Submitted:
21 October 2025
Posted:
22 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Evolution of Advanced Footwear Technology
3. Regulatory Responses to Advanced Footwear Technology in Elite Athletics
4. Design Elements of AFT
4.1. Carbon Plate Type and Curvature
- The shoe should have enough stiffness to shift the ground reaction force forward during stance.
- The pivot point should be placed so it is not too far forward, allowing the sole to act as a fulcrum.
- The toe spring should not be too high or too low, enabling an effective rocking motion.
4.2. Foam Construction and Midsole Properties
4.3. Stack Height
4.4. Toe Spring
5. Working Mechanisms of AFT
5.1. Energy Return Mechanisms of Running Footwear: Implications for AFT Performance
- Optimization of musculoskeletal function.
- Enhancement of energy return.
- Reduction of energy expenditure.
5.2. The Role of the Metatarsophalangeal Joint (MTPJ) in Energy Return Mechanisms
- Prolong the propulsion phase to increase plantar flexion work, as positive work is mainly generated at the end of propulsion.
- Increase longitudinal bending stiffness so dorsiflexion occurs earlier, allowing more time for plantar flexion and greater positive work.
- Modify shoe construction (e.g., toe spring) to initiate dorsiflexion earlier; reducing excessive forefoot curvature may improve rollover mechanics and efficiency.
- Optimize extrinsic muscle conditions by improving force–velocity characteristics.
5.3. Materials and Mechanical Properties of Carbon-Plated Shoes
5.4. Interaction of the Rollover Feeling and the Teeter–Totter Effect
- (1)
- Sufficient sole stiffness to shift the ground reaction force forward during stance.
- (2)
- Proper pivot point placement, ensuring it is not positioned too far forward so the heel can act as a support point.
- (3)
- Appropriate forefoot curvature, enabling effective lever action and smooth rollover mechanics.
6. Athletic Spikes and “Super Spikes”
7. Effects of AFT on Running Biomechanics
7.1. Working Mechanisms of Carbon-Plated Shoes
7.2. AFT and Running Injuries: Altered Biomechanics Theory and Practical Examples
8. Effects of AFT on Running Economy and Performance
9. The Main External and Internal Factors Influencing the Working Mechanisms of Advanced Footwear Technology
9.1. Running Velocity
9.2. Lower Intensities
9.3. Distance Length
9.4. Running Surface
9.4.1. Treadmill and Overground Running in the Analysis of AFT: Comparable or Not?
9.4.2. Uphill, Downhill, and Level Running Conditions
9.5. The Role of Shoe Mass in Running Economy: Reevaluating Its Impact on AFT
9.6. Training Level, Racing Performance, and Individual Variability in Response to AFT
9.7. AFT and Fatigue Resistance
9.8. The Role of Footstrike Patterns
9.9. Sex Differences in Biomechanical and Performance Outcomes with AFT
9.10. The Evolving Role of AFT in Trail and Mountain Running Biomechanics and Performance
9.10.1. Current Research Findings in Trail Running
10. The `Barefoot Running Era’: Lessons for Modern Running Technology
10.1. Barefoot vs. Minimalist Shoes: Key Differences in Running Style
10.2. Shoe Mass
10.3. Individual Factors and Responses
10.4. Loading Rate of Vertical Ground Reaction Forces
10.5. Muscle Stiffness
11. Conclusions
- The carbon fiber plate is not the sole performance determinant; improvements result from the combined interaction of multiple design features and should be evaluated holistically.
- Shoe mass has a limited influence. The traditional rule of a 1% increase in oxygen cost per 100 g does not fully apply to AFT; heavier shoes with advanced features can still outperform lighter, less advanced models.
- Individual adaptation is crucial. The same AFT model can produce different running economy effects across runners, depending on biomechanical compatibility and the ability to utilize specific movement patterns.
- Efficiency must be balanced with injury risk. While AFT can improve speed and economy, long-term effects on musculoskeletal health are unclear. High stack height with low weight may reduce stability and increase injury risk, especially in runners with weakness, poor control, or excessive pronation.
- Performance gains may be reduced on trail surfaces. Technologies designed for asphalt do not consistently transfer to uneven terrain, highlighting the need for trail-specific AFT development.
- AFT primarily influences biomechanics rather than physiological parameters, with the greatest effects observed on stride mechanics, contact time, and force application, particularly at higher speeds.
- Velocity influences the magnitude of benefits. Submaximal speeds close to race pace tend to maximize AFT effects and comfort, whereas improvements are smaller at lower speeds due to mechanical constraints.
- Recreational runners also benefit, though to a lesser extent than elite athletes, and only when their biomechanics align with the shoe’s functional design.
- Current “super spikes” provide smaller performance gains than AFT road shoes, likely due to lower cushioning and reduced shock absorption despite their lighter mass.
