Submitted:
27 October 2025
Posted:
28 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Meal Selection from a Restaurant Menu
2.1.2. Demographic Characteristics, Anthropometric Measurements and Nutrition
2.1.3. Restrained Eating Questionnaire
2.1.4. Impulsivity Assessment
2.1.5. Income
2.2. Data Preparation
2.2.1. Calorie Levels
- Low (787-950 kcal): all meals including one of the two lowest-calorie mains, the lowest-calorie side and any dessert except the highest-calorie dessert.
- Medium (951-1350 kcal): all meals including exactly two of: one of the two lowest-calorie mains; the lowest-calorie side; any dessert except the highest-calorie dessert.
- High (1351-1675 kcal): all meals including: one of the two highest-calorie mains, one of the two highest-calorie sides and not the highest-calorie dessert; or, one of the two highest-calorie mains, the highest-calorie dessert and not the highest-calorie side; or, one of the two lowest-calorie mains, the highest-calorie dessert and not the lowest-calorie side.
- Very High (1676-1963 kcal): all meals including one of the two highest- calorie mains, one of the two highest-calorie sides and the highest-calorie dessert.
2.2.2. Age, BMI, Education and Nutrition-Related Variables
2.3. Data Analysis
2.3.1. Statistical Methodology
- Model 1: regresses calorie levels of chosen meals only on the randomly- assigned menu design and on intercepts.
- Model 2: extends Model 1 to include, as controls, demographic characteristics (except nationality), BMI, nutrition-related variables, income, DEBQ-R scores and SUPP-S scores.
- Model 3: extends Model 2 to include the interaction of gender with the randomly-assigned menu-design.
- Model 4: extends Model 2 to include the interaction of gender with the declared nutrition knowledge.
2.3.2. Sensitivity Analyses
2.3.3. Statistical Software
3. Results
3.1. Participants’ Characteristics
3.2. Calorie Levels and Composition of Participants’ Selected Meals
3.3. Factors Affecting the Chance of Ordering Higher-Calorie Meals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PACE | Physical Activity Calorie Equivalent |
| PDI | Percentage Daily Intake |
| BMI | Body Mass Index |
| DEBQ | Dutch Eating Behavior Questionnaire |
| SUPPS-P | Short - Urgency, Premeditation, Perseverance, Sensation Seeking and Positive Urgency questionnaire |
References
- WHO. WHO European Regional Obesity Report 2022 [Internet]. World Health Organization. Regional Office for Europe; 2022. Available from: https://www.who.int/europe/publications/i/item/9789289057738.
- Cawley, J.; Biener, A.; Meyerhoefer, C.; Ding, Y.; Zvenyach, T.; Smolarz, B.G.; Ramasamy, A. Direct medical costs of obesity in the United States and the most populous states. J. Manag. Care Spéc. Pharm. 2021, 27, 354–366. [CrossRef]
- United States Congress. The patient protection and affordable care act [Internet]. 2010. Available from: https://www.congress.gov/bill/111th- congress/house-bill/3590.
- UK Government. Calorie labelling (out of home sector) (england) reg- ulations 2021 [Internet]. 2021. Available from: https://www.legislation. gov.uk/uksi/2021/909/made.
- Todd JE, Mancino L, Lin BH. The impact of food away from home on adult diet quality. USDA-ERS economic research report paper. 2010;(90). [CrossRef]
- Abel, M.L.; Lee, K.; Loglisci, R.; Righter, A.; Hipper, T.J.; Cheskin, L.J. Consumer Understanding of Calorie Labeling: A Healthy Monday E-Mail and Text Message Intervention. Heal. Promot. Pr. 2014, 16, 236–243. [CrossRef]
- Dupuis, R.; Block, J.P.; Barrett, J.L.; Long, M.W.; Petimar, J.; Ward, Z.J.; Kenney, E.L.; Musicus, A.A.; Cannuscio, C.C.; Williams, D.R.; et al. Cost Effectiveness of Calorie Labeling at Large Fast-Food Chains Across the U.S.. Am. J. Prev. Med. 2023, 66, 128–137. [CrossRef]
- Rummo, P.E.; Mijanovich, T.; Wu, E.; Heng, L.; Hafeez, E.; Bragg, M.A.; Jones, S.A.; Weitzman, B.C.; Elbel, B. Menu Labeling and Calories Purchased in Restaurants in a US National Fast Food Chain. JAMA Netw. Open 2023, 6, e2346851–e2346851. [CrossRef]
- Petimar, J.; Zhang, F.; Cleveland, L.P.; Simon, D.; Gortmaker, S.L.; Polacsek, M.; Bleich, S.N.; Rimm, E.B.; A Roberto, C.; Block, J.P. Estimating the effect of calorie menu labeling on calories purchased in a large restaurant franchise in the southern United States: quasi-experimental study. BMJ 2019, 367, l5837. [CrossRef]
