Submitted:
24 October 2025
Posted:
29 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Policies
Literature Coverage
Data Selected
Incident Gamma-Rays
Escape-Energy Uncertainty
Escape Gamma-Ray Intensity
Element and Compound Identification
Photo-Electric Peak
Compton-Effect
Escape Peaks
| K Orbital | a (keV) | b | Rsquare |
| α2 | 0.00560144430106232 | 2.19086250995425 | 0.99995 |
| edge | 0.00628705594993865 | 2.12213694400228 | 0.99990 |
| N° of elements Ne |
N° of compounds Nc |
Table |
| 2 | 77 | III |
| 3 | 198 | IV |
| 4 | 222 | V |
| 5 | 179 | VI |
| 6 | 43 | VII |
| 7 | 9 | VII |
| 8 | 1 | VII |
| Total | 729 |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
References
- Annenkov, A.; Korzhik, M.; Lecoq, P. Lead tungstate scintillation material. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2002, 490, 30–50. [Google Scholar] [CrossRef]
- ABS2004] Bessiere, A.; et al. New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+. IEEE Trans. Nucl. Sci. 2004 51 2970.
- AFK2012] Fukabori, A.; et al. , Scintillation Characteristics of Undoped Sc2O3 Single Crystals and Ceramics. IEEE Trans. Nucl. Sci. 2012 59 2594.
- Grippa, A.; Rebrova, N.; Gorbacheva, T.; Pedash, V.; Kosinov, N.; Cherginets, V.; Tarasov, V.; Tarasenko, O. Scintillation properties of CaBr2 crystals doped with Eu2+ ions. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2013, 729, 356–359. [Google Scholar] [CrossRef]
- AGR2013b] Grippa, A.Y.; et al. Crystal growth and scintillation properties of CsCaBr3:Eu2+ (CsCa1-xEuxBr, 0≤x≤0.08). J.Cryst. 2013. [Google Scholar]
- Khan, A.; Rooh, G.; Kim, H.; Park, H.; Kim, S. Intrinsically activated TlCaCl3: A new halide scintillator for radiation detection. Radiat. Meas. 2017, 107, 115–118. [Google Scholar] [CrossRef]
- Khan, A.; Rooh, G.; Kim, H.; Kim, S. Ce3+-activated Tl2GdCl5: Novel halide scintillator for X-ray and γ-ray detection. J. Alloy. Compd. 2018, 741, 878–882. [Google Scholar] [CrossRef]
- Lempicki, A.; Wojtowicz, A.; Berman, E. Fundamental limits of scintillator performance. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 1993, 333, 304–311. [Google Scholar] [CrossRef]
- ALM1995,a,b] Lempicki, A. et Al. LuAlO3:Ce and other Aluminate Scintillators; IEEE Trans. Nucl. Sci. 1995.
- Lempicki, A.; Brecher, C.; Szupryczynski, P.; Lingertat, H.; Nagarkar, V.; Tipnis, S.; Miller, S. A new lutetia-based ceramic scintillator for X-ray imaging. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2002, 488, 579–590. [Google Scholar] [CrossRef]
- Lindsey, A.C.; Zhuravleva, M.; Stand, L.; Wu, Y.; Melcher, C.L. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator. Opt. Mater. 2015, 48, 1–6. [Google Scholar] [CrossRef]
- Srivastava, A. Aspects of Pr3+ luminescence in solids. J. Lumin- 2016, 169, 445–449. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Kamada, K.; Kurosawa, S.; Shoji, Y.; Yokota, Y.; Chani, V.; Nikl, M. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS. J. Lumin- 2016, 169, 387–393. [Google Scholar] [CrossRef]
- BGR1984,a] Grabmaier, B.C. Crystal Scintillators. IEEE Trans. Nucl. Sci. 1984.
- BYG2019] Yang, B.; et al. Lead-Free Halide Rb2CuBr3 as Sensitive X-Ray Scintillator. Adv. Mater. 2019 31 44 e1904711. (Ref.
- CAR2021] van Aarle, C.; et al. The role of Yb2+ as a scintillation sensitiser in the near-infrared scintillator CsBa2I5:Sm2+. J. Lumin. 2021 238 11 8257.
- CAR2022,a,b] van Aarle, C. et Al. Characterisation of Sm2+ -doped CsYbBr3,CsYbI3 and YbCl2 for near-infrared scintillator application. J. Lumin. 2022; 25.
- CAR2023] van Aarle, C.; et al. Light yield and thermal quenching of Ce3+ and Pr3+ co-doped LaBr3:Sm2+ near-infrared scintillators. Opt. Mater. 2023 145 11 4375.
- CAR2023a,b] van Aarle, C. et Al. Avoiding concentration quenching and self-absorption in Cs4EuX6(X=Br,I) by Sm2+ doping. J. Mat. Chem. 2023.
- CAR2023c,d,e,f] van Aarle, C. et Al. Light yield and thermal quenching of Ce3+ and Pr3+ co-doped LaBr3:Sm2+ near-infrared scintillators. Opt. Mater. 2023.
- Brecher, C.; Lempicki, A.; Miller, S.; Glodo, J.; Ovechkina, E.; Gaysinskiy, V.; Nagarkar, V.; Bartram, R. Suppression of afterglow in CsI:Tl by codoping with Eu2+—I: Experimental. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2006, 558, 450–457. [Google Scholar] [CrossRef]
- Combes, C.; Dorenbos, P.; van Eijk, C.; Krämer, K.; Güdel, H. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin- 1999, 82, 299–305. [Google Scholar] [CrossRef]
- Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil'EV, A.N.; Yoshikawa, A.; Zhu, R.-Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997. [Google Scholar] [CrossRef]
- CEJ1993,a,...l] van Eijk, C.W.E. Fast Scintillators and Their Applications. Nucl. Tracks Radiat. Meas. 1993.
- CEJ1994,a,…,g] van Eijk, C.W.E. et Al. Nd3+ and Pr3+ Doped Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1994.
- CEJ2001,a,…,i] van Eijk, C.W.E. Inorganic-scintillator development, Nucl. Instr. Meth. Phys. Res. 2001.
- CEJ2002,a,…,f] van Eijk, C.W.E. Inorganic Scintillators in Medical Imaging. Phys. Med. Biol. 2002.
- CEJ2002g,h] van Eijk, C.W.E. Inorganic scintillators in medical imaging detectors. Nucl. Instr. Meth. Phys. Res. 2003.
- CFS2018] Foster, C.; et al. Improvements in Light Yield and Energy Resolution by Li+ Codoping (Lu0.75Y0.25)3Al5O12:Pr3+ Single Crystal Scintillators. Phys. Stat. 2018. [Google Scholar]
- Gundiah, G.; Gascón, M.; Bizarri, G.; Derenzo, S.E.; Bourret-Courchesne, E.D. Structure and scintillation of Eu2+-activated calcium bromide iodide. J. Lumin- 2015, 159, 274–279. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Glodo, J.; van Loef, E.V.D.; Karp, J.S.; Shah, K.S. Energy and Timing Response of Six Prototype Scintillators for TOF-PET. IEEE Trans. Nucl. Sci. 2008, 55, 1404–1408. [Google Scholar] [CrossRef]
- Melcher, C.; Manente, R.; Schweitzer, J. Applicability of barium fluoride and cadmium tungstate scintillators for well logging. IEEE Trans. Nucl. Sci. 1989, 36, 1188–1192. [Google Scholar] [CrossRef]
- Melcher, C.L.; Schweitzer, J.S. A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1992, 314, 212–214. [Google Scholar] [CrossRef]
- Melcher, C.; Schweitzer, J. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 1992, 39, 502–505. [Google Scholar] [CrossRef]
- CPN2004] Pepin, C.M.; et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans. Nucl. Sci. 2004. [Google Scholar]
- Ronda, C.; Wieczorek, H.; Khanin, V.; Rodnyi, P. Review—Scintillators for Medical Imaging: A Tutorial Overview. ECS J. Solid State Sci. Technol. 2015, 5, R3121–R3125. [Google Scholar] [CrossRef]
- Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status solidi (b) 2004, 241, 783–790. [Google Scholar] [CrossRef]
- Wilson, C.M.; van Loef, E.V.; Glodo, J.; Cherepy, N.; Hull, G.; Payne, S.; Choong, W.-S.; Moses, W.; Shah, K.S. Strontium iodide scintillators for high energy resolution gamma ray spectroscopy. Optical Engineering + Applications. LOCATION OF CONFERENCE, United StatesDATE OF CONFERENCE; p. 707917.