12. Future Directions
Author Contributions
Funding
Conflicts of Interest
Use of Artificial Intelligence
References
- Abolins, V.; Bernans, E.; Lanka, J. Differences in vertical ground reaction forces during first attempt of barefoot running in habitual shod runners. Journal of Physical Education and Sport 2018, 18(4), 2308--2313. [Google Scholar]
- Aimar, C.; Orgéas, L.; Rolland Du Roscoat, S.; Bailly, L.; Ferré Sentis, D. Compression fatigue of elastomeric foams used in midsoles of running shoes. Footwear Science 2024, 16(2), 93--103. [Google Scholar] [CrossRef]
- Atherton, T.; McCarthy-Ryan, M.; Wilkau, H. V. L. U. F03 How athletes’ biomechanical running characteristics effect running economy during the use of running shoes with and without carbon inserts. Graduate Journal of Sports Science, Coaching, Management, & Rehabilitation 2024, 1(3), 37--37. [Google Scholar]
- Azevedo, A. P. D. S.; Nóbrega, C.; Amadio, A. C.; Serrão, J. C. Adherence to six months of instructed minimalist and barefoot running training. Revista Brasileira de Medicina do Esporte 2016, 22(3), 182--185. [Google Scholar] [CrossRef]
- Barnes, K. R.; Kilding, A. E. A randomized crossover study investigating the running economy of highly-trained male and female distance runners in marathon racing shoes versus track spikes. Sports Medicine 2019, 49(2), 331--342. [Google Scholar] [CrossRef]
- Barrons, Z. B.; Rodrigo-Carranza, V.; Bertschy, M.; Hoogkamer, W. The fallacy of single trials: The need for multiple trials in assessing running economy responses in advanced footwear technology. Sports Medicine 2024, 54, 1--4. [Google Scholar] [CrossRef]
- Barrons, Z. B.; Wannop, J. W.; Stefanyshyn, D. J. The influence of footwear midsole thickness on running economy and frontal plane ankle stability. Footwear Science 2023, 15(3), 155–160. [Google Scholar] [CrossRef]
- Baumann, G. A.; Biedermann, K.; Item, E.; Spengler, C. M.; Beltrami, F. G. The Effect of Midsole Thickness on Running Economy, Spatiotemporal Values and Perceptions of Comfort and Exertion in Well-trained Runners: A Randomized, Cross-over Trial. Sports Medicine-Open 2025, 11(1), 108. [Google Scholar] [CrossRef]
- Beck, O. N.; Golyski, P. R.; Sawicki, G. S. Adding carbon fiber to shoe soles may not improve running economy: A muscle-level explanation. Scientific Reports 2020, 10(1), 17154. [Google Scholar] [CrossRef]
- Bell, E. A.; Hibbert, J. E.; Domire, Z. J. Measurement of intrinsic foot stiffness in minimally and traditionally shod runners using ultrasound elastography: A pilot study. Journal of Sports Sciences 2020, 38(13), 1516--1523. [Google Scholar] [CrossRef]
- Benson, L. C.; Räisänen, A. M.; Clermont, C. A.; Ferber, R. Is this the real life, or is this just laboratory? A scoping review of IMU-based running gait analysis. Sensors 2022, 22(5), 1722. [Google Scholar] [CrossRef] [PubMed]
- Bermon, S.; Garrandes, F.; Szabo, A.; Berkovics, I.; Adami, P. E. Effect of advanced shoe technology on the evolution of road race times in male and female elite runners. Frontiers in Sports and Active Living 2021, 3, 653173. [Google Scholar] [CrossRef] [PubMed]
- Bertschy, M.; Rodrigo-Carranza, V.; Wilkie, E. W.; Healey, L. A.; Noble, J.; Albert, W. J.; Hoogkamer, W. Self-perceived middle-distance race pace is faster in Advanced Footwear Technology spikes. Journal of Sport and Health Science 2024, 13, 100975. [Google Scholar] [CrossRef]
- Bolliger, A.; Spengler, C. M.; Beltrami, F. Impact of Advanced Footwear Technology on Running Economy at Slower Running Speeds. 2025. [Google Scholar] [CrossRef]
- Bonacci, J.; Saunders, P. U.; Hicks, A.; Rantalainen, T.; Vicenzino, B. G. T.; Spratford, W. Running in a minimalist and lightweight shoe is not the same as running barefoot: A biomechanical study. British Journal of Sports Medicine 2013, 47(6), 387--392. [Google Scholar] [CrossRef]
- Bosco, C.; Rusko, H. The effect of prolonged skeletal muscle stretch-shortening cycle on recoil of elastic energy and on energy expenditure. Acta Physiologica Scandinavica 1983, 119(3), 219--224. [Google Scholar] [CrossRef]
- Bräuer, S.; Kiesewetter, P.; Milani, T. L.; Mitschke, C. The `ride’ feeling during running under field conditions—objectified with a single inertial measurement unit. Sensors 2021, 21(15), 5010. [Google Scholar] [CrossRef]
- Burns, G. T.; Joubert, D. P. Running shoes of the postmodern footwear era: A narrative overview of advanced footwear technology. International Journal of Sports Physiology and Performance 2024, 19(10), 975--986. [Google Scholar] [CrossRef]
- Burns, G. T.; Tam, N. Is it the shoes? A simple proposal for regulating footwear in road running. British Journal of Sports Medicine 2020, 54(8), 439--440. [Google Scholar] [CrossRef]
- Castellanos-Salamanca, M.; Rodrigo-Carranza, V.; Rodríguez-Barbero, S.; González-Ravé, J. M.; Santos-Concejero, J.; González-Mohíno, F. Effects of the Nike ZoomX Vaporfly Next% 2 shoe on long-interval training performance, kinematics, neuromuscular parameters, running power and fatigue. European Journal of Sport Science 2023, 23(7), 1315--1323. [Google Scholar] [CrossRef]