- Petimar, J.; Zhang, F.; Rimm, E.B.; Simon, D.; Cleveland, L.P.; Gortmaker, S.L.; Bleich, S.N.; Polacsek, M.; Roberto, C.A.; Block, J.P. Changes in the calorie and nutrient content of purchased fast food meals after calorie menu labeling: A natural experiment. PLOS Med. 2021, 18, e1003714. [CrossRef]
- Zlatevska N, Neumann N, Dubelaar C. Mandatory Calorie Disclo- sure: A Comprehensive Analysis of Its Effect on Consumers and Retailers. Journal of Retailing [Internet]. 2018 Mar [cited 2024 Oct 30];94(1):89–101. [CrossRef]
- Agarwal, D.; Ravi, P.; Purohit, B.; Priya, H. The effect of energy and fat content labeling on food consumption pattern: a systematic review and meta-analysis. Nutr. Rev. 2021, 80, 453–466. [CrossRef]
- Cantu-Jungles, T.M.; McCormack, L.A.; Slaven, J.E.; Slebodnik, M.; Eicher-Miller, H.A. A Meta-Analysis to Determine the Impact of Restaurant Menu Labeling on Calories and Nutrients (Ordered or Consumed) in U.S. Adults. Nutrients 2017, 9, 1088. [CrossRef]
- Petimar, J.; Ramirez, M.; Rifas-Shiman, S.L.; Linakis, S.; Mullen, J.; Roberto, C.A.; Block, J.P. Evaluation of the impact of calorie labeling on McDonald’s restaurant menus: a natural experiment. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 1–11. [CrossRef]
- Tapper, K.; Yarrow, K.; Farrar, S.T.; Mandeville, K.L. Effects of calorie labelling and contextual factors on hypothetical coffee shop menu choices. Appetite 2022, 172, 105963. [CrossRef]
- Polden, M.; Jones, A.; Essman, M.; Adams, J.; Bishop, T.R.P.; Burgoine, T.; Sharp, S.J.; White, M.; Smith, R.; Donohue, A.; et al. Evaluating the association between the introduction of mandatory calorie labelling and energy consumed using observational data from the out-of-home food sector in England. Nat. Hum. Behav. 2024, 9, 277–286. [CrossRef]
- Berry, C.; Burton, S.; Howlett, E.; Newman, C.L. Understanding the Calorie Labeling Paradox in Chain Restaurants: Why Menu Calorie Labeling Alone May Not Affect Average Calories Ordered. J. Public Policy Mark. 2019, 38, 192–213. [CrossRef]
- Bleich, S.N.; Economos, C.D.; Spiker, M.L.; Vercammen, K.A.; VanEpps, E.M.; Block, J.P.; Elbel, B.; Story, M.; Roberto, C.A. A Systematic Review of Calorie Labeling and Modified Calorie Labeling Interventions: Impact on Consumer and Restaurant Behavior. Obesity 2017, 25, 2018–2044. [CrossRef]
- Vadiveloo, M.K.; Dixon, L.B.; Elbel, B. Consumer purchasing patterns in response to calorie labeling legislation in New York City. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 51–51. [CrossRef]
- Wisdom, J.; Downs, J.S.; Loewenstein, G. Promoting Healthy Choices: Information versus Convenience. Am. Econ. Journal: Appl. Econ. 2010, 2, 164–178. [CrossRef]
- Restrepo BJ. Adults Noticing Calorie Counts on Restaurant Menus: Evidence From Nationally Representative Data, 2022. American Journal of Preventive Medicine [Internet]. 2024 Jun [cited 2024 Oct 30];66(6):1043–8. [CrossRef]
- Larson, N.; Haynos, A.F.; Roberto, C.A.; Loth, K.A.; Neumark-Sztainer, D. Calorie Labels on the Restaurant Menu: Is the Use of Weight-Control Behaviors Related to Ordering Decisions?. J. Acad. Nutr. Diet. 2018, 118, 399–408. [CrossRef]
- Vasiljevic, M.; Fuller, G.; Pilling, M.; Hollands, G.J.; Pechey, R.; Jebb, S.A.; Marteau, T.M. What is the impact of increasing the prominence of calorie labelling? A stepped wedge randomised controlled pilot trial in worksite cafeterias. Appetite 2019, 141, 104304. [CrossRef]
- Sinclair, S.E.; Cooper, M.; Mansfield, E.D. The Influence of Menu Labeling on Calories Selected or Consumed: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2014, 114, 1375–1388.e15. [CrossRef]
- Fogolari, N.; Souza, A.D.; Bernardo, G.L.; Uggioni, P.L.; Oliveira, R.C.; Rodrigues, V.M.; Proença, R.P.C.; Fernandes, A.C. Qualitative menu labelling in university restaurants and its influence on food choices: A systematic review and synthesis without meta-analysis. Nutr. Bull. 2023, 48, 160–178. [CrossRef]
