Submitted:
25 October 2025
Posted:
27 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background
- Target 7.1: By 2030, ensure universal access to affordable, reliable and modern energy services.
- Target 7.2: By 2030, increase substantially the share of renewable energy in the global energy mix.
- Target 7.3: By 2030, double the global rate of improvement in energy efficiency.
- Target 7.a: By 2030, enhance international cooperation to facilitate access to clean energy research and technology, including renewable energy, energy efficiency and advanced and cleaner fossil-fuel technology, and promote investment in energy infrastructure and clean energy technology.
- Target 7.b: By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all in developing countries, in particular least developed countries, small island developing states, and land-locked developing countries, in accordance with their respective programmes of support.
- Indicator 7.2.1: Renewable energy share in the total final energy consumption.
- Indicator 7.b.1: Installed renewable energy-generating capacity in developing and developed countries (in watts per capita)
1.2. Importance of Photovoltaic Energy for Oman
1.3. Goals of the Study
- To introduce the approximated bifacial gain (ABG) as an effective metric to compare bifacial PV modules or systems against monofacial ones
- To present how the modeling software “Aladdin” provides powerful features in modeling monofacial PV systems and bifacial PV systems
- To assess the annual and monthly electricity generation from monofacial PV systems in seven Omani cities
- To assess the annual and monthly electricity generation from monofacial PV systems in Oman as a whole
- To assess the annual and monthly electricity generation from bifacial PV systems under low albedo in seven Omani cities
- To assess the annual and monthly electricity generation from bifacial PV systems under low albedo in Oman as a whole
- To assess the annual and monthly electricity generation from bifacial PV systems under high albedo in seven Omani cities
- To assess the annual and monthly electricity generation from bifacial PV systems under high albedo in Oman as a whole
- Buraimi or Al Buraimi [139] (an inland city bordering the United Arab Emirates, about 270 km “straight-line distance” west-northwest of Muscat)
- Duqm or Al Duqm [140] (a coastal city in the east of Oman, facing the Arabian Sea)
- Ibri [141] (an inland city, about 200 km “straight-line distance” west-southwest of Muscat)
- Muscat [144] (the capital of Oman, a coastal city facing the Gulf of Oman)
- Salalah [145] (a coastal city in the south of Oman)
- Sohar [146] (a coastal city in the northern mainland of Oman, facing the Gulf of Oman)
1.4. Contribution to Existing Literature
2. Research Method
2.1. Research Type
2.2. Rationale Behind the Technical (Non-Economic) Scope of the Study
2.3. Rationale Behind the Seven Selected Omani Cities
2.4. Rationale Behind the Two Selected Albedos
2.5. Rationale Behind the Fixed Albedo
2.6. Rationale Behind Modeling Single-Row PV System
2.7. Rationale Behind Modeling Fixed-Panel PV System
2.8. Aladdin (The Primary Photovoltaic Modeling Tool Here)
2.9. Demonstration of the Aladdin Modeling Environment
2.10. Aladdin Versus Other Solar Simulation Tools
2.11. Soiling Modeling
2.12. Tilt Angle Modeling
2.13. Uncertainty in Aladdin Validation
2.14. Sensitivity to Albedo
2.15. Auxiliary Photovoltaic Modeling Tools (Energy3D, PVGIS, PVsyst)
2.16. Approximated Bifacial Gain (ABG)
2.17. Advantages of Approximated Bifacial Gain (ABG) over Bifacial Gain (BG)
2.18. Example of Using ABG for Informed Decision Making
2.19. General Simulation Parameters for the 4.5 kWp Monofacial and Bifacial Systems



3. Benchmarking Results
3.1. Monofacial Benchmarking Simulation Parameters
3.2. Monofacial Benchmarking Simulation Assessment
3.3. Bifacial Benchmarking Simulation Parameters
3.4. Bifacial Benchmarking Simulation Assessment
4. Main Results
4.1. Gain in Annual Electric Yield with Bifacial Modules (Low and High Albedos)
4.2. Monthly Electricity Generation with Monofacial PV Modules
4.3. Monthly Electricity Generation with Bifacial Modules at Low Albedo 0.30
4.4. Monthly Electricity Generation with Bifacial Modules at High Albedo 0.65
5. Conclusions
5.1. Summary of Achievements
5.2. Areas for Improvement
Ethics Approval and Consent to Participate
Consent for Publication
Availability of Data and Materials
Competing Interests
Author Contributions
Funding
Acknowledgements
Nomenclature
| CAE | Computer-aided engineering |
| CFD | Computational fluid dynamics |
| CSP | Concentrated solar power |
| Impp | Rated current of a photovoltaic panel at its maximum power point |
| MPP | Maximum power point |
| NASA | United States National Aeronautics and Space Administration |
| NOCT | Nominal operating cell temperature |
| NSF | United States National Science Foundation |
| SC | Short circuit |
| SDG | Sustainable Development Goals of the United Nations (UN) |
| STEM | Science, technology, engineering, and mathematics |
| TES | Total energy supply |
| TFEC | Total final energy consumption |
| TFELC | Total final electricity consumption |
| UN | United Nations |
| Vmpp | Rated voltage of a photovoltaic panel at its maximum power point |
References
- UNDP, [United Nations Development Programme]. UNDP │ Sustainable Development Goals (SDGs). https://www.undp.org/sustainable-development-goals (accessed 2025-02-02).
- UNDESA, [United Nations Department of Economic and Social Affairs]. DSDG [Division for Sustainable Development Goals] │ SDGs - About. https://sdgs.un.org/about (accessed 2025-06-20).
- Adebayo, T. S. Overcoming Barriers to Clean Cooking Solutions: Political Risk, Financial Development, and Their Implications for Achieving SDG 7 in Nigeria. Environmental Progress & Sustainable Energy 2025, 44, e14592. [Google Scholar] [CrossRef]
- Demirkale, O.; Duran, N. I. China’s Sustainable Development under Climate, Energy and Policy Uncertainty: A Focus on SDG 7 and SDG 13. International Journal of Energy Economics and Policy 2025, 15, 532–540. [Google Scholar] [CrossRef]
- Frimpong, B. A.; Kukah, A. S. K.; Blay, A. V. K. J.; Anafo, A.; Kukah, R. M. K.; Wellington, S. N. O.; Kuutiero, D. N. Strategies to Enhance Energy Sustainability in Line with Sustainable Development Goal (SDG) 7 (Affordable and Clean Energy): Case of Ghana. International Journal of Energy Sector Management 2024, 19, 477–496. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; Liao, Z.; Xu, A.; Fang, K. Linking SDG 7 to Assess the Renewable Energy Footprint of Nations by 2030. Applied Energy 2022, 317, 119167. [Google Scholar] [CrossRef]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M. L.; Sinicropi, A.; Longo, S. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- Khan, M. I.; Gutiérrez-Alvarez, R.; Asfand, F.; Bicer, Y.; Sgouridis, S.; Al-Ghamdi, S. G.; Jouhara, H.; Asif, M.; Kurniawan, T. A.; Abid, M.; Pesyridis, A.; Farooq, M. The Economics of Concentrating Solar Power (CSP): Assessing Cost Competitiveness and Deployment Potential. Renewable and Sustainable Energy Reviews 2024, 200, 114551. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, B.; Yang, Y. Calculation and Monte Carlo Uncertainty Analysis of the Levelized Cost of Electricity for Different Energy Power Generation in the Smart Grid under Time Scales. Energy Strategy Reviews 2025, 58, 101666. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A Review of Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Louwen, A.; van Sark, W. Chapter 5 - Photovoltaic Solar Energy. In Technological Learning in the Transition to a Low-Carbon Energy System; Junginger, M., Louwen, A., Eds.; Academic Press, 2020; pp 65–86. [CrossRef]
- Gharehpetian, G. B.; Agah, S. M. M. Distributed Generation Systems: Design, Operation and Grid Integration; Butterworth-Heinemann: Oxford, U.K, 2017. [Google Scholar]
- IEA, [International Energy Agency]. IEA │ Share of renewable electricity generation by technology, 2000-2030. IEA. https://www.iea.org/data-and-statistics/charts/share-of-renewable-electricity-generation-by-technology-2000-2030 (accessed 2025-07-01).
- IRENA, [International Renewable Energy Agency]. IRENA │ Electricity Capacity Trends. https://public.tableau.com/shared/YZDZRWHB4?:display_count=n&:showVizHome=no# (accessed 2025-02-23).
- Renew Economy. Solar is now being installed faster than any technology in history. https://reneweconomy.com.au/web-stories/solar-is-now-being-installed-faster-than-any-technology-in-history/ (accessed 2025-02-23).
- ANU, [Australian National University]. The fastest energy change in history still underway. ANU RE100 Group. https://re100.eng.anu.edu.au/2024/04/24/fastest-energy-change-article/ (accessed 2025-02-23).
- Becken, S.; Miller, G.; Lee, D. S.; Mackey, B. The Scientific Basis of ‘Net Zero Emissions’ and Its Diverging Sociopolitical Representation. Science of The Total Environment 2024, 918, 170725. [Google Scholar] [CrossRef]
- Congxiang, T.; Guoqing, Z.; Yong, Y. Hybrid Photovoltaic and Thermoelectric Generator Systems with Thermal Wheel Ventilation: A Sustainable Approach to Residential Heating and Cooling. Engineering Science and Technology, an International Journal 2025, 62, 101968. [Google Scholar] [CrossRef]
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Paranjape, R. Enhancing Efficiency through Integration of Geothermal and Photovoltaic in Heating Systems of a Greenhouse for Sustainable Agriculture. Sustainable Cities and Society 2025, 118, 106040. [Google Scholar] [CrossRef]
- Khan, M. I.; Asfand, F.; Al-Ghamdi, S. G.; Bicer, Y.; Khan, M.; Farooq, M.; Pesyridis, A. Realizing the Promise of Concentrating Solar Power for Thermal Desalination: A Review of Technology Configurations and Optimizations. Renewable and Sustainable Energy Reviews 2025, 208, 115022. [Google Scholar] [CrossRef]
- Liao, Y.; Li, K.; Zhao, Y.; Tang, H.; Zhang, M.; Liu, X.; Yuan, Z.-M. Energy Optimal Path Planning of Ocean-Energy Driven Unmanned Surface Vehicles. Ocean Engineering 2025, 327, 120965. [Google Scholar] [CrossRef]
- Guerrero-Lemus, R.; Shephard, L. E. Photovoltaics. In Low-Carbon Energy in Africa and Latin America: Renewable Technologies, Natural Gas and Nuclear Energy; Guerrero-Lemus, R., Shephard, L. E., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Andrei, H.; Dogaru-Ulieru, V.; Chicco, G.; Cepisca, C.; Spertino, F. Photovoltaic Applications. Journal of Materials Processing Technology 2007, 181, 267–273. [Google Scholar] [CrossRef]
- Zweibel, K. Should Solar Photovoltaics Be Deployed Sooner Because of Long Operating Life at Low, Predictable Cost? Energy Policy 2010, 38, 7519–7530. [Google Scholar] [CrossRef]
- Kaaya, I.; Lindig, S.; Weiss, K.-A.; Virtuani, A.; Sidrach de Cardona Ortin, M.; Moser, D. Photovoltaic Lifetime Forecast Model Based on Degradation Patterns. Progress in Photovoltaics: Research and Applications 2020, 28, 979–992. [Google Scholar] [CrossRef]
- Marzouk, O. A. Detailed Derivation of the Scalar Explicit Expressions Governing the Electric Field, Current Density, and Volumetric Power Density in the Four Types of Linear Divergent MHD Channels Under a Unidirectional Applied Magnetic Field. Contemporary Mathematics 2025, 6, 4060–4100. [Google Scholar] [CrossRef]
- IEA, [International Energy Agency]. Tracking Clean Energy Progress 2023 (TCEP 2023). https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed 2024-07-23).
