature superconductivity in hydrides. Physics-Uspekhi 65, 748–761 (2022).
- Chen, W. et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12. Nat Commun 12, 1–9 (2021).
- Guo, J.; et al. Soft superconductivity in covalent bismuth dihydride BiH$_2$ under extreme conditions. http://arxiv.org/abs/2505.12062 (2025).
- Troyan, I. A. et al. Non-Fermi-Liquid Behavior of Superconducting SnH 4. Advanced Science 10, (2023).
- Semenok, D. V. et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Materials Today 48, 18–28 (2021).
- Troyan, I. A. et al. Anomalous High-Temperature Superconductivity in YH 6. Advanced Materials 33, 2006832 (2021).
- Semenok, D. V. et al. Effect of Magnetic Impurities on Superconductivity in LaH10. Advanced Materials 34, 2204038 (2022).
- Song, Y. et al. Stoichiometric Ternary Superhydride LaBeH8 as a New Template for High-Temperature Superconductivity at 110 K under 80 GPa. Phys Rev Lett 130, 266001 (2023).
- Ma, C. et al. Synthesis of medium-entropy alloy superhydride with high-temperature superconductivity under high pressure. Phys Rev B 111, 024505 (2025).
- Bi, J. et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9. Nat Commun 13, 5952 (2022).
- Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci Rep 4, 6968 (2014).
- Song, X. et al. Superconductivity above 105 K in Nonclathrate Ternary Lanthanum Borohydride below Megabar Pressure. J Am Chem Soc 146, 13797–13804 (2024).
- Ma, L. et al. High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH6 up to 215 K at a Pressure of 172 GPa. Phys Rev Lett 128, 167001 (2022).
- Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure. Phys Rev Lett 123, 097001 (2019).
- Bi, J. et al. Stabilization of superconductive La–Y alloy superhydride with Tc above 90 K at megabar pressure. Materials Today Physics 28, 100840 (2022).
- He, X. et al. Superconductivity discovered in niobium polyhydride at high pressures. Materials Today Physics 40, 101298 (2024).
- Wang, Y. et al. Synthesis and superconductivity in yttrium superhydrides under high pressure. Chinese Physics B 31, 106201 (2022).
- Li, X. et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure. Nat Commun 10, 3461 (2019).
- Hong, F. et al. Possible superconductivity at ∼70 K in tin hydride SnHx under high pressure. Materials Today Physics 22, 100596 (2022).
- Salke, N. P. et al. Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice. Nat Commun 10, 4453 (2019).
- Zhang, C. L. et al. Superconductivity above 80 K in polyhydrides of hafnium. Materials Today Physics 27, 100826 (2022).
- Shan, P. et al. Molecular Hydride Superconductor BiH 4 with T c up to 91 K at 170 GPa. J Am Chem Soc 147, 4375–4381 (2025).
- Huang, G. et al. Synthesis of superconducting phase of La 0.5 Ce 0.5 H 10 at high pressures. Journal of Physics: Condensed Matter 36, 075702 (2024).
- Chen, L.-C. et al. Synthesis and superconductivity in yttrium-cerium hydrides at high pressures. Nat Commun 15, 1809 (2024).
- Cao, Z.-Y. et al. Probing superconducting gap in CeH$_9$ under pressure. ArXiv http://arxiv.org/abs/2401.12682 (2024).
- Ma, C. et al. Hydrogen-Vacancy-Induced Stable Superconducting Niobium Hydride at High Pressure. J Am Chem Soc 147, 11028–11035 (2025.
- Racioppi, S. & Zurek, E. Quantum Effects or Theoretical Artifacts? A Computational Reanalysis of Hydrogen at High-Pressure. ArXiv http://arxiv.org/abs/2510.02098 (2025).
- Ma, L. et al. High Pressure Superconducting transition in Dihydride BiH$_2$ with Bismuth Open-Channel Framework. Phys Rev Lett. [CrossRef]
- Song, Y. et al. Room-Temperature Superconductivity at 298 K in Ternary La-Sc-H System at High-pressure Conditions. ArXiv.
- Du, F. et al. Tunneling Spectroscopy at Megabar Pressures: Determination of the Superconducting Gap in Sulfur. Phys Rev Lett 133, 036002 (2024).