- Fernandes AC, Oliveira RC, Proença RPC, Curioni CC, Rodrigues VM, Fiates GMR. Influence of menu labeling on food choices in real-life set- tings: A systematic review. Nutrition Reviews [Internet]. 2016 Aug [cited 2024 Oct 30];74(8):534–48. [CrossRef]
- Erdem, S. Investigating the effect of restaurant menu labelling on consumer food choices using a field experiment. Br. Food J. 2021, 124, 3447–3467. [CrossRef]
- Ellison B, Lusk JL, Davis D. Looking at the label and beyond: the effects of calorie labels, health consciousness, and demographics on caloric intake in restaurants. International Journal of Behavioral Nutrition and Physical Activity [Internet]. 2013;10(1):21. [CrossRef]
- Daley AJ, McGee E, Bayliss S, Coombe A, Parretti HM. Effects of physical activity calorie equivalent food labelling to reduce food selec- tion and consumption: Systematic review and meta-analysis of ran- domised controlled studies. J Epidemiol Community Health [Inter- net]. 2020 Mar [cited 2024 Oct 30];74(3):269–75. [CrossRef]
- Daley, A.J.; Kettle, V.E.; Roalfe, A.K. Implementing physical activity calorie equivalent (PACE) food labelling: Views of a nationally representative sample of adults in the United Kingdom. PLOS ONE 2023, 18, e0290509. [CrossRef]
- Iris, N.; Munir, F.; Daley, A.J. Examining young people’s views and understanding of traffic light and physical activity calorie equivalent (PACE) food labels. BMC Public Heal. 2023, 23, 1–10. [CrossRef]
- Mehlhose, C.; Schmitt, D.; Risius, A. PACE Labels on Healthy and Unhealthy Snack Products in a Laboratory Shopping Setting: Perception, Visual Attention, and Product Choice. Foods 2021, 10, 904. [CrossRef]
- Yang, X.; Huang, Y.; Han, M.; Wen, X.; Zheng, Q.; Chen, Q.; Chen, Q. The Differential Effects of Physical Activity Calorie Equivalent Labeling on Consumer Preferences for Healthy and Unhealthy Food Products: Evidence from a Choice Experiment. Int. J. Environ. Res. Public Heal. 2021, 18, 1860. [CrossRef]
- Viera, A.J.; Gizlice, Z.; Tuttle, L.; Olsson, E.; Gras-Najjar, J.; Hales, D.; Linnan, L.; Lin, F.-C.; Noar, S.M.; Ammerman, A. Effect of calories-only vs physical activity calorie expenditure labeling on lunch calories purchased in worksite cafeterias. BMC Public Heal. 2019, 19, 107. [CrossRef]
- Seyedhamzeh, S.; Bagheri, M.; Keshtkar, A.A.; Qorbani, M.; Viera, A.J. Physical activity equivalent labeling vs. calorie labeling: a systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 88. [CrossRef]
- Daley, A.J.; Bleich, S.N. Should physical activity calorie equivalent (PACE) labelling be introduced on food labels and menus to reduce excessive calorie consumption? Issues and opportunities. Prev. Med. 2021, 153, 106813. [CrossRef]
- Zaffou M, Campbell B. The Effect of Restaurant Menu Labeling on Consumer’s Choice: Evidence from a Choice Experiment Involving Eye- Tracking [Internet]. Agricultural; Applied Economics Association; 2015 Jun. Report No.: 206194. [CrossRef]
- Winarno D, Link S, Muslim E, Moch B. Design of effective positioning and form of front-of-pack nutrition labelling on food products based on eye-tracking method. In: IOP conference series: Materials science and engineering. IOP Publishing; 2020. p. 012008. [CrossRef]
- Morley, B.; Scully, M.; Martin, J.; Niven, P.; Dixon, H.; Wakefield, M. What types of nutrition menu labelling lead consumers to select less energy-dense fast food? An experimental study. Appetite 2013, 67, 8–15. [CrossRef]
- Thomas, E.L.; Ribera, A.P.; Senye-Mir, A.; Eves, F.F. Promoting Healthy Choices in Workplace Cafeterias: A Qualitative Study. J. Nutr. Educ. Behav. 2016, 48, 138–145.e1. [CrossRef]
- Blackwell, A.K.; Drax, K.; Attwood, A.S.; Munafò, M.R.; Maynard, O.M. Informing drinkers: Can current UK alcohol labels be improved?. Drug Alcohol Depend. 2018, 192, 163–170. [CrossRef]
- Bleich SN, Pollack KM. The publics’ understanding of daily caloric rec- ommendations and their perceptions of calorie posting in chain restau- rants. BMC Public Health [Internet]. 2010 Mar [cited 2024 Oct 30];10(1):121. [CrossRef]
- Dowray, S.; Swartz, J.J.; Braxton, D.; Viera, A.J. Potential effect of physical activity based menu labels on the calorie content of selected fast food meals. Appetite 2013, 62, 173–181. [CrossRef]