- Chapman, A. R.; Vicenzino, B.; Blanch, P.; Hodges, P. W. Is running less skilled in triathletes than runners matched for running training history? Medicine & Science in Sports & Exercise 2008, 40(3), 557--565. [Google Scholar] [CrossRef] [PubMed]
- Chollet, M.; Michelet, S.; Horvais, N.; Pavailler, S.; Giandolini, M. Individual physiological responses to changes in shoe bending stiffness: a cluster analysis study on 96 runners. European Journal of Applied Physiology 2023, 123(1), 169--177. [Google Scholar] [CrossRef] [PubMed]
- Corbí-Santamaría, P.; Herrero-Molleda, A.; García-López, J.; Boullosa, D.; García-Tormo, V. Variable pacing is associated with performance during the OCC® Ultra-Trail du Mont-Blanc® (2017–2021). International Journal of Environmental Research and Public Health 2023, 20(4), 3297. [Google Scholar] [CrossRef] [PubMed]
- Corbí-Santamaría, P.; Gil-Calvo, M.; Herrero-Molleda, A.; García-López, J.; Boullosa, D.; García-Tormo, J. V. The impact of advanced footwear technology on the performance and running biomechanics of mountain runners. Applied Sciences 2025, 15(2), 531. [Google Scholar] [CrossRef]
- Day, E.; Hahn, M. Optimal footwear longitudinal bending stiffness to improve running economy is speed dependent. Footwear Science 2020, 12(1), 3--13. [Google Scholar] [CrossRef]
- Divert, C.; Mornieux, G.; Baur, H.; Mayer, F.; Belli, A. Mechanical comparison of barefoot and shod running. International Journal of Sports Medicine 2005, 26(7), 593--598. [Google Scholar] [CrossRef]
- Divert, C.; Mornieux, G.; Freychat, P.; Baly, L.; Mayer, F.; Belli, A. Barefoot-shod running differences: Shoe or mass effect? International Journal of Sports Medicine 2008, 29(6), 512--518. [Google Scholar] [CrossRef]
- Dyer, B. A pragmatic approach to resolving technological unfairness: The case of Nike’s Vaporfly and Alphafly running footwear. Sports Medicine-Open 2020, 6, 1--10. [Google Scholar] [CrossRef]
- Edgar, K. M. The Effect of Carbon-Plated Running Shoes on Performance. Master’s thesis, The University of North Carolina at Chapel Hill, 2022. [Google Scholar]
- Eken, M.; Tam, N.; Jones, B.; Hanley, B.; Vanwanseele, B.; Brown, J. Description of changes in self-reported comfort and injuries in runners transitioning to new shoes. Footwear Science 2025, 17(sup1), S36--S37. [Google Scholar] [CrossRef]
- Engel, F. A.; Zehnter, F.; Yona, T.; Mai, P.; Willwacher, S.; Düking, P.; Sperlich, B. Acute physiological, biomechanical, and perceptual responses of runners wearing downward-curved carbon fiber insoles. Frontiers in Sports and Active Living 2024, 6, 1340154. [Google Scholar] [CrossRef]
- Farina, E. M.; Haight, D.; Luo, G. Creating footwear for performance running. Footwear Science 2019, 11(sup1), S134--S135. [Google Scholar] [CrossRef]
- Farina, E. M.; Jorgensen, J. K.; Helseth, J.; Wong, K. The biomechanics and perception of performance footwear for protection. Footwear Science 2025, 17(sup1), S205--S206. [Google Scholar] [CrossRef]
- Ferris, J.; Hazelwood, B.; Cheuvront, S. N.; Gottschall, J. S. Compliant midsole foam is a primary contributor to improved running economy, biomechanics, and perception in advanced footwear in male runners. Footwear Science 2025, 17(sup1), S71--S72. [Google Scholar] [CrossRef]
- Ferris, D. P.; Liang, K.; Farley, C. T. Runners adjust leg stiffness for their first step on a new running surface. Journal of Biomechanics 1999, 32(8), 787--794. [Google Scholar] [CrossRef]
- Flores, N.; Rao, G.; Berton, E.; Delattre, N. The stiff plate location into the shoe influences the running biomechanics. In Sports Biomechanics; 2021. [Google Scholar]
- Franz, J. R.; Wierzbinski, C. M.; Kram, R. Metabolic cost of running barefoot versus shod: Is lighter better? Medicine & Science in Sports & Exercise 2012, 44(8), 1519--1525. [Google Scholar]
- Frederick, E. C. Physiological and ergonomics factors in running shoe design. Applied Ergonomics 1984, 15(4), 281--287. [Google Scholar] [CrossRef]
- Frederick, E. C.; Howley, E. T.; Powers, S. K. Lower oxygen demands of running in soft-soled shoes. Research Quarterly for Exercise and Sport 1986, 57(2), 174--177. [Google Scholar] [CrossRef]
- Frederick, E. C. Let’s just call it advanced footwear technology (AFT). Footwear Science 2022, 14(3), 131--131. [Google Scholar] [CrossRef]
- Fukuchi, R. K.; Fukuchi, C. A.; Duarte, M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ 2017, 5, e3298. [Google Scholar] [CrossRef]
- Fukuchi, C. A.; Vogel, A.; Stefanyshyn, D. J.; Wannop, J. W. Effect of carbon-fiber plate footwear during uphill and downhill trail running on segment acceleration and plantar pressure using wearable technology. Sport Sciences for Health 2024, 20, 1--6. [Google Scholar] [CrossRef]