- Ye, C.; Liao, J.; Shao, P.; Xie, J. Growth and scintillation properties of F-doped PWO crystals. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2006, 566, 757–761. [Google Scholar] [CrossRef]
- Aitken, D.W.; Beron, B.L.; Yenicay, G.; Zulliger, H.R. The Fluorescent Response of NaI(Tl), CsI(Tl), CsI(Na) and CaF2(Eu) to X-Rays and Low Energy Gamma Rays. IEEE Trans. Nucl. Sci. 1967, 14, 468–477. [Google Scholar] [CrossRef]
- DCH2020] Chica, D.G.; et al. Direct Thermal Neutron Detection by the 2d Semiconductor 6LiInP2Se6. 2020. [Google Scholar]
- Nakauchi, D.; Okada, G.; Kawaguchi, N.; Yanagida, T. Scintillation properties of RE 2Hf2O7 (RE = La, Gd, Lu) single crystals prepared by xenon arc floating zone furnace. Jpn. J. Appl. Phys. 2018, 57. [Google Scholar] [CrossRef]
- DPW2006] Pawlak, D.A.; et al. Self-Organized, Rodlike, Micrometer-Scale Microstructure of Tb3Sc2Al3O12-TbScO3:Pr Eutectic. Chem. Mater. 2006 18 9 2450–7.
- DRB2014] Rodriguez Burbano, D.C.; et al. ; The near-Ir Photo-Stimulated Luminescence of CaS:Eu2+/Dy3+ Nanophosphors. J. Mat. Chem. 2014. [Google Scholar]
- Rutstrom, D.; Stand, L.; Delzer, C.; Kapusta, M.; Glodo, J.; van Loef, E.; Shah, K.; Koschan, M.; Melcher, C.L.; Zhuravleva, M. Improved light yield and growth of large-volume ultrafast single crystal scintillators Cs2ZnCl4 and Cs3ZnCl5. Opt. Mater. 2022, 133. [Google Scholar] [CrossRef]
- Rutstrom, D.; Stand, L.; Kapusta, M.; Windsor, D.; Xu, H.; Melcher, C.L.; Zhuravleva, M. Impurity-enhanced core valence luminescence via Zn-doping in cesium magnesium chlorides. Opt. Mater. X 2024, 24. [Google Scholar] [CrossRef]
- Schaart, D.R. Physics and technology of time-of-flight PET detectors. Phys. Med. Biol. 2021, 66, 09TR01. [Google Scholar] [CrossRef]
- DTS2012] Totsuka, D.; et al. Afterglow suppression by codoping with Bi in CsI:TI crystal scintillator. Appl. Phys. Express 2012 5 5 05 2601.
- Wisniewski, D.; Wojtowicz, A.; Drozdowski, W.; Farmer, J.; Boatner, L. Scintillation and luminescence properties of Ce-activated K3Lu(PO4)2. J. Alloy. Compd. 2004, 380, 191–195. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, L.; Beitlerova, A.; Kucerkova, R.; Chewpraditkul, W.; Nikl, M.; Li, J. Compositional regulation of multi-component GYGAG:Ce scintillation ceramics: Self-sintering-aid effect and afterglow suppression. J. Adv. Ceram. 2023, 12, 1919–1929. [Google Scholar] [CrossRef]
- Bourret-Courchesne, E.; Bizarri, G.; Borade, R.; Gundiah, G.; Samulon, E.; Yan, Z.; Derenzo, S. Crystal growth and characterization of alkali-earth halide scintillators. J. Cryst. Growth 2012, 352, 78–83. [Google Scholar] [CrossRef]
- Gorokhova, E.I.; Anan'Eva, G.V.; Demidenko, V.A.; Rodnyĭ, P.A.; Khodyuk, I.V.; Bourret-Courchesne, E.D. Optical, luminescence, and scintillation properties of ZnO and ZnO:Ga ceramics. J. Opt. Technol. 2008, 75, 741–746. [Google Scholar] [CrossRef]
- ELF2001] van Loef, E.V.D.; et al. Optical and scintillation properties of pure and Ce3+ doped GdBr3. Opt. Commun. 2001. [Google Scholar]
- ELF2001a] van Loef, E.V.D.; et al. High-energy-resolution scintillator: Ce 3+ activated LaBr3. Appl. Phys. Lett. 2001 79 1573–5.
- ELF2005,a] van Loef, E.V.D. et Al. Scintillation properties of K2LaX5:Ce3+ (X=Cl,Br,I). Nucl. Instr. Meth. Phys. Res. 2005.
- ELF2008] van Loef, E.V.; et al. Crystal growth and characterization of rare earth iodides for scintillation detection. J. Cryst. Growth 2008 310 2090.
- ELF2014] van Loef, E.V.; Shah, K.S. Advances in scintillators for medical imaging applications. Proc. 9214 Medical Applications of Radiation Detectors IV 2014 9 2140A.
- ELF2023] van Loef, E.; et al. Crystal Growth, Density Functional Theory, and Scintillation Properties of TlCaX3(X=Cl,Br,I). IEEE Trans. Nucl. Sci. 2023 70 1378.
- Mihóková, E.; Vávrů, K.; Kamada, K.; Babin, V.; Yoshikawa, A.; Nikl, M. Deep trapping states in cerium doped (Lu,Y,Gd)3(Ga,Al)5O12 single crystal scintillators. Radiat. Meas. 2013, 56, 98–101. [Google Scholar] [CrossRef]
- Mihóková, E.; Vávrů, K.; Kamada, K.; Babin, V.; Yoshikawa, A.; Nikl, M. Deep trapping states in cerium doped (Lu,Y,Gd)3(Ga,Al)5O12 single crystal scintillators. Radiat. Meas. 2013, 56, 98–101. [Google Scholar] [CrossRef]
- Radzhabov, E.; Istomin, A.; Nepomnyashikh, A.; Egranov, A.; Ivashechkin, V. Exciton interaction with impurity in barium fluoride crystals. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2005, 537, 71–75. [Google Scholar] [CrossRef]
- ERW2013,a] Rowe, E. et Al. A New Lanthanide Activator for Iodide Based Scintillators: Yb2+. IEEE Trans. Nucl. Sci. 2013.
- Sakai, E. Recent Measurements on Scintillator-Photodetector Systems. IEEE Trans. Nucl. Sci. 1987, 34, 418–422. [Google Scholar] [CrossRef]
- Samulon, E.; Gundiah, G.; Gascón, M.; Khodyuk, I.; Derenzo, S.; Bizarri, G.; Bourret-Courchesne, E. Luminescence and scintillation properties of Ce3+-activated Cs2NaGdCl6, Cs3GdCl6, Cs2NaGdBr6 and Cs3GdBr6. J. Lumin- 2014, 153, 64–72. [Google Scholar] [CrossRef]
- Maddalena, F.; Tjahjana, L.; Xie, A.; Arramel; Zeng, S. ; Wang, H.; Coquet, P.; Drozdowski, W.; Dujardin, C.; Dang, C.; et al. Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators. Crystals 2019, 9, 88. [Google Scholar] [CrossRef]
- Peng, F.; Liu, W.; Zhang, Q.; Yang, H.; Shi, C.; Mao, R.; Sun, D.; Luo, J.; Sun, G. Crystal growth, optical and scintillation properties of Nd3+ doped GdTaO4 single crystal. J. Cryst. Growth 2014, 406, 31–35. [Google Scholar] [CrossRef]
- Quarati, F.; Alekhin, M.; Krämer, K.; Dorenbos, P. Co-doping of CeBr3 scintillator detectors for energy resolution enhancement. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2014, 735, 655–658. [Google Scholar] [CrossRef]
- GBL1994,a,…,f] Blasse, G. Scintillator Materials. Chem. Mater. 1994 6 1465–75.
- GBZ2011] Bizarri, G.; et al. Scintillation and Optical Properties of BaBrI:Eu2+ and CsBa2I5:Eu2+. IEEE Trans. Nucl. Sci. 2011 58 3403.
- Gundiah, G.; Brennan, K.; Yan, Z.; Samulon, E.; Wu, G.; Bizarri, G.; Derenzo, S.; Bourret-Courchesne, E. Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6. J. Lumin- 2014, 149, 374–384. [Google Scholar] [CrossRef]
- Kim, G.B.; Choi, J.H.; Jo, H.S.; Kang, C.S.; Kim, H.J.; Kim, H.L.; Kim, I.W.; Kim, S.R.; Kim, Y.D.; Kim, Y.H.; et al. Heat and Light Measurement of a Crystal for the AMoRE Double Beta Decay Experiment. IEEE Trans. Nucl. Sci. 2016, 63, 539–542. [Google Scholar] [CrossRef]
- GKN1999,a] Knoll, G.F. Radiation Detection and Measurement, 3rd Edition Wiley New York 1999 p.