- Glanz K, Basil M, Maibach E, Goldberg J, Snyder D. Why americans eat what they do: Taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. Journal of the American Dietetic Association. 1998;98(10):1118–26. [CrossRef]
- Beardsworth A, Bryman A, Keil T, Goode J, Haslam C, Lancashire E. Women, men and food: The significance of gender for nutritional atti- tudes and choices. British food journal. 2002;104(7):470–91. [CrossRef]
- Viera, A.J.; Antonelli, R. Potential Effect of Physical Activity Calorie Equivalent Labeling on Parent Fast Food Decisions. Pediatrics 2015, 135, e376–e382. [CrossRef]
- Feng, W.; Fox, A. Menu labels, for better, and worse? Exploring socio-economic and race-ethnic differences in menu label use in a national sample. Appetite 2018, 128, 223–232. [CrossRef]
- Jeong E, Jang S(Shawn), Behnke C, Anderson J, Day J. A scale for restaurant customers’ healthy menu choices: Individual and environmen- tal factors. International Journal of Contemporary Hospitality Manage- ment [Internet]. 2019 Jan [cited 2025 Jun 23];31(1):217–46. [CrossRef]
- Guerrieri, R.; Nederkoorn, C.; Schrooten, M.; Martijn, C.; Jansen, A. Inducing impulsivity leads high and low restrained eaters into overeating, whereas current dieters stick to their diet. Appetite 2009, 53, 93–100. [CrossRef]
- Nederkoorn C, Guerrieri R, Havermans R, Roefs A, Jansen A. The inter- active effect of hunger and impulsivity on food intake and purchase in a virtual supermarket. International journal of obesity. 2009;33(8):905–12. [CrossRef]
- Lattimore, P.; Mead, B.R. See it, grab it, or STOP! Relationships between trait impulsivity, attentional bias for pictorial food cues and associated response inhibition following in-vivo food cue exposure. Appetite 2015, 90, 248–253. [CrossRef]
- Moore, K.; Walker, D.; Laczniak, R. Attention mediates restrained eaters’ food consumption intentions. Food Qual. Preference 2022, 96. [CrossRef]
- Oh, G.-E.(.; Huh, Y.E.; Mukhopadhyay, A. Informed indulgence: the effects of nutrition information provision and dietary restraint on consecutive food consumption decisions. Psychol. Heal. 2020, 36, 1314–1335. [CrossRef]
- Cutello CA, Foerster FR, Dens N. Food for thought: Reinforced learn- ing and recall of physical activity calorie equivalent (PACE) and nu- merical calorie content in an associative learning task. Appetite [In- ternet]. 2024 Feb [cited 2024 Oct 30];193:107129. [CrossRef]
- Clarke, N.; Pechey, E.; Shemilt, I.; Pilling, M.; Roberts, N.W.; Marteau, T.M.; A Jebb, S.; Hollands, G.J. Calorie (energy) labelling for changing selection and consumption of food or alcohol. Cochrane Database Syst. Rev. 2025, 2025, CD014845. [CrossRef]
- Penzavecchia, C.; Todisco, P.; Muzzioli, L.; Poli, A.; Marangoni, F.; Poggiogalle, E.; Giusti, A.M.; Lenzi, A.; Pinto, A.; Donini, L.M. The influence of front-of-pack nutritional labels on eating and purchasing behaviors: a narrative review of the literature. Eat. Weight. Disord. - Stud. Anorexia, Bulim. Obes. 2022, 27, 3037–3051. [CrossRef]
- Leng G, Adan RA, Belot M, Brunstrom JM, De Graaf K, Dickson SL, et al. The determinants of food choice. Proceedings of the Nutrition Society. 2017;76(3):316–27. [CrossRef]
- Nestle, M.; Wing, R.; Birch, L.; DiSogra, L.; Drewnowski, A.; Middleton, S.; Sigman-Grant, M.; Sobal, J.; Winston, M.; Economos, C. Behavioral and Social Influences on Food Choice. Nutr. Rev. 1998, 56, 50–64. [CrossRef]
- Feng, W.; Fox, A. Menu labels, for better, and worse? Exploring socio-economic and race-ethnic differences in menu label use in a national sample. Appetite 2018, 128, 223–232. [CrossRef]
- Malhi, H.; Fletcher, J.; Balhatchet, D. The Impact of Restaurant Menu Calorie Information on People with Eating Disorders: A Scoping Review. Dietetics 2025, 4, 4. [CrossRef]
- Monteleone, E.; Spinelli, S.; Dinnella, C.; Endrizzi, I.; Laureati, M.; Pagliarini, E.; Sinesio, F.; Gasperi, F.; Torri, L.; Aprea, E.; et al. Exploring influences on food choice in a large population sample: The Italian Taste project. Food Qual. Preference 2017, 59, 123–140. [CrossRef]
- Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, et al. 2011 compendium of physical activities: A sec- ond update of codes and MET values. Medicine & science in sports & exercise. 2011;43(8):1575–81.