- Fuller, J. T.; Bellenger, C. R.; Thewlis, D.; Tsiros, M. D.; Buckley, J. D. The effect of footwear on running performance and running economy in distance runners. Sports Medicine 2015, 45(3), 411--422. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Levadnyi, I.; Wang, J.; Xie, Z.; Fekete, G.; Cai, Y.; Gu, Y. Effect of the construction of carbon fiber plate insert to midsole on running performance. Materials 2021, 14(18), 5156. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J. T.; Thewlis, D.; Tsiros, M. D.; Brown, N. A.; Buckley, J. D. Effects of a minimalist shoe on running economy and 5-km running performance. Journal of Sports Sciences 2016, 34(18), 1740--1745. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J. T.; Thewlis, D.; Tsiros, M. D.; Brown, N. A.; Buckley, J. D. Six-week transition to minimalist shoes improves running economy and time-trial performance. Journal of Science and Medicine in Sport 2017, 20(12), 1117--1122. [Google Scholar] [CrossRef]
- Geisler, C. A lower extremity biomechanical analysis of "super" spikes compared to a traditional track spike in female distance runners. Master’s thesis, 2023. [Google Scholar]
- Ghanbari, A.; Fletcher, J. R.; Bradshaw, A.; Nigg, B. M. Effects of the curved carbon fibre plate and PEBA foam on the energy cost of running and muscle activation. Footwear Science 2025a, 17(2), 107–116. [Google Scholar] [CrossRef]
- Ghanbari, A.; Vienneau, J.; Nigg, S. R.; Nigg, B. M. Effects of selected features of advanced footwear technology on lower limb joint work. Sports Biomechanics 2025b, 1–15. [Google Scholar] [CrossRef]
- Hamill, J.; Hercksen, J.; Salzano, M.; Udofa, A.; Trudeau, M. B. The prevalence of injuries in trail running: Influence of trails, terrains and footwear. Footwear Science 2022, 14(2), 113--121. [Google Scholar] [CrossRef]
- Hardin, E. C.; Van Den Bogert, A. J.; Hamill, J. Kinematic adaptations during running: Effects of footwear, surface, and duration. Medicine & Science in Sports & Exercise 2004, 36(5), 838--844. [Google Scholar] [CrossRef]
- Healey, L.; Bertschy, M.; Kipp, S.; Hoogkamer, W. Can we quantify the benefits of “super spikes” in track running? Sports Medicine 2022, 52(6), 1211--1218. [Google Scholar] [CrossRef]
- Healey, L. A.; Hoogkamer, W. Longitudinal bending stiffness does not affect running economy in Nike Vaporfly shoes. Journal of Sport and Health Science 2022, 11(3), 285--292. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Finlayson, S. J.; Driller, M. W.; Dubois, B.; Esculier, J. F.; Beaven, C. M. Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. Journal of Sport and Health Science 2022, 11(3), 275--284. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Knighton, H.; Finlayson, S. J.; Dubois, B.; Esculier, J. F.; Beaven, C. M. Biomechanics and subjective measures of recreational male runners in three shoes running outdoors: A randomised crossover study. Footwear Science 2023, 16(1), 13--23. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Pamment, M. Advancements in running shoe technology and their effects on running economy and performance—A current concepts overview. Sports Biomechanics 2023, 22(3), 335--350. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Losier, K.; Pfister, A.; Finlayson, S. J.; Esculier, J. F.; Lamb, P.; Beaven, C. M. Are super shoes a super placebo? A randomised crossover trial in female recreational runners. Footwear Science 2025, 17(2), 79--88. [Google Scholar] [CrossRef]
- Hoeft, O. Effect of Carbon Plated Running Shoes on Half-Hour Treadmill Time Trial Performance. Master’s thesis, University of Minnesota, 2023. [Google Scholar]
- Hollander, K.; Heidt, C.; Van Der Zwaard, B. C.; Braumann, K.-M.; Zech, A. Long-term effects of habitual barefoot running and walking. Medicine & Science in Sports & Exercise 2017, 49(4), 752--762. [Google Scholar] [CrossRef] [PubMed]
- Hoogkamer, W. More isn’t always better. Footwear Science 2020, 12(2), 75–77. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Kipp, S.; Frank, J. H.; Farina, E. M.; Luo, G.; Kram, R. A comparison of the energetic cost of running in marathon racing shoes. Sports Medicine 2018, 48(4), 1009--1019. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Kipp, S.; Kram, R. The biomechanics of competitive male runners in three marathon racing shoes: a randomized crossover study. Sports Medicine 2019, 49, 133--143. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Kipp, S.; Spiering, B. A.; Kram, R. Altered running economy directly translates to altered distance-running performance. Medicine & Science in Sports & Exercise 2016, 48(11), 2175--2180. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Kram, R.; Arellano, C. J. How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Medicine 2017, 47(9), 1739--1750. [Google Scholar] [CrossRef]
- Hunter, I.; McLeod, A.; Valentine, D.; Low, T.; Ward, J.; Hager, R. Running economy, mechanics, and marathon racing shoes. Journal of Sports Sciences 2019, 37(20), 2367--2373. [Google Scholar] [CrossRef]
- Hunter, I.; Bradshaw, C.; McLeod, A.; Ward, J.; Standifird, T. Energetics and biomechanics of uphill, downhill and level running in highly-cushioned carbon fiber midsole plated shoes. Journal of Sports Science & Medicine 2022, 21(1), 127--127. [Google Scholar]
- Hutchinson, A. The carbon shoe revolution. 2020. Available online: https://runningmagazine.ca/sections/gear/the-carbon-shoe-revolution/.
- International Trail Running Association. Discover trail - running. n.d. Available online: https://itra.run/About/DiscoverTrailRunning.