- Qian, J.; Wang, G.; Yin, T.; Mao, Y.; Chen, S.; Li, Y.; Liu, J.; Zhang, Q. Policy Implications of Electrifying Land Freight Transport towards Carbon-Neutral in China. Transport Policy 2025, 160, 116–124. [Google Scholar] [CrossRef]
- Armstrong, T.; Ghoreishi-Madiseh, S. A.; Kalantari, H.; Samea, P.; Steen, J. Evaluating Operational Benefits of Fleet Electrification in Open Pit Mines Using Discrete Event Modeling; a Case Study for Implementation of Trolley Assist Trucks. International Journal of Mining, Reclamation and Environment 2025, 39, 641–664. [Google Scholar] [CrossRef]
- Slough, T.; Urpelainen, J.; Yang, J. Light for All? Evaluating Brazil’s Rural Electrification Progress, 2000–2010. Energy Policy 2015, 86, 315–327. [Google Scholar] [CrossRef]
- Mollik, S.; Rashid, M. M.; Hasanuzzaman, M.; Karim, M. E.; Hosenuzzaman, M. Prospects, Progress, Policies, and Effects of Rural Electrification in Bangladesh. Renewable and Sustainable Energy Reviews 2016, 65, 553–567. [Google Scholar] [CrossRef]
- Aklin, M.; Harish, S. P.; Urpelainen, J. A Global Analysis of Progress in Household Electrification. Energy Policy 2018, 122, 421–428. [Google Scholar] [CrossRef]
- Zheng, G.; Jing, Y.; Huang, H.; Gao, Y. Application of Improved Grey Relational Projection Method to Evaluate Sustainable Building Envelope Performance. Applied Energy 2010, 87, 710–720. [Google Scholar] [CrossRef]
- Iwaro, J.; Mwasha, A. The Impact of Sustainable Building Envelope Design on Building Sustainability Using Integrated Performance Model. International Journal of Sustainable Built Environment 2013, 2, 153–171. [Google Scholar] [CrossRef]
- Khosla, R.; Miranda, N. D.; Trotter, P. A.; Mazzone, A.; Renaldi, R.; McElroy, C.; Cohen, F.; Jani, A.; Perera-Salazar, R.; McCulloch, M. Cooling for Sustainable Development. Nat Sustain 2021, 4, 201–208. [Google Scholar] [CrossRef]
- Elnagar, E.; Pezzutto, S.; Duplessis, B.; Fontenaille, T.; Lemort, V. A Comprehensive Scouting of Space Cooling Technologies in Europe: Key Characteristics and Development Trends. Renewable and Sustainable Energy Reviews 2023, 186, 113636. [Google Scholar] [CrossRef]
- Breyer, C.; Bogdanov, D.; Gulagi, A.; Aghahosseini, A.; Barbosa, L. S. N. S.; Koskinen, O.; Barasa, M.; Caldera, U.; Afanasyeva, S.; Child, M.; Farfan, J.; Vainikka, P. On the Role of Solar Photovoltaics in Global Energy Transition Scenarios. Progress in Photovoltaics: Research and Applications 2017, 25, 727–745. [Google Scholar] [CrossRef]
- Ali, M. B.; Saidur, R.; Hossain, M. S. A Review on Emission Analysis in Cement Industries. Renewable and Sustainable Energy Reviews 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Marzouk, O. A. Reduced-Order Modeling (ROM) of a Segmented Plug-Flow Reactor (PFR) for Hydrogen Separation in Integrated Gasification Combined Cycles (IGCC). Processes 2025, 13, 1455. [Google Scholar] [CrossRef]
- Leimkühler, H.-J. Managing CO2 Emissions in the Chemical Industry; John Wiley & Sons: Weinheim, Germany, 2010. [Google Scholar]
- Marzouk, O. A. Summary of the 2023 (1st Edition) Report of TCEP (Tracking Clean Energy Progress) by the International Energy Agency (IEA), and Proposed Process for Computing a Single Aggregate Rating. E3S Web of Conferences 2025, 601, 00048. [Google Scholar] [CrossRef]
- Bosco, N. Turn Your Half-Cut Cells for a Stronger Module. IEEE Journal of Photovoltaics 2022, 12, 1149–1153. [Google Scholar] [CrossRef]
- Waqar Akram, M.; Li, G.; Jin, Y.; Zhu, C.; Javaid, A.; Zuhaib Akram, M.; Usman Khan, M. Study of Manufacturing and Hotspot Formation in Cut Cell and Full Cell PV Modules. Solar Energy 2020, 203, 247–259. [Google Scholar] [CrossRef]
- Blakers, A. Development of the PERC Solar Cell. IEEE Journal of Photovoltaics 2019, 9, 629–635. [Google Scholar] [CrossRef]
- Green, M. A. The Passivated Emitter and Rear Cell (PERC): From Conception to Mass Production. Solar Energy Materials and Solar Cells 2015, 143, 190–197. [Google Scholar] [CrossRef]
- Min, B.; Müller, M.; Wagner, H.; Fischer, G.; Brendel, R.; Altermatt, P. P.; Neuhaus, H. A Roadmap Toward 24% Efficient PERC Solar Cells in Industrial Mass Production. IEEE Journal of Photovoltaics 2017, 7, 1541–1550. [Google Scholar] [CrossRef]
- Du, Y.; Dai, J.; Xin, S.; Ma, K.; Zhang, M.; Li, T.; Wang, L.; Jin, H.; Tao, W. Thermo-Mechanical Stress Modelling and Fracture Analysis on Ultra-Thin Silicon Solar Cell Based on Super Multi-Busbar PV Modules. Engineering Failure Analysis 2025, 169, 109153. [Google Scholar] [CrossRef]
- Walter, J.; Tranitz, M.; Volk, M.; Ebert, C.; Eitner, U. Multi-Wire Interconnection of Busbar-Free Solar Cells. Energy Procedia 2014, 55, 380–388. [Google Scholar] [CrossRef]
- Rendler, L. C.; Kraft, A.; Ebert, C.; Eitner, U.; Wiese, S. Mechanical Stress in Solar Cells with Multi Busbar Interconnection — Parameter Study by FEM Simulation. In 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE); 2016; pp 1–5. [CrossRef]
- Yue, Q.; Liu, W.; Zhu, X. N-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications. J. Am. Chem. Soc. 2020, 142, 11613–11628. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Song, D.; Sun, Z.; Liu, K.; Zhang, Y.; Rong, D.; Liu, L. A Study on Electrical Performance of N-Type Bifacial PV Modules. Solar Energy 2016, 137, 129–133. [Google Scholar] [CrossRef]
- Savin, H.; Repo, P.; von Gastrow, G.; Ortega, P.; Calle, E.; Garín, M.; Alcubilla, R. Black Silicon Solar Cells with Interdigitated Back-Contacts Achieve 22.1% Efficiency. Nature Nanotech 2015, 10, 624–628. [Google Scholar] [CrossRef]
- Franklin, E.; Fong, K.; McIntosh, K.; Fell, A.; Blakers, A.; Kho, T.; Walter, D.; Wang, D.; Zin, N.; Stocks, M.; Wang, E.-C.; Grant, N.; Wan, Y.; Yang, Y.; Zhang, X.; Feng, Z.; Verlinden, P. J. Design, Fabrication and Characterisation of a 24.4% Efficient Interdigitated Back Contact Solar Cell. Progress in Photovoltaics: Research and Applications 2016, 24, 411–427. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat Energy 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Kopecek, R.; Libal, J. Bifacial Photovoltaics 2021: Status, Opportunities and Challenges. Energies 2021, 14, 2076. [Google Scholar] [CrossRef]
- Shen Liang, T.; Pravettoni, M.; Deline, C.; S. Stein, J.; Kopecek, R.; Prakash Singh, J.; Luo, W.; Wang, Y.; G. Aberle, A.; Sheng Khoo, Y. A Review of Crystalline Silicon Bifacial Photovoltaic Performance Characterisation and Simulation. Energy & Environmental Science 2019, 12, 116–148. [Google Scholar] [CrossRef]
- Lorenzo, E. On the Historical Origins of Bifacial PV Modelling. Solar Energy 2021, 218, 587–595. [Google Scholar] [CrossRef]
- Alternergy. Bifacial Solar Panels: What are They and Are They Worth It? https://www.alternergy.co.uk/blog/post/bifacial-solar-panels-what-are-they (accessed 2025-02-23).
- Hwang, S.; Lee, H.; Kang, Y. Energy Yield Comparison between Monofacial Photovoltaic Modules with Monofacial and Bifacial Cells in a Carport. Energy Reports 2023, 9, 3148–3153. [Google Scholar] [CrossRef]
- Khan, M. R.; Hanna, A.; Sun, X.; Alam, M. A. Vertical Bifacial Solar Farms: Physics, Design, and Global Optimization. Applied Energy 2017, 206, 240–248. [Google Scholar] [CrossRef]
- Daliento, S.; De Riso, M.; Guerriero, P.; Matacena, I.; Dhimish, M.; d’Alessandro, V. On the Optimal Orientation of Bifacial Solar Modules. In 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM); 2024; pp 396–400. [CrossRef]
- Stein, J.; Reise, C.; Castro, J. B.; Friesen, G.; Maugeri, G.; Urrejola, E.; Ranta, S. Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications; SAND-2021-4835R; IEA-PVPS T13-14:2021; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fraunhofer ISE, Freiburg (Germany); Univ. of Applied Sciences and Arts of Southern Switzerland (SUPSI) (Switzerland); TUV Rheinland, Cologne (Germany); Ricerca sul Sistema Energetico (Italy); ATAMOSTEC (Chile); Turku University of Applied Sciences (Finland), 2021. [CrossRef]
- GVR, [Grand View Research, Inc. ]. Bifacial Solar Market Size, Share and Growth Report, 2030. https://www.grandviewresearch.com/industry-analysis/bifacial-solar-market-report (accessed 2025-02-23).
- MDF, [Market Data Forecast]. Bifacial Solar Market Size, Share, Trends & Growth, 2032. https://www.marketdataforecast.com/market-reports/bifacial-solar-market (accessed 2025-02-23).