- Strien T van, Frijters JER, Bergers GPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. International Journal of Eating Disorders [Internet]. 1986 [cited 2024 Oct 30];5(2):295–315. [CrossRef]
- Dakanalis, A.; Zanetti, M.A.; Clerici, M.; Madeddu, F.; Riva, G.; Caccialanza, R. Italian version of the Dutch Eating Behavior Questionnaire. Psychometric proprieties and measurement invariance across sex, BMI-status and age. Appetite 2013, 71, 187–195. [CrossRef]
- Strien T van, Frijters JER, Staveren WA van, Defares PB, Deurenberg P. The predictive validity of the Dutch Restrained Eating Scale. Inter- national Journal of Eating Disorders [Internet]. 1986 [cited 2024 Oct 30];5(4):747–55. [CrossRef]
- Larsen, J.K.; van Strien, T.; Eisinga, R.; Herman, C.P.; Engels, R.C. Dietary restraint: Intention versus behavior to restrict food intake. Appetite 2007, 49, 100–108. [CrossRef]
- Donald R. Lynam, Gregory T. Smith, Sthephen P. Whiteside, Melissa A. Cyders. The UPPS-P: Assessing five personality pathways to impulsive behavior. West Lafayette IN: Purdue University. 2006;10.
- Billieux, J.; Rochat, L.; Ceschi, G.; Carré, A.; Offerlin-Meyer, I.; Defeldre, A.-C.; Khazaal, Y.; Besche-Richard, C.; Van der Linden, M. Validation of a short French version of the UPPS-P Impulsive Behavior Scale. Compr. Psychiatry 2012, 53, 609–615. [CrossRef]
- Donald R. Lynam. Development of a short form of the UPPS-P Impulsive Behavior Scale. 2013.
- D’Orta I, Burnay J, Aiello D, Niolu C, Siracusano A, Timpanaro L, et al. Development and validation of a short Italian UPPS-P Impulsive Behavior Scale. Addictive Behaviors Reports [Internet]. 2015 Dec [cited 2024 Oct 30];2:19–22. [CrossRef]
- Cyders MA, Littlefield AK, Coffey S, Karyadi KA. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. Addictive Behaviors [Internet]. 2014 Sep [cited 2024 Oct 30];39(9):1372–6. [CrossRef]
- WHO. Obesity: Preventing and managing the global epidemic: World health organization. World Health Organization, Geneva, Switzerland. 2000;
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 1119405262.
- Yee T. Vector Generalized Linear and Additive Models: With an Imple- mentation in R. 2015.
- R Core Team. R: A language and environment for statistical computing. https://cran.r-project.org/ (accessed 2025-09-18.
- Yee [aut T, cre, src) CM(LINPACK routines in. VGAM: Vector Gener- alized Linear and Additive Models [Internet]. 2024 [cited 2024 Oct 30]. Available from: https://cran.r-project.org/web/packages/VGAM/index. html.
- Greenwell B, McCarthy A, Boehmke B. Sure: Surrogate residuals for ordinal and general regression models [Internet]. 2017. Available from: https://CRAN.R-project.org/package=sure.
- Kassambara A. Ggpubr: ’ggplot2’ Based Publication Ready Plots [In- ternet]. 2023 [cited 2024 Oct 30]. Available from: https://cran.r- project.org/web/packages/ggpubr/index.html.