- Morrison, G.; Latshaw, A.M.; Spagnuolo, N.R.; Loye, H.-C.Z. Observation of Intense X-ray Scintillation in a Family of Mixed Anion Silicates, Cs3RESi4O10F2 (RE = Y, Eu–Lu), Obtained via an Enhanced Flux Crystal Growth Technique. J. Am. Chem. Soc. 2017, 139, 14743–14748. [Google Scholar] [CrossRef]
- Rooh, G.; Kang, H.; Kim, H.; Park, H.; Doh, S.-H.; Kim, S. The growth and scintillation properties of CsCe2Cl7 crystal. J. Cryst. Growth 2008, 311, 128–131. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.J.; Kim, S. Study on Crystal Growth and Scintillation Characteristics of Cs$_{2}$ LiCeCl$_{6}$. IEEE Trans. Nucl. Sci. 2010, 57, 1255–1259. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.; Kim, S. Scintillation properties of Cs2LiGdCl6: Ce3+. Radiat. Meas. 2010, 45, 412–414. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.; Park, H.; Kim, S. Luminescence and Scintillation Characterization of Cs2NaGdBr6: Ce3+ Single Crystal. J. Lumin- 2012, 132, 713–716. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.J.; Park, H.; Kim, S. Scintillation Characterization of Rb$_{2}$LiCeCl$_{6}$ Single Crystal. IEEE Trans. Nucl. Sci. 2012, 59, 2248–2251. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.; Park, H.; Kim, S. Investigation of scintillation and luminescence properties of cerium doped Rb2LiGdCl6 single crystals. J. Cryst. Growth 2013, 377, 28–31. [Google Scholar] [CrossRef]
- Rooh, G.; Kim, H.; Park, H.; Kim, S. Luminescence and scintillation characterizations of cerium doped Cs2LiGdBr6 single crystal. J. Lumin- 2014, 146, 404–407. [Google Scholar] [CrossRef]
- GRH2014a] Rooh, G.; et al. Cerium-Doped Cs2NaGdCl6 Scintillator for X-Ray and y-Ray Detection. IEEE Trans. Nucl. Sci. 2014. [Google Scholar]
- Rooh, G.; Kim, H.; Jang, J.; Kim, S. Scintillation characterizations of Tl 2 LiLuCl 6 : Ce 3+ single crystal. J. Lumin- 2017, 187, 347–351. [Google Scholar] [CrossRef]
- Rooh, G.; Khan, A.; Kim, H.; Park, H.; Kim, S. TlSr2Br5: New intrinsic scintillator for X-ray and γ-ray detection. Opt. Mater. 2017, 73, 523–526. [Google Scholar] [CrossRef]
- GSN2007,a] Santana G. C. et Al. Scintillating Properties of Pure and Doped BGO Ceramics. J. Mater. Sci. 2007 42 7 2231–5.
- HDN2015] Dong, H.; et al. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in NaXREF3+X Nanocrystals. J. Am. Chem. Soc. 2015 137 20 6569–76.
- Kim, H.; Rooh, G.; Park, H.; Kim, S. Luminescence and scintillation properties of the new Ce-doped Tl2LiGdCl6 single crystals. J. Lumin- 2015, 164, 86–89. [Google Scholar] [CrossRef]
- Kim, H.; Rooh, G.; Park, H.; Kim, S. Investigations of scintillation characterization of Ce-activated Tl2LiGdBr6 single crystal. Radiat. Meas. 2016, 90, 279–281. [Google Scholar] [CrossRef]
- HKM2016a] Kim, H.J.; et al. Tl2LiYCl6(Ce3+): New Tl-based Elpasolite Scintillation Material. IEEE Trans. Nucl. Sci. 2016. [Google Scholar]
- Kim, H.; Rooh, G.; Khan, A.; Kim, S. New Tl2LaBr5: Ce3+ crystal scintillator for γ-rays detection. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2017, 849, 72–75. [Google Scholar] [CrossRef]
- Kim, H.; Rooh, G.; Kim, S. Tl 2 LaCl 5 (Ce 3+ ): New fast and efficient scintillator for X- and γ-ray detection. J. Lumin- 2017, 186, 219–222. [Google Scholar] [CrossRef]
- Kim, H.; Rooh, G.; Khan, A.; Park, H.; Kim, S. Scintillation performance of the TlSr2I5 (Eu2+) single crystal. Opt. Mater. 2018, 82, 7–10. [Google Scholar] [CrossRef]
- HLO2016] Luo, H.; et al. Controlled Electron–Hole Trapping and Detrapping Process in GdAlO3 by Valence Band Engineering. J. Phys. Chem. 2016. [Google Scholar]
- HRT2009] Rothfuss, H.E.; et al. The effect of Cs2+ Codoping on Shallow Traps in YSO:Ce Scintillators. IEEE Trans. Nucl. Sci. 2009. [Google Scholar]
- Wei, H.; Stand, L.; Zhuravleva, M.; Meng, F.; Martin, V.; Melcher, C.L. Two new cerium-doped mixed-anion elpasolite scintillators: Cs2NaYBr3I3 and Cs2NaLaBr3I3. Opt. Mater. 2014, 38, 154–160. [Google Scholar] [CrossRef]
- HWI2016 ] Wei, H.; et al. Sensitive X-Ray Detectors Made of Methylammonium Lead Tribromide Perovskite Single Crystals. 2016. [Google Scholar]
- HYM1990] Yamada, H.; et al. A Scintillator Gd2O2S:Pr,Ce,F for X-Ray Computed Tomography. J. Electrochem. Soc. 1990 136 9 2713–6.
- Gerasymov, I.; Witkiewicz-Lukaszek, S.; Zorenko, T.; Bartosiewicz, K.; Zorenko, Y.; Winiecki, J.; Kofanov, D.; Boyaryntseva, Y.; Tkachenko, S.; Arhipov, P.; et al. Effects of Codoping With Divalent Cations on Performance of YAG:Ce,C Scintillator. IEEE Trans. Nucl. Sci. 2023, 70, 1362–1369. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Jung, I.D.; Cho, M.K.; Lee, S.M.; Bae, K.M.; Jung, P.G.; Lee, C.H.; Lee, J.M.; Yun, S.; Kim, H.K.; Kim, S.S.; et al. Flexible Gd2O2S:Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors. J. Micromechanics Microengineering 2008, 19. [Google Scholar] [CrossRef]
- Khodyuk, I.V.; Dorenbos, P. Trends and Patterns of Scintillator Nonproportionality. IEEE Trans. Nucl. Sci. 2012, 59, 3320–3331. [Google Scholar] [CrossRef]
- Khodyuk, I.V.; Dorenbos, P. Trends and Patterns of Scintillator Nonproportionality. IEEE Trans. Nucl. Sci. 2012, 59, 3320–3331. [Google Scholar] [CrossRef]
- JBL2025,a,b] van Blaaderen, J.J. et Al. Guidelines for the Selection of Scintillators for Indirect Photon-Counting X-ray Detectors. Chem. Mater. 2025.
- Birks, J.B. Scintillation Counters. 1954. [Google Scholar]
- Barranco, J.; Méndez-Blas, A.; Calixto, M.E. Structural, morphology and optical properties of NaYF4 thin films doped with trivalent lanthanide ions. J. Mater. Sci. Mater. Electron. 2019, 30, 4855–4866. [Google Scholar] [CrossRef]
- Cheon, J.K.; Kim, S.; Rooh, G.; So, J.; Kim, H.; Park, H. Scintillation characteristics of Cs2LiCeBr6 crystal. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2011, 652, 205–208. [Google Scholar] [CrossRef]
- Chval, J.; Clément, D.; Giba, J.; Hybler, J.; Loude, J.-F.; Mares, J.; Mihokova, E.; Morel, C.; Nejezchleb, K.; Nikl, M.; et al. Development of new mixed Lux(RE3+)1−xAP:Ce scintillators (RE3+=Y3+ or Gd3+):comparison with other Ce-doped or intrinsic scintillating crystals. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2000, 443, 331–341. [Google Scholar] [CrossRef]
- Dhillon, J.S.; Vermani, Y.K. Evaluation of Selected Rare-Earth Scintillators for Gamma-Ray Sensing Applications.CONFERENCE NAME, LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE;
- Eberth, J.; Simpson, J. From Ge(Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 2008, 60, 283–337. [Google Scholar] [CrossRef]
- JGL2005] Glodo, J.; et al. LaBr3:Pr3+ - a new red-emitting scintillator, IEEE Nucl. Sci. Symp. Conf. Rec. 2005.
