Submitted:
20 October 2025
Posted:
22 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cancer and Its General Mechanisms
3. Types of Liver Cancer
4. Liver Cancer Etiology: Risk Factors and Pathogenesis
5. Past and Present Research Status in Liver Cancer
6. Therapeutic Advances in Liver Cancer Treatment
7. Future Directions and Needs
8. Conclusion
Author Contributions
Acknowledgment
References
- World Health Organization (WHO). Global cancer statistics 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on October 2023).
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2012, 142, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet. 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Bruix, J.; Sherman, M. Management of hepatocellular carcinoma: an update. Hepatology. 2011, 53, 1020–1022. [Google Scholar] [CrossRef]
- Nault, J.C.; Zucman-Rossi, J. Genetics of hepatocellular carcinoma: the next generation. J Hepatol. 2014, 60, 708–717. [Google Scholar] [CrossRef]
- Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumor invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007, 449, 682–688. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016, 2, 16018. [Google Scholar] [CrossRef]
- Greten, T.F.; Lai, C.W.; Li, G.; Staveley-O’Carroll, K.F. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res. 2019, 25, 5912–5924. [Google Scholar] [CrossRef]
- Llovet, J.M.; et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, W.; Zheng, J.; et al. Molecular mechanisms of hepatocellular carcinoma: Implications for therapeutic targets. Biochim Biophys Acta Rev Cancer. 2017, 1867, 253–261. [Google Scholar] [CrossRef]
- Yuen, M.F.; Fong, D.Y.; Wong, D.K.; et al. Hepatitis B virus genotypes and risk of hepatocellular carcinoma: a prospective cohort study. Hepatology. 2003, 38, 1065–1072. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013, 47, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Hallouch, O.; Chernyak, V.; Kamaya, A.; Sirlin, C.B. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY). 2018, 43, 13–25. [Google Scholar] [CrossRef]
- Chen, C.J.; Yang, H.I.; Su, J.; et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006, 295, 65–73. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Kanwal, F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology. 2014, 60, 1767–1775. [Google Scholar] [CrossRef]
- Morgan, T.R.; Mandayam, S.; Jamal, M.M. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004, 127, S87–96. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Wild, C.P.; Montesano, R. A model of interaction: aflatoxins and hepatitis viruses in liver cancer aetiology and prevention. Cancer Lett. 2009, 286, 22–28. [Google Scholar] [CrossRef]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef]
- Fujimoto, A.; Totoki, Y.; Abe, T.; et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012, 44, 760–764. [Google Scholar] [CrossRef]
- Llovet, J.M.; Fuster, J.; Bruix, J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999, 30, 1434–1440. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomized phase 3 non-inferiority trial. Lancet. 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. N Engl J Med. 2022, 386, 1011–1022. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.G.; Ulahannan, S.V.; Makorova-Rusher, O.; et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017, 66, 545–551. [Google Scholar] [CrossRef]
- Kudo, M. Combination cancer immunotherapy in hepatocellular carcinoma. Liver Cancer. 2017, 6, 163–170. [Google Scholar] [CrossRef]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science. 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Hammerich, L.; Marron, T.U.; Upadhyay, R.; et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019, 25, 814–824. [Google Scholar] [CrossRef]
- Chiorean, E.G.; Gibney, G.T.; Ignatz-Hoover, J.J.; et al. Phase I study of CAR-T cells targeting glypican-3 in hepatocellular carcinoma. J Clin Oncol. 2020, 38, 4069. [Google Scholar]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology. 2021, 73, 4–13. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
| Type | Cell of Origin | Prevalence (%) | Key Molecular Alterations | Prognosis |
|---|---|---|---|---|
| Hepatocellular Carcinoma (HCC) | Hepatocytes | 75–85 | TP53, CTNNB1 mutations | Variable, generally poor |
| Intrahepatic Cholangiocarcinoma (iCCA) | Bile duct epithelium | 10–15 | IDH1/2 mutations, FGFR fusions | Poor |
| Hepatoblastoma | Fetal liver progenitors | Rare (pediatric) | Various embryonic gene alterations | Variable, better with treatment |
| Angiosarcoma | Endothelial cells | Very rare | Complex karyotype | Very poor |
| Risk Factor | Mechanism/Contribution | References |
|---|---|---|
| Chronic Hepatitis B Virus (HBV) | Chronic inflammation, integration of viral DNA into host genome | [13,17] |
| Chronic Hepatitis C Virus (HCV) | Persistent liver injury, fibrosis | [13,17,18] |
| Alcohol Consumption | Hepatocyte toxicity, oxidative stress, fibrosis | [19] |
| Non-Alcoholic Fatty Liver Disease (NAFLD) / NASH | Metabolic syndrome, insulin resistance, inflammation | [20] |
| Aflatoxin Exposure | DNA mutagenesis (e.g., TP53 mutations) | [21] |
| Genetic/Epigenetic Alterations | Oncogenic mutations, chromatin remodeling | [22,23] |
| Drug Name | Drug Class | Mechanism of Action | Approval Year | Key Clinical Trial(s) | Median OS Benefit |
|---|---|---|---|---|---|
| Sorafenib | Multikinase inhibitor | VEGFR, PDGFR, Raf kinase inhibition | 2007 | SHARP [25] | ~3 months |
| Lenvatinib | Multikinase inhibitor | VEGFR, FGFR, PDGFR inhibition | 2018 | REFLECT [26] | Non-inferior to sorafenib |
| Atezolizumab + Bevacizumab | Immunotherapy + Anti-VEGF | PD-L1 blockade + VEGF inhibition | 2020 | IMbrave150 [27] | ~6 months improvement |
| Tremelimumab + Durvalumab | Dual Immune Checkpoint Inhibitors | CTLA-4 and PD-L1 blockade | 2022 | HIMALAYA [28] | Improved OS |
| Regorafenib | Multikinase inhibitor | VEGFR, TIE2, PDGFR inhibition | 2017 | RESORCE [29] | ~3 months |
| Challenge | Description | Potential Solutions | References |
|---|---|---|---|
| Early Detection | Lack of sensitive biomarkers; late diagnosis | Liquid biopsies, advanced imaging | [35,36] |
| Therapy Resistance | Resistance to TKIs and immunotherapies | Combination therapies, novel agents | [33,37] |
| Biomarker Development | Few predictive biomarkers for treatment response | Genomic and immune profiling | [35,36] |
| Access to Care | Disparities in healthcare availability worldwide | Affordable drugs, global policies | [39,40] |
| Personalized Medicine | Heterogeneous tumor biology and patient response | Molecular subtyping, precision oncology | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