- Brunson JC. ggalluvial: Layered grammar for alluvial plots. Journal of Open Source Software. 2020;5(49):2017. [CrossRef]
- Hartley, C.; Keast, R.S.; Liem, D.G. The Response of More Health Focused and Less Health Focused People to a Physical Activity Calorie Equivalent Label on Discretionary Snack Foods. Nutrients 2019, 11, 525. [CrossRef]
- Chung DH, Han DB, Nayga Jr. RM, Lee SH. Does more information mean better choices? A study on calorie display and consumer behavior in restaurants. Food Quality and Preference [Internet]. 2024 Apr [cited 2024 Oct 30];113:105044. [CrossRef]
- Grunert, K.G.; Fernández-Celemín, L.; Wills, J.M.; Bonsmann, S.S.G.; Nureeva, L. Use and understanding of nutrition information on food labels in six European countries. J. Public Heal. 2010, 18, 261–277. [CrossRef]
- Pilgrim AL, Robinson SM, Sayer AA, Roberts HC. An overview of ap- petite decline in older people. Nursing older people. 2015;27(5). [CrossRef]
- Roberts SB, Rosenberg I. Nutrition and aging: Changes in the reg- ulation of energy metabolism with aging. Physiological reviews. 2006;86(2):651–67. [CrossRef]
- VanEpps, E.M.; Downs, J.S.; Loewenstein, G. Calorie Label Formats: Using Numeric and Traffic Light Calorie Labels to Reduce Lunch Calories. J. Public Policy Mark. 2016, 35, 26–36. [CrossRef]
- Kim, G.; Oh, J.; Cho, M. Differences between Vegetarians and Omnivores in Food Choice Motivation and Dietarian Identity. Foods 2022, 11, 539. [CrossRef]
- Graham, D.J.; Laska, M.N. Nutrition Label Use Partially Mediates the Relationship between Attitude toward Healthy Eating and Overall Dietary Quality among College Students. J. Acad. Nutr. Diet. 2012, 112, 414–418. [CrossRef]
- Suzuki, T.; Yamamiya, Y.; Yazawa, M. Relationship Between Impulsivity and Binge Eating in Japanese Adult Women: Using a Japanese Version of S-UPPS-P Impulsive Behavior Scale. Jpn. Psychol. Res. 2021, 65, 336–346. [CrossRef]
- Moreno-Padilla, M.; Fernández-Serrano, M.J.; Paso, G.A.R.D. Risky decision-making after exposure to a food-choice task in excess weight adolescents: Relationships with reward-related impulsivity and hunger. PLOS ONE 2018, 13, e0202994. [CrossRef]
- Migliavada, R.; Coricelli, C.; Bolat, E.E.; Uçuk, C.; Torri, L. The modulation of sustainability knowledge and impulsivity traits on the consumption of foods of animal and plant origin in Italy and Turkey. Sci. Rep. 2022, 12, 1–13. [CrossRef]
- Rising, C.J.; Bol, N. Nudging Our Way to a Healthier Population: The Effect of Calorie Labeling and Self-Control on Menu Choices of Emerging Adults. Heal. Commun. 2016, 32, 1032–1038. [CrossRef]
- Medic, N.; Ziauddeen, H.; Forwood, S.E.; Davies, K.M.; Ahern, A.L.; Jebb, S.A.; Marteau, T.M.; Fletcher, P.C. The Presence of Real Food Usurps Hypothetical Health Value Judgment in Overweight People. eneuro 2016, 3. [CrossRef]
- VanEpps, E.M.; Molnar, A.; Downs, J.S.; Loewenstein, G. Choosing the Light Meal: Real-Time Aggregation of Calorie Information Reduces Meal Calories. J. Mark. Res. 2021, 58, 948–967. [CrossRef]
- Gustafson, C.R.; Zeballos, E. Cognitive aids and food choice: Real-time calorie counters reduce calories ordered and correct biases in calorie estimates. Appetite 2019, 141, 104320. [CrossRef]