- Glodo, J.; van Loef, E.V.D.; Kyba, C.; Karp, J.S.; Shah, K.S. CeBr3-PrBr3 scintillators. 2007 IEEE Nuclear Science Symposium Conference Record. LOCATION OF CONFERENCE, United StatesDATE OF CONFERENCE; pp. 2178–2181.
- JGL2009] Glodo, J.; et al. Dual gamma neutron detection with Cs2LiLaCl6. SPIE Proc. Vol. 7449. [Google Scholar]
- JGL2011,a] Glodo, J. et Al. Selected Properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 Scintillators. IEEE Trans. Nucl. Sci. 2011.
- Grim, J.Q.; Ucer, K.B.; Burger, A.; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V.M.; Trefilova, L.; Gektin, A.; Bizarri, G.A.; et al. Nonlinear quenching of densely excited states in wide-gap solids. Phys. Rev. B 2013, 87, 125117. [Google Scholar] [CrossRef]
- Johnson, J.A.; Zhuravleva, M.; Stand, L.; Chakoumakos, B.C.; Wu, Y.; Greeley, I.; Rutstrom, D.J.; Koschan, M.; Melcher, C.L. Discovery of New Compounds and Scintillators of the A4BX6 Family: Crystal Structure, Thermal, Optical, and Scintillation Properties. Cryst. Growth Des. 2018, 18, 5220–5230. [Google Scholar] [CrossRef]
- Jansons, J.; Rachko, Z.; Valbis, J.; Andriessen, J.; Dorenbos, P.; E van Eijk, C.W.; Khaidukov, N.M. Cross-luminescence of complex halide crystals. J. Physics: Condens. Matter 1993, 5, 1589–1596. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Niu, G.; Xie, H.; Chen, Y.; Yuan, Y.; Gao, Y.; Xiao, H.; Tang, J.; Pan, A.; et al. Rubidium Doping to Enhance Carrier Transport in CsPbBr3 Single Crystals for High-Performance X-Ray Detection. ACS Appl. Mater. Interfaces 2019, 12, 989–996. [Google Scholar] [CrossRef]
- Menefee, J.; Swinehart, C.F.; O'Dell, E.W. Calcium Fluoride as an X-Ray and Charged Particle Detector. IEEE Trans. Nucl. Sci. 1966, 13, 720–724. [Google Scholar] [CrossRef]
- Mareš, J.A.; Jacquier, B.; Pédrini, C.; Boulon, G. Fluorescence decays and lifetimes of Nd3+, Ce3+ and Cr3+ in YAG. Czechoslov. J. Phys. 1988, 38, 802–816. [Google Scholar] [CrossRef]
- JMR2012,a,b] Mares, J.A. et Al. Scintillation properties of Ce3+ - and Pr3+ -doped LuAG, YAG and mixed LuxY1-xAG garnet crystals. IEEE Trans. Nucl. Sci. 2012.
- JSL2008,a,b] Selling, J. et Al. Eu- or Ce-Doped Barium Halide Scintillators for X-Ray and y-Ray Detections. IEEE Trans. Nucl. Sci. 2008.
- Selling, J.; Birowosuto, M.D.; Dorenbos, P.; Schweizer, S. Europium-doped barium halide scintillators for x-ray and γ-ray detections. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- JXE2017] Xie, J.; et al. Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie International Ed. 2017 56 26 7500–4.
- Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. ACS Nano 2017, 11, 9294–9302. [Google Scholar] [CrossRef]
- K&L2013] Kaye & Laby. Tables of Physical & Chemical Constants, X-Ray Absorption Edges, Characteristic X-Ray Lines and Fluorescence Yields. 2013.
- Eeckhout, K.V.D.; Smet, P.F.; Poelman, D. Persistent Luminescence in Eu2+-Doped Compounds: A Review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef]
- KKM2016] Kamada, K.; et al. Large Size Czochralski Growth and Scintillation Properties of Mg2+ Co-doped Ce:Gd3Ga3Al2O12. IEEE Trans. Nucl. Sci. 2016. [Google Scholar]
- KKM2016a,b,c,d] Kamada, K. et Al. Single Crystal Growth of Cerium and Praseodymium Doped YCa4O(BO3)3 Scintillator by Micro-Pulling Down Method. IEEE Trans. Nucl. Sci. 2016.
- Kamada, K.; Shoji, Y.; Kochurikhin, V.V.; Yoshino, M.; Okumura, S.; Yamamoto, S.; Yeom, J.Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; et al. 2 inch size Czochralski growth and scintillation properties of Li + co-doped Ce:Gd 3 Ga 3 Al 2 O 12. Opt. Mater. 2017, 65, 52–55. [Google Scholar] [CrossRef]
- Kamada, K.; Chiba, H.; Yoshino, M.; Yamaji, A.; Shoji, Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; Yoshikawa, A. Growth and scintillation properties of Eu doped LiSrI3/LiI eutectics. Opt. Mater. 2017, 68, 70–74. [Google Scholar] [CrossRef]
- KKM2017f] Kamada, K.; et al. Mg co-doping effects on Ce doped Y3(Ga,Al)5O12 scintillator. IOP Conf. Series Mat. Sci. Eng. 2017 169 01 2013.
- Miyazaki, K.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Tl-concentration dependence of photoluminescence and scintillation properties in Tl-doped RbI single crystals. J. Mater. Sci. Mater. Electron. 2022, 33, 1–7. [Google Scholar] [CrossRef]
- Pestovich, K.S.; Stand, L.; Van Loef, E.; Melcher, C.L.; Zhuravleva, M. Crystal Growth and Characterization of Europium-Doped Rubidium Calcium Bromide Scintillators. IEEE Trans. Nucl. Sci. 2023, 70, 1370–1377. [Google Scholar] [CrossRef]
- Pestovich, K.S.; Stand, L.; Melcher, C.L.; Van Loef, E.; Zhuravleva, M. Crystal growth of new high light yield halide perovskite scintillator RbSrI3. J. Cryst. Growth 2023, 627. [Google Scholar] [CrossRef]
- Rajan, K.G.; Lenus, A.J. X-ray excited optical luminescence studies on the system BaXY (X,Y=F, Cl, Br, I). Pramana 2005, 65, 323–338. [Google Scholar] [CrossRef]
- Rosette, K.H.; Farukhi, M.R.; Kramer, G.R.; Swinehart, C.; Hofstadter, R. A High Z Scintillator. IEEE Trans. Nucl. Sci. 1970, 17, 89–94. [Google Scholar] [CrossRef]
- KSH2004 ] Shah, K.S.; et al. CeBr3 Scintillators for Gamma-Ray Spectroscopy. 2004 IEEE Nucl. Sci. Symp. Conf. Rec. 4278–81.
- Shah, K.; Glodo, J.; Klugerman, M.; Higgins, W.; Gupta, T.; Wong, P.; Moses, W.; Derenzo, S.; Weber, M.; Dorenbos, P. LuI/sub 3/:Ce-a new scintillator for gamma ray spectroscopy. IEEE Trans. Nucl. Sci. 2004, 51, 2302–2305. [Google Scholar] [CrossRef]
- Khan, S.; Kim, H.J.; Kim, Y.D.; Lee, M.H. Scintillation Characterizations of Tin Doped Lithium Iodide Crystals at Room and Low Temperature. IEEE Trans. Nucl. Sci. 2016, 63, 448–452. [Google Scholar] [CrossRef]
- KSK2018,a] Saeki, K. et Al. Luminescence and scintillation properties of Cs2HfBr6 and Cs2ZrBr6 crystals. Jpn. J. Appl. Phys. 2018 57 03 0310.
- KYG2011] Yang, K.; et al. Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators. Phys. Stat. Solidi Rapid Res. Lett. 2011. [Google Scholar]
- KYN2012,a,b] Yang, K. et Al. Performance Improvement of Large Sr2+ and Ba2+ Co-Doped LaBr3:Ce3+ Scintillation Crystals. 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec. 2012.
- Yang, K.; Menge, P.R. Improving γ-ray energy resolution, non-proportionality, and decay time of NaI:Tl+ with Sr2+ and Ca2+ co-doping. J. Appl. Phys. 2015, 118, 213106. [Google Scholar] [CrossRef]
- Brixner, L. New X-ray phosphors. Mater. Chem. Phys. 1987, 16, 253–281. [Google Scholar] [CrossRef]
- LLN2020] Lian. L. et Al. Efficient and Reabsorption-Free Radioluminescence in Cs3cu2i5 Nanocrystals with Self-Trapped Excitons. Adv. Sci. 2020.