- Isherwood, J.; Woo, S.; Cho, M.; Cha, M.; Park, S.; Kim, S.; Sterzing, T. Advanced footwear technology and its impacts on running mechanics, running economy and perception of male and female recreational runners. Footwear Science 2024, 16(3), 179--189. [Google Scholar] [CrossRef]
- Joubert, D. P.; Jones, G. P. A comparison of running economy across seven highly cushioned racing shoes with carbon-fibre plates. Footwear Science 2022, 14(2), 71--83. [Google Scholar] [CrossRef]
- Joubert, D. P.; Dominy, T. A.; Burns, G. T. Effects of highly cushioned and resilient racing shoes on running economy at slower running speeds. International Journal of Sports Physiology and Performance 2023, 18(2), 164--170. [Google Scholar] [CrossRef] [PubMed]
- Joubert, D. P.; Oehlert, G. M.; Jones, E. J.; Burns, G. T. Comparative effects of advanced footwear technology in track spikes and road-racing shoes on running economy. International Journal of Sports Physiology and Performance 2024, 19, 1--7. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L. A.; Lichtwark, G. A.; Farris, D. J.; Cresswell, A. Shoes alter the spring-like function of the human foot during running. Journal of The Royal Society Interface 2016, 13(119), 20160174. [Google Scholar] [CrossRef]
- Kerdok, A. E.; Biewener, A. A.; McMahon, T. A.; Weyand, P. G.; Herr, H. M. Energetics and mechanics of human running on surfaces of different stiffnesses. Journal of Applied Physiology 2002, 92(2), 469--478. [Google Scholar] [CrossRef]
- Kettner, C.; Stetter, B.; Stein, T. The effects of running shoe stack height on running style and stability during level running at different running speeds. Frontiers in Bioengineering and Biotechnology 2025, 13, 1526752. [Google Scholar] [CrossRef]
- Kiesewetter, P.; Bräuer, S.; Haase, R.; Nitzsche, N.; Mitschke, C.; Milani, T. L. Do carbon-plated running shoes with different characteristics influence physiological and biomechanical variables during a 10 km treadmill run? Applied Sciences 2022, 12(15), 7949. [Google Scholar] [CrossRef]
- Kirby, B. S.; Hughes, E.; Haines, M.; Stinman, S.; Winn, B. J. Influence of performance running footwear on muscle soreness and damage. Footwear Science 2019, 11(sup1), S188--S189. [Google Scholar] [CrossRef]
- Knopp, M.; Muniz-Pardos, B.; Wackerhage, H.; Schönfelder, M.; Guppy, F.; Pitsiladis, Y.; Ruiz, D. Variability in running economy of Kenyan world-class and European amateur male runners with advanced footwear running technology: Experimental and meta-analysis results. Sports Medicine 2023, 53(6), 1255--1271. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Belli, A.; Komi, P. V. Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise 2001, 33(8), 1330--1337. [Google Scholar] [CrossRef] [PubMed]
- Lam, C. K. Y.; Mohr, M.; Nigg, S.; Nigg, B. Definition and quantification of `ride’ during running. Footwear Science 2018, 10(2), 77--82. [Google Scholar] [CrossRef]
- Langley, J. O.; Branthwaite, H. R.; Chockalingam, N.; Forsyth, J. J. Determining the effect and magnitude of advanced footwear technology on female distance running performance. Footwear Science 2023, 15(3), 161--169. [Google Scholar] [CrossRef]
- Langley, J. O.; Langley, B. The effect of advanced footwear technology on elite male marathon race speed. European Journal of Applied Physiology 2024, 124(4), 1143--1149. [Google Scholar] [CrossRef]
- Lieberman, D. E.; Venkadesan, M.; Werbel, W. A.; Daoud, A. I.; D’Andrea, S.; Davis, I. S.; Pitsiladis, Y. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010, 463(7280), 531--535. [Google Scholar] [CrossRef]
- Lindlein, K.; Zech, A.; Zoch, A.; Braumann, K. M.; Hollander, K. Improving running economy by transitioning to minimalist footwear: A randomised controlled trial. Journal of Science and Medicine in Sport 2018, 21(12), 1298--1303. [Google Scholar] [CrossRef]
- Lloria-Varella, J.; Besson, T.; Varesco, G.; Espeit, L.; Kennouche, D.; Delattre, N.; Rossi, J. Running pattern changes after a 38-km trail running race: does shoe fatigue play a role? Footwear Science 2022, 14(3), 185--197. [Google Scholar] [CrossRef]
- Luo, G.; Stergiou, P.; Worobets, J.; Nigg, B.; Stefanyshyn, D. Improved footwear comfort reduces oxygen consumption during running. Footwear Science 2009, 1(1), 25--29. [Google Scholar] [CrossRef]
- MacDonald, B.; Outerleys, J.; Schutte, K.; Tam, N.; Lane, B.; Civiero, S.; Wilson, J. Investigating shoe-dependent changes in running biomechanics in a natural environment. Footwear Science 2025, 17(sup1), S121–S122. [Google Scholar] [CrossRef]
- Madsen, L. L.; Abel, K.; Hansen, A. A.; Christensen, P. M.; Lønbro, S.; Lundby, C.; Gejl, K. D. Persistent Improvements in Running Economy With Advanced Footwear Technology During Prolonged Running in Trained Male Runners. Scandinavian Journal of Medicine & Science in Sports 2025, 35(10), e70139. [Google Scholar] [CrossRef]
- Mao, L.; Li, F.; Ruan, M. Improved running economy without a significant teeter-totter effect in recreational runners wearing carbon fiber plate shoes. Footwear Science 2025, 17(sup1), S171--S172. [Google Scholar] [CrossRef]
- Martinez, E.; Hoogkamer, W.; Powell, D. W.; Paquette, M. R. The Influence of "Super-Shoes" and Foot Strike Pattern on Metabolic Cost and Joint Mechanics in Competitive Female Runners. In Medicine and Science in Sports and Exercise; 2024. [Google Scholar]