- Du, F. et al. Superconducting gap of H3S measured by tunnelling spectroscopy. Nature 641, 619–624 (2025).
- Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).
- Marathamkottil, A. H. M. et al. X-ray Diffraction and Electrical Transport Imaging of Superconducting Superhydride (La,Y)H10. (2025).
- Liu, L. et al. Evidence for the Meissner Effect in the Nickelate Superconductor Single Crystal Using Diamond Quantum Sensors. Phys Rev Lett 135, 096001 (2025).
- Ku, C. et al. Point-contact Andreev reflection spectroscopy of layered superconductors with device-integrated diamond anvil cells. Review of Scientific Instruments 96, (2025).
- Rietwyk, K. J. et al. Practical limits to spatial resolution of magnetic imaging with a quantum diamond microscope. AVS Quantum Science 6, (2024).
- Chen, Y. et al. Imaging magnetic flux trapping in lanthanum hydride using diamond quantum sensors. ArXiv http://arxiv.org/abs/2510.21877 (2025).
- Eremets, M. I., Minkov, V. S., Drozdov, A. P. & Kong, P. P. The characterization of superconductivity under high pressure. Nat Mater 23, 26–27 (2024).
- Minkov, V. S., Ksenofontov, V., Bud’ko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat Phys 19, 1293–1300 (2023.
- Minkov, V. S. et al. Revaluation of the lower critical field in superconducting H$_3$S and LaH$_{10}$ (Nature Comm. 13, 3194, 2022). http://arxiv.org/abs/2408.12675 (2024).
- Minkov, V. S. et al. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat Commun 13, 3194 (2022).
- Hao, Q. et al. Diamond quantum sensing at record high pressure up to 240 GPa. ArXiv.
- Cerqueira, T. F. T., Fang, Y., Errea, I., Sanna, A. & Marques, M. A. L. Searching Materials Space for Hydride Superconductors at Ambient Pressure. Adv Funct Mater 34, (2024).
- Wei, X. et al. Design of High- T c Quaternary Hydrides Under Moderate Pressures Through Substitutional Doping. Adv Funct Mater 35, (2025).
- Jiang, Q. et al. Prediction of Room-Temperature Superconductivity in Quasi-Atomic H 2 -Type Hydrides at High Pressure. Advanced Science 11, (2024).
- Belli, F., Torres, S., Contreras-García, J. & Zurek, E. Refining T c Prediction in Hydrides via Symbolic-Regression-Enhanced Electron-Localization-Function-Based Descriptors. Ann Phys. [CrossRef]
- Hansen, M. F. et al. Synthesis of : A potential pathway to high- TC hydride superconductivity at ambient pressure. Phys Rev B 110, 214513 (2024).
- Rastkhadiv, M. A. Revisiting YH$_9$ Superconductivity and Predicting High-T$_c$ in GdYH$_5$. ArXiv.
- Mishra, S. B. & Margine, E. R. Nonadiabatic and anharmonic effects in high-pressure H3S and D3S superconductors. ArXiv.
- Talantsev, E. F. Primary Superconducting Parameters of Highly Compressed Nonclathrate Ternary Hydride LaB2H8. Physics of Metals and Metallography 126, 493–500 (2025).
- Minkov, V. S.; et al. Long-Term Stability of Superconducting Metal Superhydrides. http://arxiv.org/abs/2507.08009 (2025).
- Talantsev, E. F. Structural and superconducting parameters of highly compressed H3S. SSRN. [CrossRef]
- Wrona, I. A., Niegodajew, P. & Durajski, A. P. A recipe for an effective selection of promising candidates for high-temperature superconductors among binary hydrides. Materials Today Physics 46, 101499 (2024).
- Liu, S. et al. High-Throughput Study of Ambient-Pressure High-Temperature Superconductivity in Ductile Few-Hydrogen Metal-Bonded Perovskites. Adv Funct Mater 34, (2024).