- Lu, L.; Sun, M.; Lu, Q.; Wu, T.; Huang, B. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy 2021, 79. [Google Scholar] [CrossRef]
- Pidol, L.; Kahn-Harari, A.; Viana, B.; Virey, E.; Ferrand, B.; Dorenbos, P.; de Haas, J.; van Eijk, C. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 2004, 51, 1084–1087. [Google Scholar] [CrossRef]
- LSP2016,a…,e] Soundara-Pandian, L. et Al. Lithium Alkaline Halides-Next Generation of Dual Mode Scintillators. IEEE Trans. Nucl. Sci. 2016.
- Stand, L.; Zhuravleva, M.; Wei, H.; Melcher, C. Crystal growth and scintillation properties of potassium strontium bromide. Opt. Mater. 2015, 46, 59–63. [Google Scholar] [CrossRef]
- Stand, L.; Zhuravleva, M.; Lindsey, A.; Melcher, C. Growth and characterization of potassium strontium iodide: A new high light yield scintillator with 2.4% energy resolution. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2015, 780, 40–44. [Google Scholar] [CrossRef]
- Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Johnson, J.; Lindsey, A.; Melcher, C. Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4. J. Lumin- 2016, 169, 301–307. [Google Scholar] [CrossRef]
- Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu. Opt. Mater. 2017, 73, 408–414. [Google Scholar] [CrossRef]
- Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Johnson, J.; Loyd, M.; Wu, Y.; Koschan, M.; Melcher, C. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6. J. Cryst. Growth 2018, 486, 162–168. [Google Scholar] [CrossRef]
- Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Wei, H.; Johnson, J.; Martin, V.; Loyd, M.; Rutstrom, D.; McAlexander, W.; Wu, Y.; et al. Characterization of mixed halide scintillators: CsSrBrI2:Eu, CsCaBrI2:Eu and CsSrClBr2:Eu. J. Lumin- 2019, 207, 70–77. [Google Scholar] [CrossRef]
- Wollesen, L.; Douissard, P.-A.; Pauwels, K.; Baillard, A.; Loiko, P.; Brasse, G.; Mathieu, J.; Simeth, S.J.; Kratz, M.; Dujardin, C.; et al. Microstructured growth by liquid phase epitaxy of scintillating Gd3Ga5O12 (GGG) doped with Eu3+. J. Alloy. Compd. 2024, 1010. [Google Scholar] [CrossRef]
- Alekhin, M.S.; Biner, D.A.; Krämer, K.W.; Dorenbos, P. Improvement of LaBr3:5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Alekhin, M.S.; de Haas, J.T.M.; Khodyuk, I.V.; Krämer, K.W.; Menge, P.R.; Ouspenski, V.; Dorenbos, P. Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
- Becker, M.A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P.C.; Shabaev, A.; Mehl, M.J.; Michopoulos, J.G.; Lambrakos, S.G.; Bernstein, N.; Lyons, J.L.; et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193. [Google Scholar] [CrossRef]
- MBL2000] Balcerzyk, M.; et al. YSO, LSO, GSO and LGSO. A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 2000 47 1319.
- MBR2006a,b,c] Birowosuto, M.D. et Al. Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE=La,Y,Lu). J. Phys. Condens. 2006.
- Birowosuto, M.D.; Dorenbos, P.; van Eijk, C.; Kramer, K.; Gudel, H. PrBr$_3$: Ce$^3+$: A New Fast Lanthanide Trihalide Scintillator. IEEE Trans. Nucl. Sci. 2006, 53, 3028–3030. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides. Phys. Status solidi (a) 2007, 204, 850–860. [Google Scholar] [CrossRef]
- MBR2007h,i,j] Birowosuto, M.D. et Al. Thermal quenching of Ce3+ emission in PrX3 (X=Cl,Br) by intervalence charge transfer. J. Phys. Condens. 2007.
- Birowosuto, M.D.; Dorenbos, P.; de Haas, J.T.M.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Thermal-neutron scintillator: Ce3+ activated Rb2LiYBr6. J. Appl. Phys. 2007, 101, 066107. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Dorenbos, P.; Bizarri, G.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Temperature Dependent Scintillation and Luminescence Characteristics of GdI$_{3}$: Ce$^{3+}$. IEEE Trans. Nucl. Sci. 2008, 55, 1164–1169. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Dorenbos, P.; Krämer, K.W.; Güdel, H.U. Ce 3 + activated LaBr3−xIx: High-light-yield and fast-response mixed halide scintillators. J. Appl. Phys. 2008, 103, 103517. [Google Scholar] [CrossRef]
- MBR2008b,…,f] Birowosuto, M.D. et Al. Li-Based Thermal Neutron Scintillator Research; Rb2LiYBr6:Ce3+ and Other Elpasolites. IEEE Trans. Nucl. Sci. 2008.
- Birowosuto, M.D.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides. Phys. Status solidi (a) 2007, 204, 850–860. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ishii, M.; Usuki, Y.; Yahagi, H. Scintillation characteristics of PbWO4 single crystals at room temperature. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 1993, 333, 429–433. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ishii, M.; Harada, K.; Yamaga, I. Bismuth silicate Bi4Si3O12, a faster scintillator than bismuth germanate Bi4Ge3O12. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 1996, 372, 45–50. [Google Scholar] [CrossRef]
- MKC2014] Kucera, M.; et al. Energy Transfer and Scintillation Properties of Ce Doped (LuYGd)(AlGa)O Multicomponent Garnets. IEEE Trans. Nucl. Sci. 61 1 2014.
- Kucera, M.; Onderisinova, Z.; Bok, J.; Hanus, M.; Schauer, P.; Nikl, M. Scintillation response of Ce3+ doped GdGa-LuAG multicomponent garnet films under e-beam excitation. J. Lumin- 2016, 169, 674–677. [Google Scholar] [CrossRef]
- Kucera, M.; Rathaiah, M.; Beitlerova, A.; Kucerkova, R.; Nikl, M. Scintillation Properties and Energy Transfer in (GdY)AlO₃:Ce³⁺ Perovskites With High Gd Content. IEEE Trans. Nucl. Sci. 2020, 67, 1049–1054. [Google Scholar] [CrossRef]
- Knitel, M.; Dorenbos, P.; de Haas, J.; van Eijk, C. LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 1996, 374, 197–201. [Google Scholar] [CrossRef]
- Knitel, M.; Dorenbos, P.; van Eijk, C.; Plasteig, B.; Viana, B.; Kahn-Harari, A.; Vivien, D. Photoluminescence, and scintillation/thermoluminescence yields of several Ce3+ and Eu2+ activated borates. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2000, 443, 364–374. [Google Scholar] [CrossRef]
- MKP1999] Kapusta, M.; et al. Comparison of the scintillation properties of LSO:Ce manufactured by different laboratories and of LGSO:Ce. IEEE Nucl. Sci. Symp. 1999. [Google Scholar]
- MKR2020] Korzhik, M.; et al. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3 O12:Ce,Mg. Cryst. Eng. Comm. 2020. [Google Scholar]
- Liu, M.; Zhong, G.; Yin, Y.; Miao, J.; Li, K.; Wang, C.; Xu, X.; Shen, C.; Meng, H. Aluminum-Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Adv. Sci. 2017, 4, 1700335. [Google Scholar] [CrossRef]
- Laval, M.; Moszyński, M.; Allemand, R.; Cormoreche, E.; Guinet, P.; Odru, R.; Vacher, J. Barium fluoride — Inorganic scintillator for subnanosecond timing. Nucl. Instruments Methods Phys. Res. 1983, 206, 169–176. [Google Scholar] [CrossRef]
- Loyd, M.; Lindsey, A.; Stand, L.; Zhuravleva, M.; Melcher, C.; Koschan, M. Tuning the structure of CsCaI3:Eu via substitution of bromine for iodine. Opt. Mater. 2017, 68, 47–52. [Google Scholar] [CrossRef]
- Moszyński, M.; Gresset, C.; Vacher, J.; Odru, R. Timing properties of BGO scintillator. Nucl. Instruments Methods Phys. Res. 1981, 188, 403–409. [Google Scholar] [CrossRef]
- MMS2016,a,b,c] Moszyński, M. et Al. Energy Resolution of Scintillation Detectors. Nucl. Instr. Meth. Phys. Res. 2016.