- Tanasache, O.-A.; Law, C.; Smith, R.D.; Cummins, S.; de Bekker-Grob, E.W.; Swait, J.; Donkers, B.; Cornelsen, L. Impact of calorie labelling on online takeaway food choices: An online Menu-Based Choice Experiment in England. Appetite 2025, 207, 107894. [CrossRef]


| Characteristics | Only calories | PACE | PDI Pie Chart | Total |
|---|---|---|---|---|
| Age | ||||
| 18-30 | 86 (28.8%) | 65 (22.0%) | 78 (26.8%) | 229 (25.9%) |
| 31-40 | 38 (12.7%) | 55 (18.7%) | 36 (12.4%) | 129 (14.6%) |
| 41-50 | 62 (20.7%) | 58 (19.7%) | 55 (18.9%) | 175 (19.8%) |
| 51-60 | 71 (23.8%) | 75 (25.4%) | 71 (24.4%) | 217 (24.5%) |
| 61-70 | 35 (11.7%) | 34 (11.5%) | 38 (13.0%) | 107 (12.1%) |
| 70+ | 7 (2.3%) | 8 (2.7%) | 13 (4.5%) | 28 (3.1%) |
| Gender | ||||
| Female | 173 (57.9%) | 171 (58.0%) | 170 (58.4%) | 514 (58.1%) |
| Male | 125 (41.8%) | 123 (41.7%) | 119 (40.9%) | 367 (41.5%) |
| Prefer not to say | 1 (0.3%) | 1 (0.3%) | 2 (0.7%) | 4 (0.4%) |
| Education | ||||
| High school or below | 118 (39.5%) | 108 (36.6%) | 123 (42.3%) | 349 (39.4%) |
| Bachelor or above | 181 (60.5%) | 187 (63.4%) | 168 (57.7%) | 536 (60.6%) |
| Location | ||||
| Countryside | 69 (23.1%) | 83 (28.1%) | 87 (29.9%) | 239 (27.0%) |
| Suburbs | 47 (15.7%) | 50 (17.0%) | 46 (15.8%) | 143 (16.2%) |
| City | 183 (61.2%) | 162 (54.9%) | 158 (54.3%) | 503 (56.8%) |
| Income level | ||||
| Low | 144 (48.2%) | 129 (43.7%) | 150 (51.5%) | 423 (47.8%) |
| Medium | 99 (33.1%) | 93 (31.5%) | 80 (27.5%) | 272 (30.7%) |
| High | 41 (13.7%) | 63 (21.4%) | 47 (16.2%) | 151 (17.1%) |
| Not declared | 15 (5.0%) | 10 (3.4%) | 14 (4.8%) | 39 (4.4%) |
| Nationality | ||||
| Italy | 288 (96.3%) | 292 (99.0%) | 287 (98.6%) | 867 (98.0%) |
| Other | 11 (3.7%) | 3 (1.0%) | 4 (1.4%) | 18 (2.0%) |
| BMI level | ||||
| Underweight | 21 (7.0%) | 17 (5.7%) | 13 (4.5%) | 51 (5.8%) |
| Normal | 178 (59.5%) | 182 (61.7%) | 192 (66.0%) | 552 (62.4%) |
| Overweight | 77 (25.8%) | 71 (24.1%) | 69 (23.7%) | 217 (24.5%) |
| Obesity | 23 (7.7%) | 25 (8.5%) | 17 (5.8%) | 65 (7.3%) |
| Diet | ||||
| Does not eat meat | 7 (2.4%) | 12 (4.1%) | 5 (1.7%) | 24 (2.7%) |
| Eats little meat | 56 (18.7%) | 65 (22.0%) | 57 (19.6%) | 178 (20.1%) |
| Eats meat | 232 (77.6%) | 217 (73.6%) | 226 (77.7%) | 675 (76.3%) |
| Other | 4 (1.3%) | 1 (0.3%) | 3 (1.0%) | 8 (0.9%) |
| Weight-loss diet | ||||
| Yes | 36 (12.0%) | 36 (12.2%) | 27 (9.3%) | 99 (11.2%) |
| No | 263 (88.0%) | 259 (87.8%) | 264 (90.7%) | 786 (88.8%) |
| Eating-out frequency | ||||
| Rarely or Never | 52 (17.4%) | 50 (16.9%) | 47 (16.2%) | 149 (16.8%) |
| Up to 2 times a week | 234 (78.3%) | 228 (77.3%) | 232 (79.7%) | 694 (78.4%) |
| 3 or more times a week | 13 (4.3%) | 17 (5.8%) | 12 (4.1%) | 42 (4.8%) |
| Nutritional knowledge | ||||
| Low | 45 (15.0%) | 47 (15.9%) | 53 (18.2%) | 145 (16.4%) |
| Medium | 148 (49.5%) | 134 (45.4%) | 144 (49.5%) | 426 (48.1%) |
| High | 106 (35.5%) | 114 (38.7%) | 94 (32.3%) | 314 (35.5%) |
| Only Menu model | All factors without interactions |
With gender:menu interaction |
With Nutrition knowledge:menu interaction | ||||||||
| Factors | |||||||||||