- Mason, J.; Starc, L.; Morin, J. B.; McClelland, E. L.; Zech, A. Can the recent sex-specific evolutions in elite running performances be attributed to advanced footwear technology? Frontiers in Sports and Active Living 2024, 6, 1386627. [Google Scholar] [CrossRef] [PubMed]
- Matties, J. R.; Kerr, J. D.; Rowley, K. M. Footwear-specific biomechanical and energetic responses to 8 weeks of training in advanced footwear technology. bioRxiv 2024, 2024–11. [Google Scholar] [CrossRef]
- Matties, J. R.; Rowley, K. M. A pilot study: effects of an 8-week training intervention in carbon-plated running shoes. Footwear Science 2023, 15(sup1), S182--S183. [Google Scholar] [CrossRef]
- Matties, J. R. Biomechanical and energetic trends in response to 8 weeks of training in advanced footwear technology. Doctoral dissertation, 2024. [Google Scholar]
- McLeod, A. R.; Bruening, D.; Johnson, A. W.; Ward, J.; Hunter, I. Improving running economy through altered shoe bending stiffness across speeds. Footwear Science 2020, 12(2), 79--89. [Google Scholar] [CrossRef]
- McMahon, T. A.; Greene, P. R. Fast running tracks. Scientific American 1978, 239(6), 148--148. [Google Scholar] [CrossRef]
- McMahon, T. A.; Greene, P. R. The influence of track compliance on running. Journal of Biomechanics 1979, 12(12), 893--904. [Google Scholar] [CrossRef]
- McMahon, T. A.; Valiant, G.; Frederick, E. C. Groucho running. Journal of Applied Physiology 1987, 62(6), 2326--2337. [Google Scholar] [CrossRef]
- McMillan, E. HOW EXISTING PATENT REGULATIONS ENCOURAGE COMPETITION IN THE “SUPER SHOE” RACE. Boston College Intellectual Property and Technology Forum, May; 2024; Vol. 2024, pp. 1–22. [Google Scholar]
- Milford, M. The Alphafly outcry: Distance running, technological doping, and the rhetoric of stigma. Communication & sport 2024, 12(5), 938–959. [Google Scholar]
- Mills, K.; Collins, N. J.; Vicenzino, B. Transitioning to barefoot running using a minimalist shoe intermediary: A prospective cohort study. Medicine & Science in Sports & Exercise 2022, 54(9), 1500--1507. [Google Scholar]
- Milner, P.; Firminger, C. R.; Nigg, S.; Nigg, B. M.; Edwards, W. B. Metatarsal loads during a prolonged run in advanced footwear technology. Footwear Science 2025, 17(sup1), S106–S107. [Google Scholar] [CrossRef]
- Miyazaki, T.; Aimi, T.; Yamada, Y.; Nakamura, Y. Curved carbon plates inside running shoes modified foot and shank angular velocity improving mechanical efficiency at the ankle joint. Journal of Biomechanics 2024, 172, 112224. [Google Scholar] [CrossRef]
- Moore, I. S.; Jones, A.; Dixon, S. The pursuit of improved running performance: Can changes in cushioning and somatosensory feedback influence running economy and injury risk? Footwear Science 2014, 6(1), 1--11. [Google Scholar] [CrossRef]
- Muzeau, M.; Flood, A.; Tam, N.; Abel, B.; Saunders, P.; Staiano, W.; Rattray, B. Influence of trail running footwear foam on running economy and perceptual metrics. European Journal of Sport Science 2025, 25(10), e70059. [Google Scholar] [CrossRef]
- Nigg, B. M.; Cigoja, S.; Nigg, S. R. Teeter-totter effect: A new mechanism to understand shoe-related improvements in long-distance running. British Journal of Sports Medicine 2021, 55(9), 462--463. [Google Scholar] [CrossRef]
- Nigg, B. M.; Segesser, B. Biomechanical and orthopedic concepts in sport shoe construction. Medicine & Science in Sports & Exercise 1992, 24(5), 595--602. [Google Scholar] [CrossRef]
- Nigg, B. M.; Subramanium, A.; Matijevich, E. S. Towards a biomechanical understanding of performance improvement with advanced running shoes. Footwear Science 2022, 14(3), 133--137. [Google Scholar] [CrossRef]
- Oehlert, G. M.; Jones, E. J.; Burns, G. T.; Joubert, D. P. Comparative effects of advanced footwear technology on running economy in track spikes and racing shoes: 161. Medicine & Science in Sports & Exercise 2023, 55(9S), 41--42. [Google Scholar]
- Oh, K.; Park, S. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. Journal of Biomechanics 2017, 53, 127--135. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J. A.; Healey, L. A.; Swinnen, W.; Hoogkamer, W. Energetics and biomechanics of running footwear with increased longitudinal bending stiffness: A narrative review. Sports Medicine 2021, 51(5), 873--894. [Google Scholar] [CrossRef] [PubMed]
- Perrin, T. P.; Gerey, R.; Morio, C. Y. M.; Feasson, L.; Kerhervé, H. A.; Rossi, J.; Millet, G. Y. Effect of footwear longitudinal bending stiffness on energy cost, biomechanics, and fatigue during a treadmill half-marathon. Medicine & Science in Sports & Exercise 2025, 57(4), 657–667. [Google Scholar]
- Pfister, A. The potential placebo effect of advanced footwear technology on running economy and comfort in female recreational runners. Doctoral dissertation, The University of Waikato, 2024. [Google Scholar]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Santos-Concejero, J.; González-Ravé, J. M. Influence of shoe mass on performance and running economy in trained runners. Frontiers in Physiology 2020, 11, 573660. [Google Scholar] [CrossRef]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Santos-Concejero, J.; González-Ravé, J. M. The effects of footwear midsole longitudinal bending stiffness on running economy and ground contact biomechanics: A systematic review and meta-analysis. European Journal of Sport Science 2022, 22(10), 1508--1521. [Google Scholar] [CrossRef]