- MNK2005] Nikl, M.; et al. Photo- and radioluminescence of Pr-Doped Lu3Al5O12 single crystal, Phys. Stat. Solidi a. Appl. Mater. Sci. 2005. [Google Scholar]
- MNK2006,a] Nikl, M. Scintillation detectors for x-rays. Meas. Sci. Technol. 2006.
- Nikl, M.; Kamada, K.; Babin, V.; Pejchal, J.; Pilarova, K.; Mihokova, E.; Beitlerova, A.; Bartosiewicz, K.; Kurosawa, S.; Yoshikawa, A. Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators. Cryst. Growth Des. 2014, 14, 4827–4833. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar] [CrossRef]
- MRS2016] Rust, M.; et al. Intrinsic radioactivity of KSr2I5:Eu2+. Nucl. Instr. Meth. Phys. Res. 2016. [Google Scholar]
- Weber, M.J. Inorganic scintillators: today and tomorrow. J. Lumin- 2002, 100, 35–45. [Google Scholar] [CrossRef]
- Weber, M. Scintillation: mechanisms and new crystals. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2004, 527, 9–14. [Google Scholar] [CrossRef]
- Zhuravleva, M.; Yang, K.; Green, A.; Melcher, C. Crystal growth and scintillation properties of Ce3+-doped KGd2Cl7. J. Cryst. Growth 2011, 318, 796–799. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Hull, G.; Drobshoff, A.D.; Payne, S.A.; van Loef, E.; Wilson, C.M.; Shah, K.S.; Roy, U.N.; Burger, A.; Boatner, L.A.; et al. Strontium and barium iodide high light yield scintillators. Appl. Phys. Lett. 2008, 92, 083508. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Payne, S.A.; Asztalos, S.J.; Hull, G.; Kuntz, J.D.; Niedermayr, T.; Pimputkar, S.; Roberts, J.J.; Sanner, R.D.; Tillotson, T.M.; et al. Scintillators With Potential to Supersede Lanthanum Bromide. IEEE Trans. Nucl. Sci. 2009, 56, 873–880. [Google Scholar] [CrossRef]
- NCH2011] Cherepy, N.J.; et al. Scintillator Materials. 4685. [Google Scholar]
- Koori, N.; Ueda, T.; Ogawa, K.; Sakae, T.; Kametani, H.; Matoba, M.; Kumabe, I. Observation of Self-Quenching Streamers in Quenching Gases of Hydrocarbons and Carbon Dioxide. IEEE Trans. Nucl. Sci. 1986, 33, 395–398. [Google Scholar] [CrossRef]
- Shiran, N.V.; Gektin, A.V.; Boyarintseva, Y.; Vasyukov, S.; Boyarintsev, A.; Pedash, V.; Tkachenko, S.; Zelenskaya, O.; Kosinov, N.; Kisil, O.; et al. Eu Doped and Eu, Tl Co-Doped NaI Scintillators. IEEE Trans. Nucl. Sci. 2010, 57, 1233–1235. [Google Scholar] [CrossRef]
- OGN1999,a,b] Guillot-Noël, O. et Al. Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3; J. Lumin.
- Sidletskiy, O.; Gektin, A.; Belsky, A. Light-yield improvement trends in mixed scintillation crystals. Phys. Status solidi (a) 2014, 211, 2384–2387. [Google Scholar] [CrossRef]
- Voloshyna, O.; Boiaryntseva, I.; Baumer, V.; Ivanov, A.; Korjik, M.; Sidletskiy, O. New, dense, and fast scintillators based on rare-earth tantalo-niobates. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2014, 764, 227–231. [Google Scholar] [CrossRef]
- Axel, P. Intensity Corrections for Iodine X-Rays Escaping from Sodium Iodide Scintillation Crystals. Rev. Sci. Instruments 1954, 25, 391–391. [Google Scholar] [CrossRef]
- Cutler, P.A.; Melcher, C.L.; Spurrier, M.A.; Szupryczynski, P.; Eriksson, L.A. Scintillation Non-Proportionality of Lutetium- and Yttrium-Based Silicates and Aluminates. IEEE Trans. Nucl. Sci. 2009, 56, 915–919. [Google Scholar] [CrossRef]
- Dorenbos, P.; Spijker, J.V.; Frijns, O.; van Eijk, C.; Krämer, K.; Güdel, H.; Ellens, A. Scintillation properties of RbGd2Br7 : Ce3+ crystals; fast, efficient, and high density scintillators. Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 1997, 132, 728–731. [Google Scholar] [CrossRef]
- PDR2019,a,…,p] Dorenbos, P. The quest for high resolution y-ray scintillators. Opt. Mater. 2019.
- Guss, P.; Foster, M.E.; Wong, B.M.; Doty, F.P.; Shah, K.; Squillante, M.R.; Shirwadkar, U.; Hawrami, R.; Tower, J.; Yuan, D. Results for aliovalent doping of CeBr3 with Ca2+. J. Appl. Phys. 2014, 115, 034908. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, D.; Singh, T. Sm3+ and Gd3+ Co-doped lead phosphate glasses for γ-rays shielding and sensing. J. Lumin- 2019, 209, 74–88. [Google Scholar] [CrossRef]
- PLC2006,a,…,t] Lecoq. P. et Al. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. 2006.
- PLC2016a,b,c,d] Lecoq, P. Development of new scintillators for medical applications. Nucl. Instr. Meth. Phys. Res. 2016.
- Rodnyi, P.A. Choice of Compounds with Fast Core-Valence Transitions. MRS Proc. 1994, 348. [Google Scholar] [CrossRef]
- Rodnyi, P.A. Core–valence luminescence in scintillators. Radiat. Meas. 2004, 38, 343–352. [Google Scholar] [CrossRef]
- Rodnyi, P.A.; Chernenko, K.A.; Gorokhova, E.I.; Kozlovskii, S.S.; Khanin, V.M.; Khodyuk, I.V. Novel Scintillation Material—ZnO Transparent Ceramics. IEEE Trans. Nucl. Sci. 2012, 59, 2152–2155. [Google Scholar] [CrossRef]
- PSC1988,a,b] Schotanus P. et Al. Detection of LaF3:Nd3+ Scintillation Light in a Photosensitive Multiwire Chamber. Nucl. Instr. Meth. Phys. Res. 1988.
- Schauer, P.; Lalinský, O.; Kučera, M.; Lučeničová, Z.; Hanuš, M. Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Opt. Mater. 2017, 72, 359–366. [Google Scholar] [CrossRef]
- Chen, X.; Qin, H.; Zhang, Y.; Luo, Z.; Jiang, J.; Jiang, H. Preparation and Optical Properties of Transparent (Ce,Gd)3Al3Ga2O12 Ceramics. J. Am. Ceram. Soc. 2015, 98, 2352–2356. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- He, Q.; Zhou, C.; Xu, L.; Lee, S.; Lin, X.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation. ACS Mater. Lett. 2020, 2, 633–638. [Google Scholar] [CrossRef]
- Hu, Q.; Deng, Z.; Hu, M.; Zhao, A.; Zhang, Y.; Tan, Z.; Niu, G.; Wu, H.; Tang, J. X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 2018, 61, 1581–1586. [Google Scholar] [CrossRef]
- Xu, Q.; Shao, W.; Liu, J.; Zhu, Z.; Ouyang, X.; Cai, J.; Liu, B.; Liang, B.; Wu, Z.-Y.; Ouyang, X. Bulk Organic–Inorganic Methylammonium Lead Halide Perovskite Single Crystals for Indirect Gamma Ray Detection. ACS Appl. Mater. Interfaces 2019, 11, 47485–47490. [Google Scholar] [CrossRef]
- Awater, R.; Alekhin, M.; Biner, D.; Krämer, K.; Dorenbos, P. Converting SrI2:Eu2+ into a near infrared scintillator by Sm2+ co-doping. J. Lumin- 2019, 212, 1–4. [Google Scholar] [CrossRef]
- RBR2006] Bartram, R.H.; et al. Suppression of afterglow in CsI:Tl by co-doping with Eu2+ II: Theoretical model. Nucl. Instr. Meth. Phys. Res. 2006. [Google Scholar]
- Hofstadter, R.; Milton, J.C.D.; Ridgway, S.L. Behavior of Silver Chloride Crystal Counters. Phys. Rev. B 1947, 72, 977–978. [Google Scholar] [CrossRef]
- Hofstadter, R. Thallium Halide Crystal Counter. Phys. Rev. B 1947, 72, 1120–1121. [Google Scholar] [CrossRef]
- Hofstadter, R. Alkali Halide Scintillation Counters. Phys. Rev. B 1948, 74, 100–101. [Google Scholar] [CrossRef]
- Hofstadter, R.; O'Dell, E.W.; Schmidt, C.T. CaI2 and CaI2(Eu) Scintillation Crystals. Rev. Sci. Instruments 1964, 35, 246–247. [Google Scholar] [CrossRef]
- Hawrami, R.; Pandian, L.S.; Ariesanti, E.; Glodo, J.; Finkelstein, J.; Tower, J.; Shah, K. Crystals for Nuclear Security Applications. IEEE Trans. Nucl. Sci. 2016, 63, 509–512. [Google Scholar] [CrossRef]
- RHW2016a] Hawrami, R.; et al. Tl2LiYCl6:Ce: A New Elpasolite Scintillator. IEEE Trans. Nucl. Sci. 2016 63 2838.