| Estimate | Std. Error | Estimate | Std. Error | Estimate | Std. Error | Estimate | Std. Error | ||||
| Intercepts | |||||||||||
| Medium or higher calories | 2.203*** | 0,142 | 4.153*** | 0,71 | 4.152*** | 0,712 | 4.292*** | 0,726 | |||
| High or very high calories | 0,022 | 0,11 | 1.718* | 0,696 | 1.716* | 0,698 | 1.849** | 0,712 | |||
| Very high calories | -2.321*** | 0,147 | -0,87 | 0,697 | -0,872 | 0,7 | -0,753 | 0,713 | |||
| Menu Formats | |||||||||||
| PDI pie chart | 0,134 | 0,154 | 0,168 | 0,16 | 0,176 | 0,21 | 0,178 | 0,275 | |||
| PACE | -0,155 | 0,153 | -0,098 | 0,159 | -0,12 | 0,208 | -0,379 | 0,262 | |||
| Socio-Demographics | |||||||||||
| Gender (Male) | -0,033 | 0,157 | -0,044 | 0,24 | -0,039 | 0,157 | |||||
| Age | -0.027*** | 0,005 | -0.027*** | 0,005 | -0.026*** | 0,005 | |||||
| Instruction Level | |||||||||||
| High school or below | -0,005 | 0,143 | -0,004 | 0,144 | -0,015 | 0,144 | |||||
| Income Levels | |||||||||||
| Low | 0,055 | 0,211 | 0,057 | 0,212 | 0,03 | 0,212 | |||||
| Medium | -0,125 | 0,203 | -0,123 | 0,203 | -0,13 | 0,204 | |||||
| Not declared | 0,177 | 0,367 | 0,18 | 0,367 | 0,217 | 0,368 | |||||
| BMI Level | |||||||||||
| Underweight | -0.852** | 0,302 | -0.849** | 0,302 | -0.898** | 0,304 | |||||
| Overweight | 0.449** | 0,167 | 0.448** | 0,167 | 0.444** | 0,167 | |||||
| Obesity | 0.530* | 0,267 | 0.531* | 0,267 | 0.509. | 0,268 | |||||
| Meat Consumption | |||||||||||
| Eats little meat | -0.778*** | 0,17 | -0.779*** | 0,17 | -0.762*** | 0,17 | |||||
| Does not eat meat | -1.207** | 0,406 | -1.207** | 0,406 | -1.283** | 0,408 | |||||
| Eating out frequency | |||||||||||
| Up to 2 times a week | -0,143 | 0,314 | -0,141 | 0,314 | -0,148 | 0,315 | |||||
| Rarely or never | -0,018 | 0,354 | -0,017 | 0,354 | -0,006 | 0,355 | |||||
| Hunger Level | |||||||||||
| Medium | 0,267 | 0,222 | 0,268 | 0,223 | 0,265 | 0,223 | |||||
| High | 0,116 | 0,183 | 0,116 | 0,183 | 0,127 | 0,184 | |||||
| Nutrition Knowledge | |||||||||||
| Medium | 0,171 | 0,147 | 0,172 | 0,147 | 0,117 | 0,249 | |||||
| Low | 0,279 | 0,209 | 0,28 | 0,209 | -0,142 | 0,349 | |||||
| Weight-loss diet | |||||||||||
| Yes | 0.508* | 0,225 | 0.510* | 0,225 | 0.520* | 0,225 | |||||
| DEBQ-R | |||||||||||
| Restricted Behavior | -0.068*** | 0,019 | -0.068*** | 0,019 | -0.069*** | 0,019 | |||||
| Restricted Intention | 0,031 | 0,038 | 0,031 | 0,038 | 0,034 | 0,038 | |||||
| SUPP-S | |||||||||||
| Negative urgency | 0,005 | 0,033 | 0,005 | 0,033 | 0,003 | 0,033 | |||||
| Positive urgency | 0,03 | 0,039 | 0,03 | 0,039 | 0,035 | 0,039 | |||||
| Sensation seeking | 0,016 | 0,029 | 0,016 | 0,029 | 0,014 | 0,029 | |||||
| Perseverance | 0,046 | 0,034 | 0,046 | 0,034 | 0,044 | 0,035 | |||||
| Premeditation | -0,024 | 0,041 | -0,025 | 0,041 | -0,027 | 0,041 | |||||
| Interactions Menu:Gender | |||||||||||
| PDI pie chart:male | -0,02 | 0,324 | |||||||||
| PACE:male | 0,053 | 0,321 | |||||||||
| Interactions Menu:Nutrition Knowledge | |||||||||||
| PDI pie chart:medium | -0,17 | 0,357 | |||||||||
| PACE:medium | 0,328 | 0,348 | |||||||||
| PDI pie chart:low | 0,472 | 0,484 | |||||||||
| PACE:low | 0.826. | 0,482 | |||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