- Ineichen, P.; Guisan, O.; Perez, R. Ground-Reflected Radiation and Albedo. Solar Energy 1990, 44, 207–214. [Google Scholar] [CrossRef]
- Ångström, A. The Albedo of Various Surfaces of Ground. Geografiska Annaler 1925, 7, 323–342. [Google Scholar] [CrossRef]
- Riedel-Lyngskær, N.; Ribaconka, M.; Pó, M.; Thorseth, A.; Thorsteinsson, S.; Dam-Hansen, C.; Jakobsen, M. L. The Effect of Spectral Albedo in Bifacial Photovoltaic Performance. Solar Energy 2022, 231, 921–935. [Google Scholar] [CrossRef]
- Russell, T. C. R.; Saive, R.; Augusto, A.; Bowden, S. G.; Atwater, H. A. The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study. IEEE Journal of Photovoltaics 2017, 7, 1611–1618. [Google Scholar] [CrossRef]
- Psiloglou, B. E.; Kambezidis, H. D. Estimation of the Ground Albedo for the Athens Area, Greece. Journal of Atmospheric and Solar-Terrestrial Physics 2009, 71, 943–954. [Google Scholar] [CrossRef]
- Fritz, S. The Albedo of the Ground and Atmosphere. 1948. [CrossRef]
- Atak, E. E.; Elcioglu, E. B.; Ozyurt, T. O. Nanopatterned Silicon Photovoltaic Cells Optimized for Narrowband Selective Reflectivity; Begel House Inc., 2023. [CrossRef]
- Jiang, S.; Wang, G.; Hu, P.; Chen, Z.; Jia, L. The Design of Beam Splitter for Two-Stage Reflective Spectral Beam Splitting Concentrating PV/Thermal System. In 2011 Asia-Pacific Power and Energy Engineering Conference; 2011; pp 1–4. [CrossRef]
- Modest, M. F. Radiative Heat Transfer, 2nd ed.; Academic Press: Amsterdam Boston, 2003. [Google Scholar]
- Wall, T. F.; Becker, H. B. Total Absorptivities and Emissivities of Particulate Coal Ash From Spectral Band Emissivity Measurements. Journal of Engineering for Gas Turbines and Power 1984, 106, 771–776. [Google Scholar] [CrossRef]
- Boyden, S. B.; Zhang, Y. Temperature and Wavelength-Dependent Spectral Absorptivities of Metallic Materials in the Infrared. Journal of Thermophysics and Heat Transfer 2006, 20, 9–15. [Google Scholar] [CrossRef]
- Shayegan, K. J.; Hwang, J. S.; Zhao, B.; Raman, A. P.; Atwater, H. A. Broadband Nonreciprocal Thermal Emissivity and Absorptivity. Light Sci Appl 2024, 13, 176. [Google Scholar] [CrossRef]
- Marzouk, O. A. Investigation of Strouhal Number Effect on Acoustic Fields. In 22nd National Conference on Noise Control Engineering (NOISE-CON 2007); INCE [Institute of Noise Control Engineering]: Reno, Nevada, USA, 2007, pp. 1056–1067. [Google Scholar]
- Marzouk, O. A. Noise Emissions from Excited Jets. In 22nd National Conference on Noise Control Engineering (NOISE-CON 2007); INCE [Institute of Noise Control Engineering]: Reno, Nevada, USA, 2007. pp 1034–1045. [Google Scholar]
- Marzouk, O. A. Accurate Prediction of Noise Generation and Propagation. In 18th Engineering Mechanics Division Conference of the American Society of Civil Engineers (ASCE-EMD); Zenodo: Blacksburg, Virginia, USA, 2007. pp 1–6. [Google Scholar]
- Howell, J. R.; Mengüc, M. P.; Daun, K.; Siegel, R. Thermal Radiation Heat Transfer, 7th ed.; CRC Press: Boca Raton, 2020. [Google Scholar] [CrossRef]
- Howell, J. R.; Perlmutter, M. Directional Behavior of Emitted and Reflected Radiant Energy from a Specular, Gray, Asymmetric Groove; Technical Note NASA TN D-1874; NASA [United States National Aeronautics and Space Administration]: Cleveland, Ohio, 1963. [Google Scholar]
- Zhou, L.; Dickinson, R. E.; Tian, Y.; Zeng, X.; Dai, Y.; Yang, Z.-L.; Schaaf, C. B.; Gao, F.; Jin, Y.; Strahler, A.; Myneni, R. B.; Yu, H.; Wu, W.; Shaikh, M. Comparison of Seasonal and Spatial Variations of Albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geophysical Research: Atmospheres 2003, 108. [Google Scholar] [CrossRef]
- Brest, C. L. Seasonal Albedo of an Urban/Rural Landscape from Satellite Observations. 1987, 26, 1169–1187.
- Wang, S.; Davidson, A. Impact of Climate Variations on Surface Albedo of a Temperate Grassland. Agricultural and Forest Meteorology 2007, 142, 133–142. [Google Scholar] [CrossRef]
- Trina Solar. Vertex Bifacial Dual Glass Monocrystalline Module; Datasheet TSM_EN_2022_A; LG Electronics Inc.: Changzhou, Jiangsu Province, China, 2022. https://static.trinasolar.com/sites/default/files/Datasheet_Vertex_DEG21C.20_EN_2022_A_0.pdf (accessed 2025-02-23).
- Adani Solar. Adani Solar ELAN PRIDE Series MBB P-Type PERC Half-Cut Bifacial PV Modules; Datasheet; India, 2025; pp 1–2. https://www.adanisolar.com/-/media/Project/AdaniSolar/Downloads/pdf/newdatasheet1/Pride-G2G-modules.pdf (accessed 2025-02-23).
- Abe, C. F.; Batista Dias, J.; Notton, G.; Faggianelli, G.-A.; Pigelet, G.; Ouvrard, D. Estimation of the Effective Irradiance and Bifacial Gain for PV Arrays Using the Maximum Power Current. IEEE Journal of Photovoltaics 2023, 13, 432–441. [Google Scholar] [CrossRef]
- Kreinin, L.; Karsenty, A.; Grobgeld, D.; Eisenberg, N. PV Systems Based on Bifacial Modules: Performance Simulation vs. Design Factors. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); 2016; pp 2688–2691. [CrossRef]
- Sahu, P. K.; Batzelis, E. I.; Roy, J. N.; Chakraborty, C. Irradiance Effect on the Bifaciality Factors of Bifacial PV Modules. In 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON); 2022; pp 1–6. [CrossRef]
- Hwang, S.; Lee, H.; Kang, Y. Bifacial Module Characterization Analysis with Current Mismatched PERC Cells. J. Korean Phys. Soc. 2024, 84, 145–150. [Google Scholar] [CrossRef]
- SunSolve. SunSolveTM - When Accuracy Matters. https://sunsolve.info (accessed 2025-02-24).
- Raina, G.; Sinha, S. A Simulation Study to Evaluate and Compare Monofacial Vs Bifacial PERC PV Cells and the Effect of Albedo on Bifacial Performance. Materials Today: Proceedings 2021, 46, 5242–5247. [Google Scholar] [CrossRef]
- Alam, M.; Gul, M. S.; Muneer, T. Performance Analysis and Comparison between Bifacial and Monofacial Solar Photovoltaic at Various Ground Albedo Conditions. Renewable Energy Focus 2023, 44, 295–316. [Google Scholar] [CrossRef]
- PVsyst. PVsyst documentation - References. https://www.pvsyst.com/help/references.html (accessed 2025-02-23).
- PVsyst. PVsyst documentation - Overview. https://www.pvsyst.com/help/ (accessed 2025-02-23).
- PVsyst. PVsyst │ Shop. https://www.pvsyst.com/shop-prices (accessed 2025-02-23).
- Su, X.; Luo, C.; Chen, X.; Ji, J.; Yu, Y.; Wu, Y.; Zou, W. Numerical Modeling of All-Day Albedo Variation for Bifacial PV Systems on Rooftops and Annual Yield Prediction in Beijing. Build. Simul. 2024, 17, 955–964. [Google Scholar] [CrossRef]
- Malik, A. S. Sustainable and Efficient Electricity Tariffs – A Case Study of Oman. Saudi J. Eng. Technol. 2022, 7, 118–127. [Google Scholar] [CrossRef]
- Marzouk, O. A. Detailed and Simplified Plasma Models in Combined-Cycle Magnetohydrodynamic Power Systems. International Journal of Advanced and Applied Sciences 2023, 10, 96–108. [Google Scholar] [CrossRef]
- OPWP, [Oman Power and Water Procurement Company]. OPWP’s 7-YEAR STATEMENT (2021 – 2027) (Issue 15); OPWP [Oman Power and Water Procurement Company]: Muscat, Sultanate of Oman, 2022. https://omanpwp.om/PDFAR/7%20Year%20Statement%20Issue%2015%202021%20-%202027.pdf (accessed 2022-09-12).
- Marzouk, O. A.; Al Kamzari, A. A.; Al-Hatmi, T. K.; Al Alawi, O. S.; Al-Zadjali, H. A.; Al Haseed, M. A.; Al Daqaq, K. H.; Al-Aliyani, A. R.; Al-Aliyani, A. N.; Al Balushi, A. A.; Al Shamsi, M. H. Energy Analyses for a Steam Power Plant Operating under the Rankine Cycle. In First International Conference on Engineering, Applied Sciences and Management (UoB-IEASMA 2021); Al Kalbani, A. S., Kanna, R., EP Rabai, L. B., Ahmad, S., Valsala, S., Eds.; IEASMA Consultants LLP: Virtual, 2021; pp. 11–22. [Google Scholar]
- IEA, [International Energy Agency]. Oman’s fossil fuel expertise could help drive clean energy transitions, new report shows - News. https://www.iea.org/news/oman-s-fossil-fuel-expertise-could-help-drive-clean-energy-transitions-new-report-shows (accessed 2025-03-06).
- Om2040U, [Oman Vision 2040 Implementation Follow-up Unit]. Oman 2040 Vision Document; Om2040U [Oman Vision 2040 Implementation Follow-up Unit]: Muscat, Sultanate of Oman, 2020. https://www.oman2040.om/VisionDocument?lang=en (accessed 2023-10-06).
- Birks, J. S.; Sinclair, C. A. Successful Education and Human Resource Development - The Key to Sustained Economic Growth*. In Oman: Economic, Social and Strategic Developments; Pridham, B. R., Ed.; Routledge: London, UK, 1987. [Google Scholar]
- Yahia, H. A. M.; Al-Shukaili, A. M.; Manchiryal, R. K.; Eissa, T.; Mohammed, A. A. Strategic Planning for the Development of Smart Cities in Oman. In The Emerald Handbook of Smart Cities in the Gulf Region: Innovation, Development, Transformation, and Prosperity for Vision 2040; Lytras, M. D., Alkhaldi, A., Malik, S., Eds.; Emerald Publishing Limited: Leeds, England, UK, 2024; pp. 289–304. [Google Scholar] [CrossRef]
- Om2040U, [Oman Vision 2040 Implementation Follow-up Unit]. Oman Vision 2040 │ Follow-up System. https://www.oman2040.om/organization?lang=en (accessed 2024-07-30).
