Submitted:
28 October 2025
Posted:
29 October 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Cancer Types and Treatment Modalities
2.1. Conventional Treatment Modalities
2.2. Advancements in Multimodal Therapies
2.3. Emerging Treatment Paradigms
3. Conventional Anticancer Drugs: Classes, Mechanisms, and Limitations
3.1. Alkylating Agents
3.2. Antimetabolites
3.3. Mitotic Inhibitors
3.4. Topoisomerase Inhibitors
3.5. Antibiotic and Miscellaneous Agents
3.6. Limitations of Conventional Chemotherapy
4. Recent Advances and Current Achievements in Anticancer Drug Discovery
4.1. Targeted Therapy
4.2. Immunotherapy
4.3. Antibody–Drug Conjugates (ADCs)
4.4. Targeted Protein Degradation and RNA-Based Therapies
4.5. Artificial Intelligence and Computational Drug Discovery
4.6. Advanced Preclinical Models
5. Future Prospects and Emerging Directions in Anticancer Drug Discovery
5.1. AI–Omics Convergence and Precision Oncology
5.2. Nanotechnology and Smart Drug Delivery Systems
5.3. Synthetic Lethality and Genome Editing
5.4. Tumor Microenvironment and Immuno-Oncology
5.5. Systems Biology and Digital Twin Models
5.6. Translational and Regulatory Considerations
6. Conclusions
Author Contributions
Acknowledgments
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide. CA Cancer J Clin. 2023, 73, 209–249. [Google Scholar]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef]
- Younossi, Z.; Stepanova, M.; Ong, J.P.; et al. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a systematic review. Hepatology. 2019, 69, 267–279. [Google Scholar]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013, 13, 714–726. [Google Scholar] [CrossRef]
- DeVita VTJr Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef]
- Sawyers, C.L. Targeted cancer therapy. Nature. 2004, 432, 294–297. [Google Scholar] [CrossRef]
- Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; et al. Efficacy and safety of trastuzumab as a single agent in HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002, 20, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell. 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007, 7, 169–181. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science. 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020, 18, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020, 181, 102–114. [Google Scholar] [CrossRef]
- Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019, 18, 949–963. [Google Scholar] [CrossRef]
- Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem. 2018, 61, 444–452. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Walters, W.P.; Murcko, M.A. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2023, 41, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat Rev Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat Rev Cancer. 2018, 18, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet. 2015, 16, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018, 14, 479–492. [Google Scholar] [CrossRef]
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019, 20, 273–286. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Kimbrough, E.O.; Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021, 14, 45. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell. 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Tomasetti, C.; Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015, 347, 78–81. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever--increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021, 127, 3029–3030. [Google Scholar] [CrossRef]
- GLOBOCAN 2024: Global Cancer Observatory. International Agency for Research on Cancer (IARC). World Health Organization. 2024.
- Devita, V.T.; Rosenberg, S.A. Two hundred years of cancer research. N Engl J Med. 2012, 366, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2024. CA Cancer J Clin. 2024, 74, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Krause, M.; Overgaard, J.; et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016, 16, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Chabner, B.A.; Roberts, T.G. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer. 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013, 13, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Druker, B.J.; Talpaz, M.; Resta, D.J.; et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001, 344, 1031–1037. [Google Scholar] [CrossRef]
- Musgrove, E.A.; Sutherland, R.L. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009, 9, 631–643. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science. 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Rodon, J.; Tabernero, J. Genomic medicine frontier in oncology: precision tumor care. Ann Oncol. 2013, 24, 1956–1963. [Google Scholar]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018, 9, 1410. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Chabner, B.A.; Roberts, T.G. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer. 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013, 13, 714–726. [Google Scholar] [CrossRef]
- DeVita, V.T.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef]
- Lawley, P.D.; Phillips, D.H. DNA adducts from chemotherapeutic alkylating agents. Mutat Res. 1996, 355, 13–40. [Google Scholar] [CrossRef]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Travis, L.B.; Rabkin, C.S.; Brown, L.M.; et al. Cancer survivorship—genetic susceptibility and secondary malignancies. Nat Rev Cancer. 2006, 6, 943–953. [Google Scholar]
- Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009, 109, 2880–2893. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J. Antimetabolites in cancer therapy: current status and future directions. Curr Opin Pharmacol. 2015, 24, 56–63. [Google Scholar]
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther. 2020, 206, 107447. [Google Scholar] [CrossRef]
- Gandhi, V.; Plunkett, W. Antimetabolite drug resistance: focus on nucleoside transporters. Semin Oncol. 2001, 28, 10–21. [Google Scholar]
- Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004, 4, 253–265. [Google Scholar] [CrossRef]
- Weaver, B.A. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014, 25, 2677–2681. [Google Scholar] [CrossRef]
- Rowinsky, E.K.; Donehower, R.C. Paclitaxel (taxol). N Engl J Med. 1995, 332, 1004–1014. [Google Scholar] [CrossRef]
- Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010, 10, 194–204. [Google Scholar] [CrossRef]
- Pommier, Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev. 2009, 109, 2894–2902. [Google Scholar] [CrossRef]
- Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009, 9, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999, 57, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Senovilla, L.; Vitale, I.; et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012, 31, 1869–1883. [Google Scholar] [CrossRef]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Gottesman, M.M. Mechanisms of cancer drug resistance. Annu Rev Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature. 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Shaked, Y. The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer. 2019, 19, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
- Mullard, A. New drugs cost US$2.3 billion to develop. Nat Rev Drug Discov. 2020, 19, 353. [Google Scholar]
- Al-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012, 30, 679–92. [Google Scholar] [CrossRef]
- Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell. 2013, 153, 17–37. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer genome landscapes. Science. 2013, 339, 1546–58. [Google Scholar] [CrossRef]
- Druker, B.J.; et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001, 344, 1031–7. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Swain, S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009, 9, 463–75. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013, 13, 714–26. [Google Scholar] [CrossRef]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature. 2011, 480, 480–9. [Google Scholar] [CrossRef]
- Topalian, S.L.; et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012, 366, 2443–54. [Google Scholar] [CrossRef]
- Maude, S.L.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014, 371, 1507–17. [Google Scholar] [CrossRef]
- Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014, 14, 559–78. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018, 378, 158–68. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017, 16, 315–37. [Google Scholar] [CrossRef] [PubMed]
- Coats, S.; et al. Antibody–drug conjugates: future directions in clinical and translational strategies. Clin Cancer Res. 2019, 25, 5441–8. [Google Scholar] [CrossRef]
- Verma, S.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012, 367, 1783–91. [Google Scholar] [CrossRef]
- Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev. 2019, 48, 4361–73. [Google Scholar] [CrossRef]
- Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020, 181, 102–14. [Google Scholar] [CrossRef]
- Pettersson, M.; Crews, C.M. PROTACs: Targeted protein degradation to overcome limitations of traditional small-molecule drugs. Annu Rev Pharmacol Toxicol. 2019, 59, 145–167. [Google Scholar]
- Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-targeted therapeutics. Cell Metab. 2018, 27, 714–39. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021, 6, 1078–94. [Google Scholar] [CrossRef]
- Schneider, G. Automating drug discovery. Nat Rev Drug Discov. 2018, 17, 97–113. [Google Scholar] [CrossRef]
- Zhavoronkov, A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Nat Rev Drug Discov. 2018, 17, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.M.; et al. A deep learning approach to antibiotic discovery. Cell. 2020, 180, 688–702.e13. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018, 361, 360–5. [Google Scholar] [CrossRef]
- Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020, 2, 573–84. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat Rev Cancer. 2018, 18, 407–18. [Google Scholar] [CrossRef]
- Hidalgo, M.; et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef]
- Low, L.A.; et al. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021, 20, 345–61. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz LAJr Kinzler, K.W. Cancer genome landscapes. Science. 2013, 339, 1546–1558. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N Engl J Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- AlQuraishi, M. Machine learning in protein structure prediction. Curr Opin Chem Biol. 2021, 65, 1–8. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov Today. 2018, 23, 1241–1250. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; et al. A guide to deep learning in healthcare. Nat Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012, 64, 302–315. [Google Scholar] [CrossRef]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Nijman, S.M.B. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011, 585, 1–6. [Google Scholar] [CrossRef]
- Lord, C.J.; Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017, 355, 1152–1158. [Google Scholar] [CrossRef]
- Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet. 2015, 16, 299–311. [Google Scholar] [CrossRef]
- Tzelepis, K.; Koike-Yusa, H.; De Braekeleer, E.; et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Reports. 2016, 17, 1193–1205. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017, 168, 707–723. [Google Scholar] [CrossRef]
- Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018, 359, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Systems biology: a brief overview. Science. 2002, 295, 1662–1664. [Google Scholar] [CrossRef]
- Corbett, S.; et al. Digital twins in medicine: a review of current status and future opportunities. NPJ Digit Med. 2022, 5, 99. [Google Scholar]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013, 501, 338–345. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, A.; Cast, O.; Miller, M.L. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res. 2019, 79, 6238–6246. [Google Scholar] [CrossRef]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010, 9, 203–214. [Google Scholar]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; et al. Real-world evidence—what is it and what can it tell us? N Engl J Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef] [PubMed]
- Eichler, H.G.; Bloechl-Daum, B.; Abadie, E.; et al. Adaptive licensing: taking the next step in drug approval. Clin Pharmacol Ther. 2012, 91, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Friend, S.H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011, 8, 184–187. [Google Scholar] [CrossRef] [PubMed]
| Cancer Type | Tissue/Cell of Origin | Approx. Global Incidence and Mortality | Key References |
| Lung cancer | Epithelial cells of bronchi and alveoli | Leading cause of cancer death worldwide; >2 million new cases annually | [1,32,36] |
| Breast cancer | Mammary epithelial cells | Most common cancer among women; >2.3 million cases yearly | [1,36] |
| Colorectal cancer | Epithelial lining of colon and rectum | Third most diagnosed cancer globally; strong lifestyle correlation | [1,33] |
| Liver (HCC) | Hepatocytes | Sixth most common cancer; fourth leading cause of cancer mortality | [1,3,34] |
| Prostate cancer | Prostatic epithelial cells | Second most common in men; high survival when detected early | [1,32,36] |
| Leukemia | Hematopoietic stem cells | Most common childhood malignancy | [9,80] |
| Melanoma | Melanocytes | Fifth most common cancer in developed countries | [1,9,80] |
| Modality | Mechanism of Action | Advantages | Limitations | Key References |
| Surgery | Physical removal of tumor mass | Curative for localized cancers | Ineffective for metastasis | [29,30,35] |
| Radiotherapy | DNA damage by ionizing radiation | Organ preservation; effective in combination | Radiation resistance; toxicity | [37,38] |
| Chemotherapy | Cytotoxic targeting of rapidly dividing cells | Systemic control; multiple drug classes | Non-selectivity, toxicity, MDR | [6,39,50,51,52,71] |
| Hormone therapy | Modulation of hormonal signaling | Essential in hormone-sensitive cancers | Resistance development | [42] |
| Combination therapy | Synergistic use of multiple modalities | Enhanced efficacy | Increased adverse effects | [72,76] |
| Drug Class | Mechanism of Action | Representative Drugs | Key References |
| Alkylating agents | DNA cross-linking and strand breakage | Cyclophosphamide, Cisplatin | [54,55,69,70] |
| Antimetabolites | Inhibit nucleotide synthesis | 5-FU, Methotrexate, Gemcitabine | [51,57,58,59] |
| Mitotic inhibitors | Block microtubule dynamics | Paclitaxel, Vincristine | [61,62,63,64] |
| Topoisomerase inhibitors | Prevent DNA replication by targeting topoisomerases | Doxorubicin, Etoposide, Irinotecan | [65,66,67,68] |
| Targeted agents | Inhibit oncogenic kinases and signaling | Imatinib, Gefitinib | [10,41,79] |
| Therapeutic Type | Mechanism/Target | Clinical Application | Key References |
| Tyrosine kinase inhibitors (TKIs) | Block aberrant kinase signaling | CML, NSCLC | [7,10,41,79] |
| Monoclonal antibodies | Target tumor-specific antigens | HER2+ breast cancer | [8,81,90] |
| Immune checkpoint inhibitors | Block PD-1/PD-L1 or CTLA-4 pathways | Melanoma, NSCLC | [11,12,43,83,84,85,86,87] |
| CAR-T cell therapy | Autologous T-cells engineered with CAR receptors | Leukemia, lymphoma | [13,85] |
| Antibody–drug conjugates (ADCs) | Deliver cytotoxic drugs to cancer cells | HER2+, breast, urothelial cancers | [14,15,88,89,90,91] |
| PROTACs | Induce selective protein degradation | Hormone receptor–driven cancers | [16,17,18,92,93] |
| Innovation | Principle/Technology | Potential Application | Key References |
| Nanotechnology-based delivery | Nanocarriers improve drug solubility, targeting, and reduce toxicity | Enhanced delivery of chemotherapeutics and RNA drugs | [47,112,113,114,115] |
| CRISPR/Cas9 gene editing | Genome engineering for cancer gene knockout | Functional genomics and therapy | [26,48,118,119] |
| Multi-omics integration | Integration of genomics, transcriptomics, proteomics for therapy design | Precision oncology | [22,23,107] |
| AI-driven drug discovery | Machine/deep learning for hit identification and optimization | Accelerated lead discovery | [19,20,96,97,98,99,100,108,109,110] |
| Organoid and 3D culture models | Mimic in vivo tumor microenvironment | Preclinical drug screening | [24,25,101,102,103] |
| Systems oncology and digital twins | Integration of omics, AI, and clinical data | Predictive and personalized oncology | [104,106,124,125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