- Rodrigo-Carranza, V.; Hoogkamer, W.; Salinero, J. J.; Rodríguez-Barbero, S.; González-Ravé, J. M.; González-Mohíno, F. Influence of running shoe longitudinal bending stiffness on running economy and performance in trained and national level runners. Medicine & Science in Sports & Exercise 2023, 55(12), 2290--2298. [Google Scholar] [CrossRef]
- Rodrigo-Carranza, V.; Hoogkamer, W.; González-Ravé, J. M.; Horta-Muñoz, S.; Serna-Moreno, M. D. C.; Romero-Gutierrez, A.; González-Mohíno, F. Influence of different midsole foam in advanced footwear technology use on running economy and biomechanics in trained runners. Scandinavian Journal of Medicine & Science in Sports 2024, 34(1), e14526. [Google Scholar]
- Roy, J. P. R.; Stefanyshyn, D. J. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Medicine & Science in Sports & Exercise 2006, 38(3), 562--569. [Google Scholar] [CrossRef]
- Ruiz-Alias, S. A.; Jaén-Carrillo, D.; Roche-Seruendo, L. E.; Pérez-Castilla, A.; Soto-Hermoso, V. M.; García-Pinillos, F. A review of the potential effects of the World Athletics stack height regulation on the footwear function and running performance. Applied Sciences 2023a, 13(21), 11721. [Google Scholar] [CrossRef]
- Ruiz-Alias, S. A.; Molina-Molina, A.; Soto-Hermoso, V. M.; García-Pinillos, F. A systematic review of the effect of running shoes on running economy, performance and biomechanics: Analysis by brand and model. Sports Biomechanics 2023b, 22(3), 388--409. [Google Scholar] [CrossRef]
- Ruiz-Alias, S. A.; Pérez-Castilla, A.; Soto-Hermoso, V. M.; García-Pinillos, F. Influence of the carbon fiber plate curvature of advanced footwear technology on the running energetic cost and 3000-m performance. Sports Engineering 2024, 27(2), 21. [Google Scholar] [CrossRef]
- Ruiz-Alias, S. A.; Pérez-Castilla, A.; Soto-Hermoso, V. M.; García-Pinillos, F. Influence of the world athletics stack height regulation on track running performance. The Journal of Strength & Conditioning Research 2023c, 37(11), 2260–2266. [Google Scholar]
- Ruiz-Alias, S. A.; Pérez-Castilla, A.; Soto-Hermoso, V. M.; García-Pinillos, F. The effect of using marathon shoes or track spikes on neuromuscular fatigue caused by a long-distance track training session. International Journal of Sports Medicine 2023d, 44(13), 976–982. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P. U.; Pyne, D. B.; Telford, R. D.; Hawley, J. A. Reliability and variability of running economy in elite distance runners. Medicine & Science in Sports & Exercise 2004, 36(11), 1972--1976. [Google Scholar] [CrossRef]
- Scholz, M. N.; Bobbert, M. F.; Van Soest, A. J.; Clark, J. R.; van Heerden, J. Running biomechanics: Shorter heels, better economy. Journal of Experimental Biology 2008, 211(20), 3266--3271. [Google Scholar] [CrossRef]
- Schütte, K. H.; Aeles, J.; De Beéck, T. O.; van der Zwaard, B. C.; Venter, R.; Vanwanseele, B. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry. Gait & Posture 2016, 48, 220--225. [Google Scholar] [CrossRef]
- Schwalm, L. C.; Fohrmann, D.; Schaffarczyk, M.; Gronwald, T.; Willwacher, S.; Hollander, K. Habituation does not change running economy in advanced footwear technology. International Journal of Sports Physiology and Performance} 2024a, 19(11), 1285--1290. [Google Scholar] [CrossRef]
- Schwalm, L. C.; Gronwald, T.; Fohrmann, D.; Schaffarczyk, M.; Hollander, K. Technological advances in elite running sport concerning advanced footwear technology: yes, but individual preconditions must be considered. Journal of Applied Physiology 2024b, 137(4), 828--829. [Google Scholar] [CrossRef]
- Senefeld, J. W.; Haischer, M. H.; Jones, A. M.; Wiggins, C. C.; Beilfuss, R.; Joyner, M. J.; Hunter, S. K. Technological advances in elite marathon performance. Journal of Applied Physiology 2021, 130(6), 2002--2008. [Google Scholar] [CrossRef]
- Shih, Y.; Lin, K. L.; Shiang, T. Y. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait & Posture 2013, 38(3), 490--494. [Google Scholar] [CrossRef]
- Sinclair, J.; Franks, C.; Goodwin, J. F.; Naemi, R.; Chockalingam, N. Influence of footwear designed to boost energy return on the kinetics and kinematics of running compared to conventional running shoes. Comparative Exercise Physiology 2014, 10(3), 199--206. [Google Scholar] [CrossRef]
- Sinclair, J.; Mcgrath, R.; Brook, O.; Taylor, P. J.; Dillon, S. Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe. Journal of Sports Sciences 2016, 34(11), 1094--1098. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. A.; McKerrow, A. D.; Kohn, T. A. Metabolic cost of running is greater on a treadmill with a stiffer running platform. Journal of Sports Sciences 2017, 35(16), 1592--1597. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cen, X.; Sun, D.; Bálint, K.; Wang, Y.; Chen, H.; Gu, Y. Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Scientific Reports 2024, 14(1), 13215. [Google Scholar] [CrossRef]
- Speedland. Our story. 2024. Available online: https://www.runspeedland.com/pages/story.