- Al Farsi, W. A.; Achuthan, G. Analysis of Effectiveness of Smart City Implementation in Transportation Sector in Oman. In 2018 Majan International Conference (MIC); 2018; pp 1–6. [CrossRef]
- Marzouk, O. A. Urban Air Mobility and Flying Cars: Overview, Examples, Prospects, Drawbacks, and Solutions. Open Engineering 2022, 12, 662–679. [Google Scholar] [CrossRef]
- Brebbia, C. A.; Longhurst, J.; Marco, E.; Booth, C. Sustainable Development and Planning IX; WIT Press: Southampton, UK, 2017. [Google Scholar]
- Scholz, W.; Langer, S. Spatial Development of Muscat/Oman and Challenges of Public Transport. In Gulf Research Meeting 2016; Future Cities Laboratory Singapore; ETH Zurich: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Al’Abri, K. The Impact of Globalization on Education Policy of Developing Countries: Oman as an Example. Literacy Information and Computer Education Journal 2011, 2, 491–502. [Google Scholar] [CrossRef]
- Albusaidi, S. Globalization and Its Impact on Higher Education: The Case of Colleges of Technology in Oman. Arab World English Journal 2021, No. 2, 284–297. [Google Scholar] [CrossRef]
- Al-Kalbani, M. S.; Price, M. F.; O’Higgins, T.; Ahmed, M.; Abahussain, A. Integrated Environmental Assessment to Explore Water Resources Management in Al Jabal Al Akhdar, Sultanate of Oman. Reg Environ Change 2016, 16, 1345–1361. [Google Scholar] [CrossRef]
- Al-Ismaily, H. A.; Probert, D. Photovoltaic Electricity Prospects in Oman. Applied Energy 1998, 59, 97–124. [Google Scholar] [CrossRef]
- Marzouk, O. A. Benchmarking the Trends of Urbanization in the Gulf Cooperation Council: Outlook to 2050. In 1st National Symposium on Emerging Trends in Engineering and Management (NSETEM’2017); WCAS [Waljat College of Applied Sciences], Muscat, Oman, 2017; pp 1–9.
- MEM, [Ministry of Energy and Minerals in the Sultanate of Oman]. MEM │ Green Hydrogen in Oman; Public Announcement; MEM [Ministry of Energy and Minerals in the Sultanate of Oman]: Muscat, Sultanate of Oman, 2022; pp 1–15. https://hydrom.om/events/hydromlaunch/221023_MEM_En.pdf (accessed 2023-10-06).
- Hydrom, [Hydrogen Oman]. About Us (Hydrom : Hydrogen Oman). https://hydrom.om/Hydrom.aspx?cms=iQRpheuphYtJ6pyXUGiNqiQQw2RhEtKe#about (accessed 2024-07-30).
- Zghaibeh, M.; Barhoumi, E. M.; Okonkwo, P. C.; Ben Belgacem, I.; Beitelmal, W. H.; Mansir, I. B. Analytical Model for a Techno-Economic Assessment of Green Hydrogen Production in Photovoltaic Power Station Case Study Salalah City-Oman. International Journal of Hydrogen Energy 2022, 47, 14171–14179. [Google Scholar] [CrossRef]
- Wang, J.; Wen, J.; Wang, J.; Yang, B.; Jiang, L. Water Electrolyzer Operation Scheduling for Green Hydrogen Production: A Review. Renewable and Sustainable Energy Reviews 2024, 203, 114779. [Google Scholar] [CrossRef]
- Marzouk, O. A. Levelized Cost of Green Hydrogen (LCOH) in the Sultanate of Oman Using H2A-Lite with Polymer Electrolyte Membrane (PEM) Electrolyzers Powered by Solar Photovoltaic (PV) Electricity. E3S Web of Conferences 2023, 469, 00101. [Google Scholar] [CrossRef]
- Zhou, H.; Xue, J.; Gao, H.; Ma, N. Hydrogen-Fueled Gas Turbines in Future Energy System. International Journal of Hydrogen Energy 2024, 64, 569–582. [Google Scholar] [CrossRef]
- Piscopo, A.; De Paepe, W.; Parente, A.; Iavarone, S. Chemical Timescale Analysis of the Partially Stirred Reactor Model for a Hydrogen-Fuelled Scramjet. Results in Engineering 2024, 23, 102834. [Google Scholar] [CrossRef]
- Farooq, A.; Alhalabi, W. Evaluation of Hydrogen Fuel Cell-Based Systematic Vehicular Application to Promote the Green Economy Using LabVIEW. Results in Engineering 2023, 20, 101607. [Google Scholar] [CrossRef]
- Li, J.-H.; Chen, Y.; Wang, J.-B.; Li, J.-Q.; Xu, H.; Li, J.-C.; Kwon, J.-T. Numerical Simulation and Optimization on the Thermofluidic Behavior of Thermal Management System in Hydrogen Fuel Cell. Results in Engineering 2024, 21, 101803. [Google Scholar] [CrossRef]
- Khan, M. W.; Bashir, S.; Kashif, M.; Shah, M. A. A.; Khan, I. W.; Khan, M. M. Hydrogen Fuel Cell Integrated Turbofan Engines Offer Lower Costs When Climate Impact Accounted for Aviation Purposes. Results in Engineering 2025, 26, 105337. [Google Scholar] [CrossRef]
- Lau, J. I. C.; Wang, Y. S.; Ang, T.; Seo, J. C. F.; Khadaroo, S. N. B. A.; Chew, J. J.; Ng Kay Lup, A.; Sunarso, J. Emerging Technologies, Policies and Challenges toward Implementing Sustainable Aviation Fuel (SAF). Biomass and Bioenergy 2024, 186, 107277. [Google Scholar] [CrossRef]
- Fasihi, M.; Breyer, C. Global Production Potential of Green Methanol Based on Variable Renewable Electricity. Energy & Environmental Science 2024, 17, 3503–3522. [Google Scholar] [CrossRef]
- Kang, S.; Pan, Z.; Guo, J.; Zhou, Y.; Wang, J.; Fan, L.; Zheng, C.; Cha, S. W.; Zhong, Z. Scientometric Analysis of Research Trends on Solid Oxide Electrolysis Cells for Green Hydrogen and Syngas Production. Front. Energy 2024, 18, 583–611. [Google Scholar] [CrossRef]
- Marzouk, O. A.; Huckaby, E. D. A Comparative Study of Eight Finite-Rate Chemistry Kinetics for CO/H2 Combustion. Engineering Applications of Computational Fluid Mechanics 2010, 4, 331–356. [Google Scholar] [CrossRef]
- Bora, N.; Kumar Singh, A.; Pal, P.; Kumar Sahoo, U.; Seth, D.; Rathore, D.; Bhadra, S.; Sevda, S.; Venkatramanan, V.; Prasad, S.; Singh, A.; Kataki, R.; Kumar Sarangi, P. Green Ammonia Production: Process Technologies and Challenges. Fuel 2024, 369, 131808. [Google Scholar] [CrossRef]
- Levikhin, A. A.; Boryaev, A. A. Low-Carbon Ammonia-Based Fuel for Maritime Transport. Results in Engineering 2025, 25, 104175. [Google Scholar] [CrossRef]
- Song, Y.; Liu, S.; Sun, P.; Qiu, W.; Li, Y.; Peng, C. Catalytic and Engineering Strategies for Enhanced Hydrogenation Reactions: A Review of Heterogeneous Catalysts and Process Optimization. Results in Engineering 2025, 25, 103958. [Google Scholar] [CrossRef]
- Borhani, M. R.; Kermani, F. Investigating the Method of Tungsten Leaching from Hydrocracking Catalyst HC-102 W/Ni/Al2O3/SiO2. Results in Engineering 2024, 23, 102488. [Google Scholar] [CrossRef]
- Trisunaryanti, W.; Wijaya, K.; Triyono, T.; Adriani, A. R.; Larasati, S. Green Synthesis of Hierarchical Porous Carbon Prepared from Coconut Lumber Sawdust as Ni-Based Catalyst Support for Hydrotreating Callophyllum Inophyllum Oil. Results in Engineering 2021, 11, 100258. [Google Scholar] [CrossRef]
- Murtza Qamar, H. G.; Guo, X.; Seif Ghith, E.; Tlija, M.; Siddique, A. Assessment of Energy Management and Power Quality Improvement of Hydrogen Based Microgrid System through Novel PSO-MWWO Technique. Sci Rep 2025, 15, 863. [Google Scholar] [CrossRef]
- Marzouk, O. A.; Jul, W. A. M. H. R.; Al Jabri, A. M. K.; Al-ghaithi, H. A. M. A. Construction of a Small-Scale Vacuum Generation System and Using It as an Educational Device to Demonstrate Features of the Vacuum. International Journal of Contemporary Education 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Marzouk, O. A. English Programs for Non-English Speaking College Students. In 1st Knowledge Globalization Conference 2008 (KGLOBAL 2008); Sawyer Business School, Suffolk University: Boston, Massachusetts, USA, 2008. pp 1–8. [Google Scholar]
- Marzouk, O. A. Utilizing Co-Curricular Programs to Develop Student Civic Engagement and Leadership. The Journal of the World Universities Forum 2008, 1, 87–100. [Google Scholar] [CrossRef]
- Salman, H. Buraimi Dispute. In Global Encyclopedia of Territorial Rights; Gray, K. W., Ed.; Springer International Publishing: Cham, 2020. [Google Scholar] [CrossRef]
- OQ8, [Duqm Refinery and Petrochemical Industries Company]. About Duqm. https://www.oq8.om/about-oq8/about-duqm (accessed 2024-08-06).
- Al Farsi, A.; Dhanalekshmi, U. M.; Alam, T.; Althani, G. S.; Al-Ruqaishi, H. K.; Khan, S. A. Chemical Profiling and In Vitro Biological Evaluation of the Essential Oil of Caralluma Arabica from IBRI, Oman. Chem Nat Compd 2023, 59, 594–596. [Google Scholar] [CrossRef]
- Accessibility To The Historic Defence Sites Of Oman For People With Mobility Impairment: The Cases Of The Nakhal, Al Hazm And Khasab Fortifications.
- Benz, M. Musandam and Its Trade with Iran. Regional Linkages Across the Strait of Hormuz. In Regionalizing Oman: Political, Economic and Social Dynamics; Wippel, S., Ed.; Springer Netherlands: Dordrecht, 2013; pp. 205–216. [Google Scholar] [CrossRef]
- Nebel, S.; Richthofen, A. von. Urban Oman: Trends and Perspectives of Urbanisation in Muscat Capital Area; LIT Verlag Münster, 2016.