- Huang, H. et al. High-Temperature Superconductivity of Thermodynamically Stable Fluorite-Type Hydrides at Ambient Pressure. Advanced Science. [CrossRef]
- Ksenofontov, V., Minkov, V. S., Drozdov, A. P., Pöschl, U. & Eremets, M. I. Signs of Possible High-Temperature Superconductivity in Graphite Intercalated with Lithium-Based Alloys. ArXiv.
- McMillan, W. L. Transition Temperature of Strong-Coupled Superconductors. Physical Review 167, 331–344 (1968).
- Dynes, R. C. McMillan’s equation and the Tc of superconductors. Solid State Commun 10, 615–618 (1972).
- Talantsev, E. F. Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors. Supercond Sci Technol 33, 094009 (2020).
- Talantsev, E. F. & Stolze, K. Resistive transition of hydrogen-rich superconductors. Supercond Sci Technol 34, 064001 (2021).
- Talantsev, E. F. The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III. J Appl Phys 130, 195901 (2021).
- Errea, I. Superconducting hydrides on a quantum landscape. Journal of Physics: Condensed Matter 34, 231501 (2022).
- Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting Hydrides Under Pressure. Annu Rev Condens Matter Phys 11, 57–76 (2020).
- Errea, I. et al. High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor. Phys Rev Lett 114, 157004 (2015).
- Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).
- Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).
- Gao, K.; et al. The Maximum $T_c$ of Conventional Superconductors at Ambient Pressure. http://arxiv.org/abs/2502.18281 (2025).
- Pallecchi, I. et al. Experimental investigation of electronic interactions in collapsed and uncollapsed LaFe2As2 phases. Phys Rev B 108, 014512 (2023).
- Yang, K. et al. Charge fluctuations above TCDW revealed by glasslike thermal transport in kagome metals AV3Sb5 (A=KRb,Cs). Phys Rev B 107, 184506 (2023).
- Poole, C. P., Farach, H., Creswick, R. & Prozorov, R. Superconductivity. (Academic Press, London, UK, 2007).
- Ni, D. et al. Layered polymorph of titanium triiodide. Phys Rev Mater 6, 124001 (2022).
- Bouquet, F. et al. Phenomenological two-gap model for the specific heat of MgB 2. Europhysics Letters (EPL) 56, 856–862 (2001).
- Wälti, Ch. et al. Strong electron-phonon coupling in superconducting MgB2: A specific heat study. Phys Rev B 64, 172515 (2001).
- Wang, A. et al. Magnetic mixed valent semimetal EuZnSb2 with Dirac states in the band structure. Phys Rev Res 2, 033462 (2020).
- Shang, T. et al. Enhanced T c and multiband superconductivity in the fully-gapped ReBe 22 superconductor. New J Phys 21, 073034 (2019).
- Bloch, F. Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen. Zeitschrift f�r Physik 59, 208–214 (1930).
- Grüneisen, E. Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur. Ann Phys 408, 530–540 (1933).
- Talantsev, E. F. An approach to identifying unconventional superconductivity in highly-compressed superconductors. Supercond Sci Technol 33, 124001 (2020).
- Talantsev, E. F. The dominance of non-electron–phonon charge carrier interaction in highly-compressed superhydrides. Supercond Sci Technol 34, 115001 (2021).
- Klimczuk, T., Królak, S. & Cava, R. J. Superconductivity of Ta-Hf and Ta-Zr alloys: Potential alloys for use in superconducting devices. Phys Rev Mater 7, 064802 (2023).
- Ma, K.; et al. Superconductivity with High Upper Critical Field in the Cubic Centrosymmetric η-Carbide Nb 4 Rh 2 C 1−δ. ACS Materials Au.
- Jonas, D. G. C., Biswas, P. K., Hillier, A. D., Mayoh, D. A. & Lees, M. R. Quantum muon diffusion and the preservation of time-reversal symmetry in the superconducting state of type-I rhenium. Phys Rev B 105, L020503 (2022).
- Hu, Z. et al. Robust three-dimensional type-II Dirac semimetal state in SrAgBi. NPJ Quantum Mater 8, 20 (2023).
- Susner, M. A., Bhatia, M., Sumption, M. D. & Collings, E. W. Electrical resistivity, Debye temperature, and connectivity in heavily doped bulk MgB2 superconductors. J Appl Phys 105, (2009).