- Stansbie, L.; Almond, K. Performance-enhancing design for running shoes: When technology wins. In Fashion, Style & Popular Culture; 2025. [Google Scholar]
- Stefanyshyn, D. J.; Nigg, B. M. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. Journal of Biomechanics 1997, 30(11--12), 1081--1085. [Google Scholar] [CrossRef]
- Stefanyshyn, D. J.; Nigg, B. M. Influence of midsole bending stiffness on joint energy and jump height performance. Medicine & Science in Sports & Exercise 2000, 32(2), 471--471. [Google Scholar] [CrossRef]
- Tam, N.; Tucker, R.; Wilson; J. L. Individual responses to a barefoot running program: Insight into risk of injury. The American Journal of Sports Medicine 2016, 44(3), 777--784. [Google Scholar] [CrossRef]
- Tam, N.; Wilson, J. L. A.; Coetzee, D. R.; van Pletsen, L.; Tucker, R. Loading rate increases during barefoot running in habitually shod runners: Individual responses to an unfamiliar condition. Gait & Posture 2016, 46, 47--52. [Google Scholar] [CrossRef]
- Tam, N.; Coetzee, D. R.; Ahmed, S.; Lamberts, R. P.; Albertus-Kajee, Y.; Tucker, R. Acute fatigue negatively affects risk factors for injury in trained but not well-trained habitually shod runners when running barefoot. European Journal of Sport Science 2017, 17(9), 1220--1229. [Google Scholar] [CrossRef]
- TenBroek, T. M.; Rodrigues, P. A.; Frederick, E. C.; Hamill, J. Midsole thickness affects running patterns in habitual rearfoot strikers during a sustained run. Journal of applied biomechanics 2014, 30(4), 521–528. [Google Scholar] [CrossRef]
- Tenforde, A.; Hoenig, T.; Saxena, A.; Hollander, K. Bone stress injuries in runners using carbon fiber plate footwear. Sports Medicine 2023, 53(8), 1499--1505. [Google Scholar] [CrossRef]
- Tiller, N. Barefoot running: Conspiracies and controversies. 2023. Available online: https://skepticalinquirer.org/exclusive/barefoot-running-conspiracies-and-controversies/.
- Tung, K. D.; Franz, J. R.; Kram, R. A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Medicine & Science in Sports & Exercise 2014, 46(2), 324--329. [Google Scholar] [CrossRef]
- Van Alsenoy, K.; Van Der Linden, M. L.; Girard, O.; Santos, D. Increased footwear comfort is associated with improved running economy—A systematic review and meta-analysis. European Journal of Sport Science 2023, 23(1), 121--133. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Fuller, J. T.; Buckley, J. D.; Miller, J. R.; Sewell, K.; Rao, G.; Willy, R. W. Is motorized treadmill running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies. Sports Medicine 2020, 50, 785--813. [Google Scholar] [CrossRef] [PubMed]
- Whiting, C. S.; Hoogkamer, W.; Kram, R. Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. Journal of Sport and Health Science 2022, 11(3), 303--308. [Google Scholar] [CrossRef]
- Williams, T. J.; Krahenbuhl, G. S.; Morgan, D. W. Daily variation in running economy of moderately trained male runners. Medicine & Science in Sports & Exercise 1991, 23(8), 944--948. [Google Scholar] [CrossRef]
- Willwacher, S.; König, M.; Potthast, W.; Brüggemann, G. P. Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? Journal of Applied Biomechanics 2013, 29(5), 583--592. [Google Scholar] [CrossRef]
- Willwacher, S.; Mai, P.; Helwig, J.; Hipper, M.; Utku, B.; Robbin, J. Does advanced footwear technology improve track and road racing performance? An explorative analysis based on the 100 best yearly performances in the world between 2010 and 2022. Sports Medicine--Open 2024, 10(1), 14. [Google Scholar] [CrossRef]
- World Athletics. Technical rules 2020. 2020a. Available online: https://worldathletics.org/about-iaaf/documents/technical-information#collapsemanuals-guidelines.
- World Athletics. World Athletics modifies rules governing competition shoes for elite athletes. 2020b. Available online: https://worldathletics.org/news/press-releases/modified-rules-shoes.
- Worobets, J.; Wannop, J. W.; Tomaras, E.; Stefanyshyn, D. Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Science 2014, 6(3), 147--153. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, C.; Fang, Y.; Lu, Z.; Song, Y.; Hu, C.; Gu, Y. The effects of different carbon-fiber plate shapes in shoes on lower limb biomechanics following running-induced fatigue. Frontiers in Bioengineering and Biotechnology 2025, 13, 1539976. [Google Scholar] [CrossRef]
- Yang, X. I. A. O.; Xin, H. U.; Dingjun, T. I. A. N.; Aihua, Q. I. U. Effects of advanced footwear technology on running economy and endurance: A meta-analysis. International Journal of Sports Medicine 2025. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