- Prathapar, S. A.; Khan, M.; Mbaga, M. D. The Potential of Transforming Salalah into Oman’s Vegetables Basket. In Environmental Cost and Face of Agriculture in the Gulf Cooperation Council Countries; Shahid, S. A., Ahmed, M., Eds.; Springer International Publishing: Cham, 2014; pp. 83–94. [Google Scholar] [CrossRef]
- Kazem, H. A.; Khatib, T. Techno-Economical Assessment of Grid Connected Photovoltaic Power Systems Productivity in Sohar, Oman. Sustainable Energy Technologies and Assessments 2013, 3, 61–65. [Google Scholar] [CrossRef]
- Alsadi, S.; Khatib, T. Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Applied Sciences 2018, 8, 1761. [Google Scholar] [CrossRef]
- Milosavljević, D. D.; Kevkić, T. S.; Jovanović, S. J. Review and Validation of Photovoltaic Solar Simulation Tools/Software Based on Case Study. Open Physics 2022, 20, 431–451. [Google Scholar] [CrossRef]
- Fogel, D. B. What Is Evolutionary Computation? IEEE Spectrum 2000, 37, 26–32. [Google Scholar] [CrossRef]
- Back, T.; Schwefel, H.-P. Evolutionary Computation: An Overview. Proceedings of IEEE International Conference on Evolutionary Computation; 1996; pp. 20–29. [Google Scholar] [CrossRef]
- Marzouk, O. A. University Role in Promoting Leadership and Commitment to the Community. In Inaugural International Forum on World Universities; Davos, Switzerland, 2008.
- Valko, N. V.; Kushnir, N. O.; Osadchyi, V. V. Cloud Technologies for STEM Education; [б. в.], 2020. [CrossRef]
- Marzouk, O. A. Benchmarking Retention, Progression, and Graduation Rates in Undergraduate Higher Education Across Different Time Windows. Cogent Education 2025, 12, 2498170. [Google Scholar] [CrossRef]
- Chu, W. W.; Hafiz, N. R. M.; Mohamad, U. A.; Ashamuddin, H.; Tho, S. W. A Review of STEM Education with the Support of Visualizing Its Structure through the CiteSpace Software. Int J Technol Des Educ 2023, 33, 39–61. [Google Scholar] [CrossRef]
- Gevorkian, P. Large-Scale Solar Power Systems: Construction and Economics; Cambridge University Press: New York City, New York, USA, 2012. [Google Scholar]
- Mesa-Jiménez, J. J.; Tzianoumis, A. L.; Stokes, L.; Yang, Q.; Livina, V. N. Long-Term Wind and Solar Energy Generation Forecasts, and Optimisation of Power Purchase Agreements. Energy Reports 2023, 9, 292–302. [Google Scholar] [CrossRef]
- De Groote, O.; Gautier, A.; Verboven, F. The Political Economy of Financing Climate Policy — Evidence from the Solar PV Subsidy Programs. Resource and Energy Economics 2024, 77, 101436. [Google Scholar] [CrossRef]
- Dupraz, C. Assessment of the Ground Coverage Ratio of Agrivoltaic Systems as a Proxy for Potential Crop Productivity. Agroforest Syst 2024, 98, 2679–2696. [Google Scholar] [CrossRef]
- Marzouk, O. A. Contrasting the Cartesian and Polar Forms of the Shedding-Induced Force Vector in Response to 12 Subharmonic and Superharmonic Mechanical Excitations. Fluid Dynamics Research 2010, 42, 035507. [Google Scholar] [CrossRef]
- Marzouk, O. A. In the Aftermath of Oil Prices Fall of 2014/2015–Socioeconomic Facts and Changes in the Public Policies in the Sultanate of Oman. International Journal of Management and Economics Invention 2017, 3, 1463–1479. [Google Scholar] [CrossRef]
- Shen, W.; Chen, X.; Qiu, J.; Hayward, J. A.; Sayeef, S.; Osman, P.; Meng, K.; Dong, Z. Y. A Comprehensive Review of Variable Renewable Energy Levelized Cost of Electricity. Renewable and Sustainable Energy Reviews 2020, 133, 110301. [Google Scholar] [CrossRef]
- Kessler, W. Comparing Energy Payback and Simple Payback Period for Solar Photovoltaic Systems. E3S Web Conf. 2017, 22, 00080. [Google Scholar] [CrossRef]
- Hartman, J. C.; Schafrick, I. C. The Relevant Internal Rate of Return. The Engineering Economist 2004, 49, 139–158. [Google Scholar] [CrossRef]
- Gallo, A. A Refresher on Net Present Value. Harvard Business Review. November 19, 2014, pp 1–3.
- Madayn. Suhar Industrial City. https://www.madayn.om/EN/Pages/Sohar.aspx (accessed 2025-02-26).
- Freezone, S. P. and. Sohar Port and Freezone. http://www.soharportandfreezone.com (accessed 2025-02-26).
- Suhar Airport. Tourism Guide Clone - Suhar Airport. https://www.suharairport.co.om/content/tourism-guide-clone (accessed 2025-02-26).
- Al Fazari, H. Higher Education in the Arab World: Research and Development from the Perspective of Oman and Sohar University. In Higher Education in the Arab World: Research and Development; Badran, A., Baydoun, E., Hillman, J. R., Eds.; Springer International Publishing: Cham, 2022; pp. 259–274. [Google Scholar] [CrossRef]
- Unxos GmbH. GeoNames - geographical database. https://www.geonames.org/advanced-search.html (accessed 2021-09-22).
- Öçal, M. F.; Şimşek, M.; Kapucu, S. Measuring the Height of a Flag Pole Using Smartphone GPS and Orientation Sensors. PRIMUS 2021, 31, 1007–1019. [Google Scholar] [CrossRef]
- EC, [European Commission]. PVGIS │ Data sources and calculation methods. https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-data-sources-calculation-methods_en (accessed 2025-03-03).
- Maxwell, T. M.; Germino, M. J.; Romero, S.; Porensky, L. M.; Blumenthal, D. M.; Brown, C. S.; Adler, P. B. Experimental Manipulation of Soil-Surface Albedo Alters Phenology and Growth of Bromus Tectorum (Cheatgrass). Plant Soil 2023, 487, 325–339. [Google Scholar] [CrossRef]
- Marzouk, O. A. Flow Control Using Bifrequency Motion. Theoretical and Computational Fluid Dynamics 2011, 25, 381–405. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Contribution of Greening and High-Albedo Coatings to Improvements in the Thermal Environment in Complex Urban Areas. Advances in Meteorology 2015, 2015, 792172. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T.; Ivanova, S. Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies. Energies 2018, 11, 2881. [Google Scholar] [CrossRef]
- Sellers, W. D. Physical Climatology; University of Chicago Press: Chicago, Illinois, USA, 1965. [Google Scholar]
- Santamouris, M. Using Cool Pavements as a Mitigation Strategy to Fight Urban Heat Island—A Review of the Actual Developments. Renewable and Sustainable Energy Reviews 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Xiao, B.; Bowker, M. A. Moss-Biocrusts Strongly Decrease Soil Surface Albedo, Altering Land-Surface Energy Balance in a Dryland Ecosystem. Science of The Total Environment 2020, 741, 140425. [Google Scholar] [CrossRef]
- ESC, [Energy Seal Coatings]. Cool Colors, Cool Roofs; Atlanta, Georgia, USA, 2011; pp 1–6. https://energy-seal.com/UserDyn/ACS/pdfs/ta_cool_colors,_cool_roofs.pdf (accessed 2025-06-18).
- Dickinson, R. E.; Hanson, B. Vegetation-Albedo Feedbacks. In Climate Processes and Climate Sensitivity; American Geophysical Union (AGU), 1984; pp 180–186. [CrossRef]
- Schwaiger, H. P.; Bird, D. N. Integration of Albedo Effects Caused by Land Use Change into the Climate Balance: Should We Still Account in Greenhouse Gas Units? Forest Ecology and Management 2010, 260, 278–286. [Google Scholar] [CrossRef]
- Shoukry, I.; Libal, J.; Kopecek, R.; Wefringhaus, E.; Werner, J. Modelling of Bifacial Gain for Stand-Alone and in-Field Installed Bifacial PV Modules. Energy Procedia 2016, 92, 600–608. [Google Scholar] [CrossRef]
- Johnson, J.; Manikandan, S. Experimental Study and Model Development of Bifacial Photovoltaic Power Plants for Indian Climatic Zones. Energy 2023, 284, 128693. [Google Scholar] [CrossRef]
- Sen, S.; Roesler, J.; King, D. Albedo Estimation of Finite-Sized Concrete Specimens. Journal of Testing and Evaluation 2019, 47, 738–757. [Google Scholar] [CrossRef]
- Zinzi, M. Cool Materials. In Energy Performance of Buildings: Energy Efficiency and Built Environment in Temperate Climates; Boemi, S.-N., Irulegi, O., Santamouris, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Cotfas, D. T.; Cotfas, P. A. Multiconcept Methods to Enhance Photovoltaic System Efficiency. International Journal of Photoenergy 2019, 2019, 1905041. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, J. N.; Chakraborty, C. A Model to Determine Soiling, Shading and Thermal Losses from PV Yield Data. Clean Energy 2022, 6, 372–391. [Google Scholar] [CrossRef]
- Jamal, J.; Mansur, I.; Rasid, A.; Mulyadi, M.; Dihyah Marwan, M.; Marwan, M. Evaluating the Shading Effect of Photovoltaic Panels to Optimize the Performance Ratio of a Solar Power System. Results in Engineering 2024, 21, 101878. [Google Scholar] [CrossRef]
- Brecl, K.; Topič, M. Self-Shading Losses of Fixed Free-Standing PV Arrays. Renewable Energy 2011, 36, 3211–3216. [Google Scholar] [CrossRef]
- Nicolás-Martín, C.; Eleftheriadis, P.; Santos-Martín, D. Validation and Self-Shading Enhancement for SoL: A Photovoltaic Estimation Model. Solar Energy 2020, 202, 386–408. [Google Scholar] [CrossRef]
- Marzouk, O. A. A Flight-Mechanics Solver for Aircraft Inverse Simulations and Application to 3D Mirage-III Maneuver. Global Journal of Control Engineering and Technology 2015, 1, 14–26. [Google Scholar] [CrossRef]
- Flores-Hernández, D. A.; Palomino-Resendiz, S.; Lozada-Castillo, N.; Luviano-Juárez, A.; Chairez, I. Mechatronic Design and Implementation of a Two Axes Sun Tracking Photovoltaic System Driven by a Robotic Sensor. Mechatronics 2017, 47, 148–159. [Google Scholar] [CrossRef]
- Xie, C.; Ding, X.; Jiang, R. Using Computer Graphics to Make Science Visible in Engineering Education. IEEE Computer Graphics and Applications 2023, 43, 99–106. [Google Scholar] [CrossRef]
- IFI, [Institute for Future Intelligence, Inc. ]. Institute for Future Intelligence │ Journal Papers. https://www.intofuture.org/journals.html (accessed 2025-03-01).
- NSF, [United States National Science Foundation]. NSF │ Funding at NSF. https://www.nsf.gov/funding (accessed 2025-06-12). /.