- Putti, M. et al. Electron transport properties of MgB2 in the normal state. Eur Phys J B 25, 439–443 (2002).
- Jiang, H. et al. Physical properties and electronic structure of Sr2Cr3As2 containing CrO2 and Cr2As2 square-planar lattices. Phys Rev B 92, 205107 (2015).
- Wiesmann, H. et al. Simple Model for Characterizing the Electrical Resistivity in A−15 Superconductors. Phys Rev Lett 38, 782–785 (1977).
- Varshney, D. Impurity, phonon and electron contributions to the electrical resistivity of single-crystal MgB 2. Supercond Sci Technol 19, 685–694 (2006).
- Cooper, J. R. Electrical resistivity of an Einstein solid. Phys Rev B 9, 2778–2780 (1974.
- Pinsook, U. & Tanthum, P. Universal resistivity from electron-phonon interaction based on Einstein model: Application to near-room temperature superconductors. Next Materials 6, 100302 (2025).
- Xie, Y. et al. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale 7, 10101–10110 (2015).
- Ren, X.-X., Kang, W., Cheng, Z.-F. & Zheng, R.-L. Temperature-Dependent Debye Temperature and Specific Capacity of Graphene. Chinese Physics Letters 33, 126501 (2016).
- Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull 37, 1273–1281 (2012).
- Tewary, V. K. & Yang, B. Singular behavior of the Debye-Waller factor of graphene. Phys Rev B 79, 125416 (2009).
- Moreh, R., Shnieg, N. & Zabel, H. Effective and Debye temperatures of alkali-metal atoms in graphite intercalation compounds. Phys Rev B 44, 1311–1317 (1991).
- Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys Rev B 12, 905–922 (1975).
- Semenok, D. Computational design of new superconducting materials and their targeted experimental synthesis. PhD Thesis; Skolkovo Institute of Science and Technology. [CrossRef]
- Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Physical Review 108, 1175–1204 (1957).
- G. M. Eliashberg. Interactions between Electrons and Lattice Vibrations in a Superconductor. Sov. Phys.–JETP 11, 696 (1960).
- Riley, G. N., Malozemoff, A. P., Li, Q., Fleshler, S. & Holesinger, T. G. The freeway model: New concepts in understanding supercurrent transport in Bi-2223 tapes. JOM 49, 24–27 (1997).
- Nadifi, H. et al. Superconductive percolation in Bi-based superconductor/Bi-based insulator composites: case of Bi-2223/Bi-2310 and Bi-2212/BiFeO 3. Supercond Sci Technol 13, 1174–1179 (2000).
- Yeshurun, Y., Malozemoff, A. P. & Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev Mod Phys 68, 911–949 (1996).
- McElfresh, M. W., Yeshurun, Y., Malozemoff, A. P. & Holtzberg, F. Remanent magnetization, lower critical fields and surface barriers in an YBa2Cu3O7 crystal. Physica A: Statistical Mechanics and its Applications 168, 308–318 (1990).
- Eley, S., Miura, M., Maiorov, B. & Civale, L. Universal lower limit on vortex creep in superconductors. Nat Mater 16, 409–413 (2017).
- MCHENRY, M. & SUTTON, R. Flux pinning and dissipation in high temperature oxide superconductors. Prog Mater Sci 38, 159–310 (1994).
- Maley, M. P., Willis, J. O., Lessure, H. & McHenry, M. E. Dependence of flux-creep activation energy upon current density in grain-aligned YBa2Cu3O7-x. Phys Rev B 42, 2639–2642 (1990).
- Eley, S., Willa, R., Chan, M. K., Bauer, E. D. & Civale, L. Vortex phases and glassy dynamics in the highly anisotropic superconductor HgBa2CuO4+δ. Sci Rep 10, 10239 (2020).
- Cole, H. M. et al. Plastic vortex creep and dimensional crossovers in the highly anisotropic superconductor HgBa2CuO4+x. Phys Rev B 107, 104509 (2023).
- Iida, K., Hänisch, J. & Tarantini, C. Fe-based superconducting thin films on metallic substrates: Growth, characteristics, and relevant properties. Appl Phys Rev 5, 031304 (2018).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