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K. Intrinsic scintillators: TlMgCl3 and TlCaI3. J. Cryst. Growth 2017, 475, 216–219. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K. Tl2LaCl5:Ce, high performance scintillator for gamma-ray detectors. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2017, 869, 107–109. [Google Scholar] [CrossRef]
- RLC1997] Lecomte, R.; et al. Investigation of GSO, LSO and YSO Scintillators using Reverse Avalanche Photodiodes. IEEE Nucl. Sci.Symp. 1997. [Google Scholar]
- Mao, R.; Zhang, L.; Zhu, R.-Y. Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics. IEEE Trans. Nucl. Sci. 2008, 55, 2425–2431. [Google Scholar] [CrossRef]
- Zhu, R.-Y. Crystal calorimeters in the next decade.CONFERENCE NAME, LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE;
- Blahuta, S.; Bessiere, A.; Viana, B.; Dorenbos, P.; Ouspenski, V. Evidence and Consequences of Ce$^{4+}$ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications. IEEE Trans. Nucl. Sci. 2013, 60, 3134–3141. [Google Scholar] [CrossRef]
- Cheng, S.; Beitlerova, A.; Kucerkova, R.; Mihokova, E.; Nikl, M.; Zhou, Z.; Ren, G.; Wu, Y. Non-Hygroscopic, Self-Absorption Free, and Efficient 1D CsCu2I3 Perovskite Single Crystal for Radiation Detection. ACS Appl. Mater. Interfaces 2021, 13, 12198–12202. [Google Scholar] [CrossRef]
- SCH2020a,b,c] Cheng, S. et Al. Zero-Dimensional Cs3Cu2I5 Perovskite Single Crystal as Sensitive X-Ray and γ-Ray Scintillator. Phys. Stat. Sol. 2020.
- SDR2000,a] Derenzo, S.E. et Al. Measurements of the intrinsic rise times of common inorganic scintillators. IEEE Trans. Nucl. Sci. 2000.
- SDR2001,a,b,c] Derenzo, S.E. et Al. Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga, and CdS:In; Nucl. Instr. Meth. 2001.
- Derenzo, S.; Weber, M.; Bourret-Courchesne, E.; Klintenberg, M. The quest for the ideal inorganic scintillator. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2003, 505, 111–117. [Google Scholar] [CrossRef]
- Derenzo, S.; Bizarri, G.; Borade, R.; Bourret-Courchesne, E.; Boutchko, R.; Canning, A.; Chaudhry, A.; Eagleman, Y.; Gundiah, G.; Hanrahan, S.; et al. New scintillators discovered by high-throughput screening. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2011, 652, 247–250. [Google Scholar] [CrossRef]
- Gokhale, S.S.; Stand, L.; Lindsey, A.; Koschan, M.; Zhuravleva, M.; Melcher, C.L. Improvement in the optical quality and energy resolution of CsSrBr3: Eu scintillator crystals. J. Cryst. Growth 2016, 445, 1–8. [Google Scholar] [CrossRef]
- Kubota, S.; Itoh, M.; (Gen), J.-Z.R.; Sakuragi, S.; Hashimoto, S. Observation of Interatomic Radiative Transition of Valence Electrons to Outermost-Core-Hole States in Alkali Halides. Phys. Rev. Lett. 1988, 60, 2319–2322. [Google Scholar] [CrossRef]
- Kodama, S.; Kurosawa, S.; Yamaji, A.; Pejchal, J.; Král, R.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Nikl, M.; Yoshikawa, A. Growth and luminescent properties of Ce and Eu doped Cesium Hafnium Iodide single crystalline scintillators. J. Cryst. Growth 2018, 492, 1–5. [Google Scholar] [CrossRef]
- Kodama, S.; Kurosawa, S.; Ohno, M.; Yamaji, A.; Yoshino, M.; Pejchal, J.; Král, R.; Ohashi, Y.; Kamada, K.; Yokota, Y.; et al. Development of a novel red-emitting cesium hafnium iodide scintillator. Radiat. Meas. 2019, 124, 54–58. [Google Scholar] [CrossRef]
- Khalfin, S.; Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665–8679. [Google Scholar] [CrossRef]
- SKM2009] Kim, S.; et al. Crystal Growth and Scintillation Properties of Rb2CeBr5. IEEE Trans. Nucl. Sci. 2009, 56, 982. [Google Scholar]
- Cheon, J.-K.; Kim, S.-H.; Kim, H. Crystal growth and scintillation properties of CsI:Na. J. Sens. Sci. Technol. 2010, 19, 443–448. [Google Scholar] [CrossRef]
- Kurosawa, S.; Kodama, S.; Yokota, Y.; Horiai, T.; Yamaji, A.; Shoji, Y.; Král, R.; Pejchal, J.; Ohashi, Y.; Kamada, K.; et al. Cesium hafnium chloride scintillator coupled with an avalanche photodiode photodetector. J. Instrum. 2017, 12, C02042–C02042. [Google Scholar] [CrossRef]
- RSC2025a] Scafè, R.; et al. 1766.
- SSN2017] Sen, S.; et al. Organic–Inorganic Composite Films Based on Gd3Ga3Al2O12:Ce Scintillator Nanoparticles for X-Ray Imaging Applications. ACS Appl. Mater. Interfaces 2017 9 42 3 7310–20.
- TDK1976 ] Doke, T.; et al. Estimation of Fano factors in liquid argon, krypton, xenon and xenon-doped liquid argon. Nucl. Instr. Meth. 1976. [Google Scholar]
- Ludziejewski, T.; Moszynska, K.; Moszynski, M.; Wolski, D.; Klamra, W.; Norlin, L.; Devitsin, E.; Kozlov, V. Advantages and limitations of LSO scintillator in nuclear physics experiments. IEEE Trans. Nucl. Sci. 1995, 42, 328–336. [Google Scholar] [CrossRef]
- Ogawa, T.; Nakauchi, D.; Okada, G.; Kawaguchi, N.; Yanagida, T. Scintillation properties of Ce- and Eu-doped Ca2MgSi2O7 crystals. Opt. Mater. 2019, 89, 63–67. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Arai, M.; Koshimizu, M.; Kato, T.; Nakauchi, D.; Kawaguchi, N. Comparative Studies of Scintillation Properties of Tl-based Crystals. Sensors Mater. 2020, 32, 1351–1356. [Google Scholar] [CrossRef]
- URY2007 ] Roy, U.N.; et al. K2CeCl5: A new scintillator material. Nucl. Instr. Meth. in Phys. Res. 2007. [Google Scholar]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- VCH2014,a] Cherginets, V.L. et Al. Scintillation properties of CsSrX3:Eu2+ (CsSr1-yEuyX3, X=Cl,Br;0≤y≤0.05) single crystal grown by the Bridgman method. Mater. Chem. Phys. 2014.
- Khanin, V.; Venevtsev, I.; Rodnyi, P. Recent advances in the study of core-valence luminescence (cross luminescence). Review. Opt. Mater. 2022, 136. [Google Scholar] [CrossRef]
- Nagarkar, V.V.; Brecher, C.; Ovechkina, E.E.; Gaysinskiy, V.; Miller, S.R.; Thacker, S.; Lempicki, A.; Bartram, R.H. Scintillation Properties of CsI:Tl Crystals Codoped With ${\rm Sm}^{2+}$. IEEE Trans. Nucl. Sci. 2008, 55, 1270–1274. [Google Scholar] [CrossRef]
- VVN2024,a,..,i] Vanecek, V. et Al. Growth and Spectroscopic Properties of Pr3+ Doped Lu2S3 Single Crystals. Cryst.GrowthDes. 2024.