- NSF, [United States National Science Foundation]. NSF │ Award Abstract # 2105695 - Collaborative Research: SmartCAD: Guiding Engineering Design with Science Simulations. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2105695 (accessed 2025-06-12).
- NSF, [United States National Science Foundation]. NSF │ Award Abstract # 2131097 - Science and Engineering Education for Infrastructure Transformation. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2131097 (accessed 2025-06-12).
- NSF, [United States National Science Foundation]. NSF │ Award Abstract # 2301164 - Collaborative Research: A Solar and Wind Innovation and Technology Collaborative for Hawaii (SWITCH). https://www.nsf.gov/awardsearch/showAward?AWD_ID=2301164` (accessed 2025-06-12).
- Aaron, H. Aladdin │ Aaron’s Aladdin Video Tutorials. https://intofuture.org/aladdin-videos-kcc.html (accessed 2025-06-12).
- Olugbenga, A. G. Dependence of Operational Properties on Reboiler Duty in the Removal of CO2 from Natural Gas with Aspen Hysys. Results in Engineering 2024, 21, 101755. [Google Scholar] [CrossRef]
- López-Quesada, G.; Acosta-Iborra, A.; Sánchez-Rodríguez, M. R.; Salas-Colera, E.; Hernández-Jiménez, F. Preliminary CFD Simulations of a Lab-Scale Novel Design of a Particle Receiver for CSP Applications. Results in Engineering 2024, 24, 103360. [Google Scholar] [CrossRef]
- Marzouk, O. A. Simulation, Modeling, and Characterization of the Wakes of Fixed and Moving Cylinders. PhD in Engineering Mechanics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA, 2009. http://hdl.handle.net/10919/26316 (accessed 2024-11-26).
- Aishwarya, M.; Brisilla, R. M. Design of Energy-Efficient Induction Motor Using ANSYS Software. Results in Engineering 2022, 16, 100616. [Google Scholar] [CrossRef]
- Steiner, T. R. High Temperature Steady-State Experiment for Computational Radiative Heat Transfer Validation Using COMSOL and ANSYS. Results in Engineering 2022, 13, 100354. [Google Scholar] [CrossRef]
- Marzouk, O. A.; Nayfeh, A. H. Simulation, Analysis, and Explanation of the Lift Suppression and Break of 2:1 Force Coupling Due to in-Line Structural Vibration. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA [American Institute of Aeronautics and Astronautics]: Schaumburg, Illinois, USA, 2008; p AIAA 2008-2309. [CrossRef]
- Marzouk, O. A. Validating a Model for Bluff-Body Burners Using the HM1 Turbulent Nonpremixed Flame. Journal of Advanced Thermal Science Research 2016, 3, 12–23. [Google Scholar] [CrossRef]
- Marzouk, O. A. InvSim Algorithm for Pre-Computing Airplane Flight Controls in Limited-Range Autonomous Missions, and Demonstration via Double-Roll Maneuver of Mirage III Fighters. Scientific Reports 2025, 15, 23382. [Google Scholar] [CrossRef]
- Teja, K. V. S.; Garg, K.; Tyagi, H. Mathematical Modelling of Solar Updraft Tower. In Solar Energy: Systems, Challenges, and Opportunities; Tyagi, H., Chakraborty, P. R., Powar, S., Agarwal, A. K., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Martín-Olalla, J. M.; Mira, J. Assessing the Best Hour to Start the Day: An Appraisal of Seasonal Daylight Saving Time. Royal Society Open Science 2025, 12, 240727. [Google Scholar] [CrossRef]
- Kittler, R.; Darula, S. Determination of Time and Sun Position System. Solar Energy 2013, 93, 72–79. [Google Scholar] [CrossRef]
- Neumann, P.; von Blanckenburg, K. What Time Will It Be? A Comprehensive Literature Review on Daylight Saving Time. Time & Society 2025, 0961463X241310562. [CrossRef]
- Araújo, I.; Nunes, L. J. R.; Vilas, D. P.; Curado, A. The Impact of Daylight Saving Time on the Energy Efficiency of Buildings: A Bibliometric and General Review. Energies 2025, 18, 2088. [Google Scholar] [CrossRef]
- Salgado-Conrado, L.; Lopez-Montelongo, A.; Alvarez-Macias, C.; Hernadez-Jaquez, J. Review of Heliodon Developments and Computational Tools for Building Shadow Analysis. Buildings 2022, 12, 627. [Google Scholar] [CrossRef]
- Mikhael, M. G.; Metwaly, M. A Simple Heliodon System for Horizontal Placed Models. Journal of Contemporary Urban Affairs 2017, 1, 54–61. [Google Scholar] [CrossRef]
- Distance Tools. Distance Tools │ Distance Buraimi > Dubai - Air line, driving route, midpoint. Distance calculator. https://www.distance.to/Buraimi/Dubai (accessed 2025-06-18).
- Steyn, D. W.; Nemeth, W.; Page, M.; Theingi, S.; Young, D. L.; Agarwal, S.; Stradins, P. Measurement of Contact Resistivity In Symmetric Polycrystalline Si/SiOx/Monocrystalline Si Test Structures Using Variable Light Illumination. Solar RRL 2025, 9, 2400877. [Google Scholar] [CrossRef]
- Naaz, N.; Dutta, S.; Goel, S.; Ramaswamy, K. Calibrating Underwater Photovoltaic Performance: Demonstration Using Monocrystalline and Polycrystalline Silicon Solar Cells. Renewable Energy 2025, 247, 122993. [Google Scholar] [CrossRef]
- Yılmaz, M.; Çorapsız, M. R.; Çorapsız, M. F. A Novel Maximum Power Point Tracking Approach Based on Fuzzy Logic Control and Optimizable Gaussian Process Regression for Solar Systems under Complex Environment Conditions. Engineering Applications of Artificial Intelligence 2025, 141, 109780. [Google Scholar] [CrossRef]
- Hou, G.; Guo, Z. Maximum Power Point Tracking of Solar Photovoltaic under Partial Shading Conditions Based on Improved Salp Swarm Algorithm. Electric Power Systems Research 2025, 241, 111316. [Google Scholar] [CrossRef]
- Ge, Z.; Xu, Z.; Li, J.; Xu, J.; Xie, J.; Yang, F. Technical-Economic Evaluation of Various Photovoltaic Tracking Systems Considering Carbon Emission Trading. Solar Energy 2024, 271, 112451. [Google Scholar] [CrossRef]
- Chub, A.; Roman, K.; Korkh, O.; Vinnikov, D.; Kouro, S. Energy Yield Assessment Methodology for Photovoltaic Microinverters. In 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC); 2019; pp 1–5. [CrossRef]
- Tural, B.; Akar, O. Design and Economic Analysis of Marine Vessel PV Power System Based on Solar Radiation Estimation. IEEE Access 2025, 13, 89463–89480. [Google Scholar] [CrossRef]
- Angulo, A.; Huerta, M.; Mancilla–David, F. Identification of the 11-Parameter Functional Form Model for Photovoltaic Modules Using Manufacturer-Provided Ratings. IEEE Transactions on Industrial Informatics 2025, 21, 4694–4702. [Google Scholar] [CrossRef]
- NREL, [United States National Renewable Energy Laboratory]. SAM (System Advisor Model) │ Photovoltaic Models. https://sam.nrel.gov/index.php?option=com_content&view=article&id=47&Itemid=213 (accessed 2025-06-12).
- PVsyst. PVsyst documentation - Calculation and Model. https://www.pvsyst.com/help/project-design/shadings/calculation-and-model/index.html (accessed 2025-06-12).
- NREL, [United States National Renewable Energy Laboratory]. SAM (System Advisor Model) │ About. https://sam.nrel.gov/about-sam.html (accessed 2025-05-06).
- Shahzad, U. Critical Analysis For Solar Cell Models Using System Advisor Model Simulations. Journal of Electrical Engineering, Electronics, Control and Computer Science 2022, 9, 23–32. [Google Scholar]
- PVsyst. PVsyst documentation - Sandia Model. https://www.pvsyst.com/help/physical-models-used/pv-module-standard-one-diode-model/sandia-model.html (accessed 2025-06-12).
- Alfailakawi, M. S.; Michailos, S.; Ingham, D. B.; Hughes, K. J.; Ma, L.; Pourkashanian, M. Enhancing the Performance of an Aerosols-Affected Solar Power Tower in Arid Regions: A Case Study of Wind Turbines Hybridization. Results in Engineering 2024, 24, 102968. [Google Scholar] [CrossRef]
- NREL, [United States National Renewable Energy Laboratory]. SAM (System Advisor Model) │ Download. https://sam.nrel.gov/index.php?option=com_docman&view=tree&layout=default&slug=sam-versions&own=0&Itemid=146 (accessed 2025-06-12).
- R, K. P.; Pillai, A. S.; Al-Shahri, A. A Feasible and Sustainable Standalone Hybrid Renewable Energy System Experimentation for Remote Residential Applications of Khasab. Results in Engineering 2025, 26, 105360. [Google Scholar] [CrossRef]
- Manoj Kumar, N.; Chakraborty, S.; Kumar Yadav, S.; Singh, J.; Chopra, S. S. Advancing Simulation Tools Specific to Floating Solar Photovoltaic Systems – Comparative Analysis of Field-Measured and Simulated Energy Performance. Sustainable Energy Technologies and Assessments 2022, 52, 102168. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Zhao, G.; Xia, D.; Wang, W. Simulation Test of 50 MW Grid-Connected “Photovoltaic+Energy Storage” System Based on Pvsyst Software. Results in Engineering 2024, 22, 102331. [Google Scholar] [CrossRef]
- Sereiviene, E.; Ding,Xiaotong; Jiang,Rundong; Bulseco,Dylan; and Xie, C. Learning Science and Engineering by Designing Sustainable Houses. The Science Teacher 2025, 92, 43–51. [Google Scholar] [CrossRef]
- Sereiviene, E.; Ding,Xiaotong; Jiang,Rundong; Zheng,Juan; Kashyrskyy,Andriy; Bulseco,Dylan; and Xie, C. Introducing Engineering Design to First-Year Students Through the Net Zero Energy Challenge. Journal of College Science Teaching 2024, 53, 507–515. [Google Scholar] [CrossRef]
- Sung, S.; Ding,Xiaotong; Jiang,Rundong; Sereiviene,Elena; Bulseco,Dylan; and Xie, C. Using Artificial Intelligence Teaching Assistants to Guide Students in Solar Energy Engineering Design. Journal of Geoscience Education 2024, 72, 347–366. [Google Scholar] [CrossRef]
- Jiang, R.; Ding, X.; Xie, C. Solarize Your World: Addressing Climate Change Through Renewable Energy Engineering. The Physics Teacher 2023, 61, 694–698. [Google Scholar] [CrossRef]
- Zheng, J.; Pan, Z.; Li, S.; Xie, C. Modeling Temporal Self-Regulatory Processes in STEM Learning of Engineering Design. Educational Technology & Society 2024, 27, 20–33. [Google Scholar] [CrossRef]
- Xie, C. Beyond Solar Cookers: Modeling and Designing Concentrated Solar Power as Engineering Projects in Physics Classrooms. The Physics Teacher 2023, 61, 447–452. [Google Scholar] [CrossRef]
- Sereiviene, E.; Jiang, R.; Sung, S.; Huang, X. Aladdin │ Solar Panels v. Trees (Educational Activity). https://intofuture.org/aladdin-solar-panels-v-trees.html (accessed 2025-06-12).
- Sereiviene, E.; Jiang, R. Aladdin │ Solarize Your School Curriculum Module. https://intofuture.org/aladdin-sys-unit.html (accessed 2025-06-12).
- Xie, C. Aladdin │ Visualizing the Pareto Front Using the Scalarization Method. https://intofuture.org/aladdin-generative-design-2.html (accessed 2025-06-12).
- Marzouk, O. A. Airfoil Design Using Genetic Algorithms. In The 2007 International Conference on Scientific Computing (CSC’07), The 2007 World Congress in Computer Science, Computer Engineering, and Applied Computing (WORLDCOMP’07); CSREA Press: Las Vegas, Nevada, USA, 2007; pp. 127–132. [Google Scholar]
- Xie, C. Aladdin │ Designing a Solar Farm with Artificial Intelligence. https://intofuture.org/aladdin-design-solar-farm-with-ai.html (accessed 2025-06-12).
- Agbogla, J.; Sekyere, C. K. K.; Forson, F. K.; Opoku, R.; Baah, B. Soiling Estimation Methods in Solar Photovoltaic Systems: Review, Challenges and Future Directions. Results in Engineering 2025, 26, 104810. [Google Scholar] [CrossRef]
- Mejia, F. A.; Kleissl, J. Soiling Losses for Solar Photovoltaic Systems in California. Solar Energy 2013, 95, 357–363. [Google Scholar] [CrossRef]
- Bierman, B.; O’Donnell, J.; Burke, R.; McCormick, M.; Lindsay, W. Construction of an Enclosed Trough EOR System in South Oman. Energy Procedia 2014, 49, 1756–1765. [Google Scholar] [CrossRef]
- Bierman, B.; Treynor, C.; O’Donnell, J.; Lawrence, M.; Chandra, M.; Farver, A.; Von Behrens, P.; Lindsay, W. Performance of an Enclosed Trough EOR System in South Oman. Energy Procedia 2014, 49, 1269–1278. [Google Scholar] [CrossRef]
- Borah, P.; Micheli, L.; Sarmah, N. Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability 2023, 15, 16669. [Google Scholar] [CrossRef]
- Sunpure Technology. Unveiling the Impact of Soiling Loss on PV Power Generation: Challenges and Solutions-Sunpure Intelligent Technology Co., LTD. https://en.sunpuretech.com/xiangqing/35.html (accessed 2025-06-13).
- Adekanbi, M. L.; Alaba, E. S.; John, T. J.; Tundealao, T. D.; Banji, T. I. Soiling Loss in Solar Systems: A Review of Its Effect on Solar Energy Efficiency and Mitigation Techniques. Cleaner Energy Systems 2024, 7, 100094. [Google Scholar] [CrossRef]
- Kazem, H. A.; Khatib, T.; Alwaeli, A. A. K. Optimization of Photovoltaic Modules Tilt Angle for Oman. In 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO); 2013; pp 703–707. [CrossRef]
- Vieira, R. G.; Guerra, F. K. O. M. V.; Vale, M. R. B. G.; Araújo, M. M. Comparative Performance Analysis between Static Solar Panels and Single-Axis Tracking System on a Hot Climate Region near to the Equator. Renewable and Sustainable Energy Reviews 2016, 64, 672–681. [Google Scholar] [CrossRef]
- Gal, T.; Greenberg, H. J. Advances in Sensitivity Analysis and Parametric Programming; Springer Science & Business Media: New York, USA, 2012. [Google Scholar]
- Sulieman, H.; Kucuk, I.; McLellan, P. J. Parametric Sensitivity: A Case Study Comparison. Computational Statistics & Data Analysis 2009, 53, 2640–2652. [Google Scholar] [CrossRef]
- Marzouk, O. A. The Sod Gasdynamics Problem as a Tool for Benchmarking Face Flux Construction in the Finite Volume Method. Scientific African 2020, 10, e00573. [Google Scholar] [CrossRef]
- Xie, C.; Schimpf, C.; Chao, J.; Nourian, S.; Massicotte, J. Learning and Teaching Engineering Design through Modeling and Simulation on a CAD Platform. Comp Applic In Engineering 2018, 26, 824–840. [Google Scholar] [CrossRef]
- Ukoima, K. N.; Efughu, D.; Azubuike, O. C.; Akpiri, B. F. Investigating the Optimal Photovoltaic (PV) Tilt Angle Using the Photovoltaic Geographic Information System (PVGIS). Nigerian Journal of Technology 2024, 43, 101–114. [Google Scholar] [CrossRef]
- EC, [European Commission]. PVGIS │ User Manual. https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en (accessed 2025-03-01).
- Psomopoulos, C. S.; Ioannidis, G. Ch.; Kaminaris, S. D.; Mardikis, K. D.; Katsikas, N. G. A Comparative Evaluation of Photovoltaic Electricity Production Assessment Software (PVGIS, PVWatts and RETScreen). Environ. Process. 2015, 2, 175–189. [Google Scholar] [CrossRef]
- Sauer, K. J.; Roessler, T.; Hansen, C. W. Modeling the Irradiance and Temperature Dependence of Photovoltaic Modules in PVsyst. IEEE Journal of Photovoltaics 2015, 5, 152–158. [Google Scholar] [CrossRef]
- Yadav, P.; Kumar, N.; Chandel, S. S. Simulation and Performance Analysis of a 1kWp Photovoltaic System Using PVsyst. In 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC); 2015; pp 0358–0363. [CrossRef]
- Kandasamy, C. P.; Prabu, P.; Niruba, K. Solar Potential Assessment Using PVSYST Software. In 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE); 2013; pp 667–672. [CrossRef]
- Deniz, M. Analysis of Accessibility to Public Schools with GIS: A Case Study of Salihli City (Turkey). Children’s Geographies 2024, 22, 30–51. [Google Scholar] [CrossRef]
- Özen, T.; Bülbül, A.; Tarcan, G. Reservoir and Hydrogeochemical Characterizations of Geothermal Fields in Salihli, Turkey. Journal of Asian Earth Sciences 2012, 60, 1–17. [Google Scholar] [CrossRef]
- Ozgener, L.; Hepbasli, A.; Dincer, I. Energy and Exergy Analysis of Salihli Geothermal District Heating System in Manisa, Turkey. International Journal of Energy Research 2005, 29, 393–408. [Google Scholar] [CrossRef]
- JinkoSolar. Case Study │ Witznitz Energy Park 650 MW, Germany. https://jinkosolar.eu/case-study/witznitz-energy-park-650-mw-germany (accessed 2025-03-04). /.
- Smith, B.; Woodhouse, M.; Feldman, D.; Margolis, R. Solar Photovoltaic (PV) Manufacturing Expansions in the United States, 2017-2019: Motives, Challenges, Opportunities, and Policy Context; Technical Report NREL/TP-6A20-74807; NREL [United States National Renewable Energy Laboratory]: Golden, Colorado, USA, 2021. [Google Scholar] [CrossRef]
- Rowlands, I. H.; Kemery, B. P.; Beausoleil-Morrison, I. Optimal Solar-PV Tilt Angle and Azimuth: An Ontario (Canada) Case-Study. Energy Policy 2011, 39, 1397–1409. [Google Scholar] [CrossRef]
- Etukudor, C.; Orovwode, H.; Wara, S.; Agbetuyi, F.; Adozhe, A.; Obieje, B. O.; Oparaocha, C. N. Optimum Tilt and Azimuth Angles for Solar Photovoltaic Systems in South-West Nigeria. In 2018 IEEE PES/IAS PowerAfrica; 2018; pp 348–353. [CrossRef]
- Salas, V.; Olías, E. Overview of the State of Technique for PV Inverters Used in Low Voltage Grid-Connected PV Systems: Inverters above 10 kW. Renewable and Sustainable Energy Reviews 2011, 15, 1250–1257. [Google Scholar] [CrossRef]
- Vaicys, J.; Norkevicius, P.; Baronas, A.; Gudzius, S.; Jonaitis, A.; Peftitsis, D. Efficiency Evaluation of the Dual System Power Inverter for On-Grid Photovoltaic System. Energies 2022, 15, 161. [Google Scholar] [CrossRef]
- Burger, B.; Kranzer, D. Extreme High Efficiency PV-Power Converters. In 2009 13th European Conference on Power Electronics and Applications; 2009; pp 1–13.
- Lei, Y.; Barth, C.; Qin, S.; Liu, W.; Moon, I.; Stillwell, A.; Chou, D.; Foulkes, T.; Ye, Z.; Liao, Z.; Pilawa-Podgurski, R. C. N. A 2 kW, Single-Phase, 7-Level, GaN Inverter with an Active Energy Buffer Achieving 216 W/In3 Power Density and 97.6% Peak Efficiency. In 2016 IEEE Applied Power Electronics Conference and Exposition (APEC); 2016; pp 1512–1519. [CrossRef]
- Pinker, R. T.; Militana, L. M. The Asymmetry of Global Solar Radiation Around Solar Noon. 1988.
- Pereira, A. B.; Villa Nova, N. A.; Galvani, E. Estimation of Global Solar Radiation Flux Density in Brazil from a Single Measurement at Solar Noon. Biosystems Engineering 2003, 86, 27–34. [Google Scholar] [CrossRef]
- Chippindale, C. Stoned Henge: Events and Issues at the Summer Solstice, 1985. World Archaeology 1986, 18, 38–58. [Google Scholar] [CrossRef]
- Sojka, J. J.; Schunk, R. W. A Theoretical Study of the Global F Region for June Solstice, Solar Maximum, and Low Magnetic Activity. Journal of Geophysical Research: Space Physics 1985, 90, 5285–5298. [Google Scholar] [CrossRef]
- Myrabø, H. K. Temperature Variation at Mesopause Levels during Winter Solstice at 78°N. Planetary and Space Science 1984, 32, 249–255. [Google Scholar] [CrossRef]
- Trolle, A. K. Winter Solstice Celebrations in Denmark: A Growing Non-Religious Ritualisation. Religions 2021, 12, 74. [Google Scholar] [CrossRef]
- Borfecchia, F.; Caiaffa, E.; Pollino, M.; De Cecco, L.; Martini, S.; La Porta, L.; Marucci, A. Remote Sensing and GIS in Planning Photovoltaic Potential of Urban Areas. European Journal of Remote Sensing 2014, 47, 195–216. [Google Scholar] [CrossRef]
- Marzouk, O. A. A Two-Step Computational Aeroacoustics Method Applied to High-Speed Flows. Noise Control Engineering Journal 2008, 56, 396. [Google Scholar] [CrossRef]
- Gawley, D.; McKenzie, P. Investigating the Suitability of GIS and Remotely-Sensed Datasets for Photovoltaic Modelling on Building Rooftops. Energy and Buildings 2022, 265, 112083. [Google Scholar] [CrossRef]
- Marzouk, O. A. Temperature-Dependent Functions of the Electron–Neutral Momentum Transfer Collision Cross Sections of Selected Combustion Plasma Species. Applied Sciences 2023, 13, 11282. [Google Scholar] [CrossRef]
- Türkdoğru, E.; Kutay, M. Analysis of Albedo Effect in a 30-kW Bifacial PV System with Different Ground Surfaces Using PVsyst Software. Journal of Energy Systems 2022, 6, 543–559. [Google Scholar] [CrossRef]
- Ganesan, K.; Winston, D. P.; Sugumar, S.; Jegan, S. Performance Analysis of N-Type PERT Bifacial Solar PV Module under Diverse Albedo Conditions. Solar Energy 2023, 252, 81–90. [Google Scholar] [CrossRef]
- Ghenai, C.; Ahmad, F. F.; Rejeb, O.; Bettayeb, M. Artificial Neural Networks for Power Output Forecasting from Bifacial Solar PV System with Enhanced Building Roof Surface Albedo. Journal of Building Engineering 2022, 56, 104799. [Google Scholar] [CrossRef]
- OPG, [Oman Pocket Guide]. Khasab, Musandam. https://omanpocketguide.com/khasab-musandam (accessed 2025-03-03).