- Chewpraditkul, W.; Sakthong, O.; Yawai, N.; Szczesniak, T.; Swiderski, L.; Moszynski, M.; Kurosawa, S.; Murakami, R.; Horiai, T.; Yoshikawa, A.; et al. Scintillation timing characteristics of (La,Gd)2Si2O7:Ce and Gd2SiO5:Ce single crystal scintillators: A comparative study. Radiat. Meas. 2016, 92, 49–53. [Google Scholar] [CrossRef]
- Drozdowski, W.; Lukasiewicz, T.; Wojtowicz, A.J.; Wisniewski, D.; Kisielewski, J. Thermoluminescence and scintillation of praseodymium-activated Y3Al5O12 and LuAlO3 crystals. J. Cryst. Growth 2005, 275, e709–e714. [Google Scholar] [CrossRef]
- Drozdowski, W.; Wojtowicz, A.J.; Łukasiewicz, T.; Kisielewski, J. Scintillation properties of LuAP and LuYAP crystals activated with Cerium and Molybdenum. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 562, 254–261. [Google Scholar] [CrossRef]
- Drozdowski, W.; Brylew, K.; Witkowski, M.; Wojtowicz, A.; Solarz, P.; Kamada, K.; Yoshikawa, A. Studies of light yield as a function of temperature and low temperature thermoluminescence of Gd3Al2Ga3O12:Ce scintillator crystals. Opt. Mater. 2014, 36, 1665–1669. [Google Scholar] [CrossRef]
- Drozdowski, W.; Brylew, K.; Wojtowicz, A.J.; Kisielewski, J.; Świrkowicz, M.; Łukasiewicz, T.; de Haas, J.T.; Dorenbos, P. 33000 photons per MeV from mixed (Lu_075Y_025)_3Al_5O_12:Pr scintillator crystals. Opt. Mater. Express 2014, 4, 1207–1212. [Google Scholar] [CrossRef]
- Moses, W.; Derenzo, S. Cerium fluoride, a new fast, heavy scintillator. IEEE Trans. Nucl. Sci. 1989, 36, 173–176. [Google Scholar] [CrossRef]
- Moses, W.; Derenzo, S.; Fyodorov, A.; Korzhik, M.; Gektin, A.; Minkov, B.; Aslanov, V. LuAlO/sub 3/:Ce-a high density, high speed scintillator for gamma detection. IEEE Trans. Nucl. Sci. 1995, 42, 275–279. [Google Scholar] [CrossRef]
- Moses, W.W. Current trends in scintillator detectors and materials. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2002, 487, 123–128. [Google Scholar] [CrossRef]
- WSC1951,a] van Sciver, W.; Hofstadter, R. Scintillations in Thallium-Activated CaI2 and CsI, Phys. Rev. 1951.
- Van Sciver, W.; Hofstadter, R. Gamma- and Alpha-Produced Scintillations in Cesium Fluoride. Phys. Rev. B 1952, 87, 522–522. [Google Scholar] [CrossRef]
- WWL2019] Wolszczak, W.; et al. CsBa2I5:Eu2+,Sm2+ The First High-Energy Resolution Black Scintillator for y-Ray Spectroscopy. Phys. Stat. Sol. 2019. [Google Scholar]
- Wolszczak, W.; Krämer, K.; Dorenbos, P. Engineering near-infrared emitting scintillators with efficient Eu2+ → Sm2+ energy transfer. J. Lumin- 2020, 222. [Google Scholar] [CrossRef]
- Xiang, W.; Wang, Z.; Kubicki, D.J.; Tress, W.; Luo, J.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J.; Dietler, G.; et al. Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells. Joule 2019, 3, 205–214. [Google Scholar] [CrossRef]
- Huang, X.; He, J.; Jiang, Y.; Chewpraditkul, W.; Zhang, L. Ultrafast GGAG:Ce X-ray scintillation ceramics with Ca2+ and Mg2+ co-dopants. Ceram. Int. 2022, 48, 23571–23577. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, X.; Zhan, G.; Tang, Y.; Yao, Y.; Dong, Z.; Hou, L.; Zhao, H.; Zeng, S.; Hu, J.; et al. NaCeF4:Gd,Tb Scintillator as an X-ray Responsive Photosensitizer for Multimodal Imaging-Guided Synchronous Radio/Radiodynamic Therapy. Nano Lett. 2019, 19, 8234–8244. [Google Scholar] [CrossRef]
- YFJ2016] Fujimoto, Y.; et al. Photoluminescence and radiation response properties of Ce3+ -doped CsCaCl3 crystalline scintillator. Phys Scri. 91 9 2016.
- YFJ2017] Fujimoto, Y.; et al. Characterisations of CsSrCl3:Ce crystalline scintillator. Sens. Mater. 2017 29 1425.
- Fujimoto, Y.; Saeki, K.; Nakauchi, D.; Yanagida, T.; Koshimizu, M.; Asai, K. New Intrinsic Scintillator with Large Effective Atomic Number: Tl2HfCl6 and Tl2ZrCl6 Crystals for X-ray and Gamma-ray Detections. Sensors Mater. 2018, 30, 1577–1583. [Google Scholar] [CrossRef]
- Li, Y.; Shao, W.; Ouyang, X.; Zhu, Z.; Zhang, H.; Ouyang, X.; Liu, B.; Xu, Q. Scintillation Properties of Perovskite Single Crystals. J. Phys. Chem. C 2019, 123, 17449–17453. [Google Scholar] [CrossRef]
- Usui, Y.; Nakauchi, D.; Kawano, N.; Okada, G.; Kawaguchi, N.; Yanagida, T. Scintillation and optical properties of Sn-doped Ga2O3 single crystals. J. Phys. Chem. Solids 2018, 117, 36–41. [Google Scholar] [CrossRef]
- YWU2014] Wu, Y.; et al. CsI:Tl+,Yb2+: ultra-high light yield scintillator with reduced afterglow. Cryst. Eng. Comm. 2014 16 3312–7.
- Wu, Y.; Ren, G.; Meng, F.; Chen, X.; Ding, D.; Li, H.; Pan, S.; Melcher, C.L. Scintillation Characteristics of Indium Doped Cesium Iodide Single Crystal. IEEE Trans. Nucl. Sci. 2015, 62, 571–576. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuravleva, M.; Lindsey, A.C.; Koschan, M.; Melcher, C.L. Eu2+ concentration effects in KCa0.8Sr0.2I3:Eu2+: A novel high-performance scintillator. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2016, 820, 132–140. [Google Scholar] [CrossRef]
- YWU2017,a,...f] Wu, Y. et Al. Defect Engineering by Codoping in KCaI3:Eu2+ Single-Crystalline Scintillators. Phys. Rev. Appl. 2017.
- Wu, Y.; Li, Q.; Rutstrom, D.J.; Zhuravleva, M.; Loyd, M.; Stand, L.; Koschan, M.; Melcher, C.L. Tailoring the Properties of Europium-Doped Potassium Calcium Iodide Scintillators Through Defect Engineering. Phys. Status solidi (RRL) – Rapid Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- YWU2019] Wu, Y.; et al. Unraveling the Critical Role of Site Occupancy of Lithium Codopants in Lu2SiO5:Ce3+ Single-Crystalline Scintillators. ACS Appl. Mater. Interfaces 2019 11 8 8194–201.
- Zorenko, Y.; Gorbenko, V.; Zorenko, T.; Savchyn, V.; Voloshinovskii, A. Luminescent and scintillation properties of CaWO4 and CaWO4:Bi single crystalline films. In Proceedings of the International Conference on Oxide Materials for Electronic Engineering—Fabrication, Properties and Applications, Lviv, Ukraine, 26–30 May 2014; pp. 253–254. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Zorenko, T.; Malinowski, P.; Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.; Nikl, M.; Fedorov, A. Luminescent and scintillation properties of Bi3+ doped Y2SiO5 and Lu2SiO5 single crystalline films. J. Lumin- 2014, 154, 525–530. [Google Scholar] [CrossRef]
- Lei, Z.; Zhu, C.; Xu, C.; Yao, B.; Yang, C. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth 2014, 389, 23–29. [Google Scholar] [CrossRef]
- Xia, Z.; Meijerink, A. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).














































































































