- Searle, M. Musandam Peninsula and Straits of Hormuz. In Geology of the Oman Mountains, Eastern Arabia; Searle, M., Ed.; Springer International Publishing: Cham, 2019; pp. 129–146. [Google Scholar] [CrossRef]
- Okonkwo, P. C.; Barhoumi, E. M.; Murugan, S.; Zghaibeh, M.; Otor, C.; Abo-Khalil, A. G.; Amer Mohamed, A. M. Economic Analysis of Cross-Breed Power Arrangement for Salalah Region in the Al-Khareef Season. International Journal of Sustainable Energy 2021, 40, 188–206. [Google Scholar] [CrossRef]
- Carr, C. M.; Yavary, M.; Yavary, M. Wave Agitation Studies for Port Expansion - Salalah, Oman. 2012, 1–10. [CrossRef]
- Padovan, A.; Del Col, D.; Sabatelli, V.; Marano, D. DNI Estimation Procedures for the Assessment of Solar Radiation Availability in Concentrating Systems. Energy Procedia 2014, 57, 1140–1149. [Google Scholar] [CrossRef]
- Dugaria, S.; Padovan, A.; Sabatelli, V.; Del Col, D. Assessment of Estimation Methods of DNI Resource in Solar Concentrating Systems. Solar Energy 2015, 121, 103–115. [Google Scholar] [CrossRef]
- Cogliani, E. The Role of the Direct Normal Irradiance (DNI) Forecasting in the Operation of Solar Concentrating Plants. Energy Procedia 2014, 49, 1612–1621. [Google Scholar] [CrossRef]
- 295. OPWP, [Oman Power and Water Procurement Company]. Solar Data - Weather Impact Analysis; OPWP [Oman Power and Water Procurement Company]: Muscat, Oman, 2013. https://omanpwp.om/PDF/Solar%20Data%20-%20Weather%20Impact%20Analysis.pdf (accessed 2021-11-03).
- Marzouk, O. A.; Huckaby, E. D. Simulation of a Swirling Gas-Particle Flow Using Different k-Epsilon Models and Particle-Parcel Relationships. Engineering Letters 2010, 18. [Google Scholar]
- Bierman, B.; Treynor, C.; O’Donnell, J.; Lawrence, M.; Chandra, M.; Farver, A.; Von Behrens, P.; Lindsay, W. Performance of an Enclosed Trough EOR System in South Oman. Energy Procedia 2014, 49, 1269–1278. [Google Scholar] [CrossRef]
- NASA, [United States National Aeronautics and Space Administration]. Earth Observatory │ Aerosol Optical Depth. https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD (accessed 2025-04-25).
- NASA, [United States National Aeronautics and Space Administration]. Earth Observatory │ Aerosol Size & Aerosol Optical Depth. https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_RA/MODAL2_M_AER_OD (accessed 2025-04-25).
- NASA, [United States National Aeronautics and Space Administration]. Ozone, Aerosol, Trace Gases │ Ozone & Atmospheric Composition. https://ozoneaq.gsfc.nasa.gov/map/#d:2024-05-02..2024-05-31,2024-05-02;l:country-outline,aura_aerosol,earth;@55.8,21.7,6.0z (accessed 2025-04-25).


























| Omani location | GPS coordinates (degree, minute, second – DMS) | GPS coordinates (decimal degree – DD) | Fixed optimum tilt |
|---|---|---|---|
| Buraimi | N 24°15’3’’, E 55°47’35’’ | 24.250833° N, 55.793056° E | 25° |
| Duqm | N 19°39’43’’, E 57°42’13’’ | 19.661944° N, 57.703611° E | 21° |
| Ibri | N 23°13’32’’, E 56°30’56’’ | 23.225556° N, 56.515556° E | 25° |
| Khasab | N 26°10’47’’, E 56°14’51’’ | 26.179722° N, 56.247500° E | 25° |
| Muscat | N 23°35’2’’, E 58°24’28’’ | 23.583889° N, 58.407778° E | 25° |
| Salalah | N 17°0’54’’, E 54°5’32’’ | 17.015000° N, 54.092222° E | 21° |
| Sohar | N 24°20’50’’, E 56°42’33’’ | 24.347222° N, 56.709167° E | 25° |
| Ground / Foundation characteristics | Albedo value | Reference |
|---|---|---|
| perfectly black surface | 0 | [175] |
| black road pavement | 0.05-0.10 | [176] |
| dark soil | 0.05-0.15 | [176] |
| unpainted streets | 0.15 | [177] |
| green meadows | 0.10-0.20 | [176] |
| grassland | 0.1 | [178] |
| dark-colored soil surfaces | 0.1-0.2 | [178] |
| soil surface | 0.10–0.15 | [93] |
| crops | 0.15-0.25 | [176] |
| grayish (sometimes called “white”) roof shingles | 0.25 | [179] |
| concrete | 0.17-0.27 | [176] |
| savanna and grassland | Below 0.18 | [180] |
| grassland | 0.2 | [181] |
| bare ground | 0.2 | [175] |
| desert | 0.25-0.30 | [176] |
| cement foundation surrounded by sand | 0.3 | [182] |
| average ground albedo | 0.3 | [183] |
| concrete | 0.30–0.35 | [93] |
| dune sand | 0.35-0.45 | [176] |
| sand | 0.4 | [175] |
| white pebbles | 0.5-0.6 | [93,175] |
| concrete | 0.50-0.55 | [184] |
| white tiles | 0.7 | [185] |
| white tiles or white waterproof materials | Above 0.7 | [186] |
| white tiles | 0.7–0.8 | [93] |
| fresh snow | 0.75-0.95 | [176] |
| Snow | Up to 0.92 | [186] |
| highly reflective material (mirror or white surface, capable of total reflection) | 1 | [175] |
| Characteristics | Used value |
|---|---|
| Total nominal (peak) power capacity | 4.5 kWp |
| DC-to-AC ratio | 1.14* |
| Pole height | 1.35 m |
| Pole spacing | 3.00 m |
| Mounting type | Ground mounting |
| Solar tracking | None (fixed orientation) |
| Soiling loss (default value in Aladdin) | 5% |
| Aladdin energy analysis option: sampling frequency | 30 samples per hour (the highest available value) |
| Inverter efficiency | 98%** |
| Bifacial PV module | Jinko Solar Tiger LM 72HC-BDVP*** (Monocrystalline cells, 72 cells as 144 half-cut cells per module) |
| Bifacial PV module type and nameplate DC power | JKM450M-72HLM-BDVP (450 Wp) |
| Bifacial PV module temperature coefficient of power | –0.35% (–0.0035) |
| Number of bifacial PV modules | 10 |
| Monofacial PV module | Jinko Solar Eagle PERC 60M (Monocrystalline cells, 60 cells per module) |
| Monofacial PV module type and nameplate DC power | JKM300M-60 (300 Wp)**** |
| Monofacial PV module temperature coefficient of power | –0.39% (–0.0039) |
| Number of bifacial PV modules | 15 |
| Characteristics | Used value |
|---|---|
| Location | Caferbey (community/village), Salihli (municipality/district), Manisa (province), Turkey |
| Latitude (degree, minute, second – DMS) | N 38°28’38” |
| Longitude (degree, minute, second – DMS) | E 28°5’50” |
| Latitude (decimal degree – DD) | 38.4772° N |
| Longitude (decimal degree – DD) | 28.0972° E |
| Tilt | 30° (year-round optimum) |
| Azimuth angle | 180° from north (0° from south) |
| Row-to-row spacing (inter-row spacing, or array pitch) | 5 m |
| PV nameplate power capacity | 34.2 kWp (In the external study, 80 bifacial modules “GG1H-425 Bifacial PERC-72” by the Turkish PV manufacturer GTC were modeled in PVsyst; thus, the nominal PV power was 34.00 kWp. Here, the modeled nominal PV power in Aladdin is 34.20 kWp, as 76 modules with 0.450 kWp each.) |
| Inverter nameplate power capacity | 30 kWac (In the external study, this is obtained as: 34.00 kWp ÷ 1.1333; here, it is obtained as: 34.20 kWp ÷ 1.1400.) |
| Number of rows of PV array | 4 (In the external study, 20 PV modules are stacked horizontally in each row; here, 19 PV modules are stacked horizontally in each row.) |
| Albedo | 0.30 (for the low-albedo simulation) 0.65 (for the high-albedo simulation) |
| Albedo | Total annual electric yield (using Aladdin) | Total annual electric yield (external study) | Difference in total electric yield (Aladdin value – external value) | Averaged total electric yield | Relative deviation (difference ÷ average) × 100% |
|---|---|---|---|---|---|
| 0.30 | 60,405.78 kWh/year | 60,600 kWh/year | –194.22 kWh/year | 60,502.89 kWh/year | –0.32% |
| 0.65 | 65,332.24 kWh/year | 65,038 kWh/year | 294.24 kWh/year | 65,185.12 kWh/year | 0.45% |
| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Average |
| 142.3 | 139.3 | 151.4 | 154.4 | 167.5 | 152.3 | 140.4 | 149.0 | 161.8 | 170.3 | 154.8 | 138.3 | 151.8 |
| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Average |
| 150.6 | 147.4 | 160.8 | 165.9 | 182.4 | 166.7 | 152.6 | 159.7 | 171.8 | 180.4 | 164.1 | 146.7 | 162.4 |
| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Average |
| 161.0 | 157.4 | 172.2 | 178.9 | 198.3 | 181.7 | 165.5 | 171.6 | 183.5 | 192.4 | 175.4 | 157.1 | 174.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
