Submitted:
16 October 2025
Posted:
16 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Al-Ahsa has emerged as the world’s largest oasis thanks to its affordable water resources. The crop cultivation occupies 56,000 ha and grows more than 2.5 million date palm trees [2].
- The city surrounds the agricultural area. In 1950, the area of the city occupied 360 ha; it expanded to 7650 ha in 1990 and to 28700 ha in 2014. Plans expect the area to account for 41600 ha in 2030 (1450 H).
2. Materials and Methods
2.1. Data Description
2.2. Analysis Methods
- Stage of visualization: permit to make visible the zone in 2000 and 2020
- Stage of processing and improvement: allow to make group visualization layers (merge extents), which represent an integration of the bands in the visible space, and determine the appropriate electromagnetic beams to show the change in the vegetation cover.
- Stage of improvement and processing of satellite visuals. The satellite captures this visual, so it is exposed to the influence of atmospheric gases, dust, and others. The influence of the atmosphere was removed through engineering correction, and thus the visual is ready.
- Stage of cutting the study area: The study area was cut from the visual to be ready for analysis.
- Stage of interpretation and analysis: the classification is based on sample selection
- Stage of analysis and linking: it consists of changing detection statistics, positional changes, the image difference map, changing the image detection map, determining the change in vegetation cover through the (NDVI), and producing maps that show the change during the study period. The NDVI is one of the most widely used natural indicators in the fields of analyzing satellite images, studying vegetation cover, desertification, landslides, and other natural phenomena. It is also a means to study the changes that occur on the vegetation cover over time. It also gives us the health status of the plant and the value of the vegetation covers in any area [40].
3. Results
3.1. Measuring of LCC Level
3.2. Investigation of LCC Occurring Key Factors
4. Discussion
5. Conclusions
- Vegetation cover has decreased by 3.2435 km2 (324.35 ha).The desert (sand) area has decreased by 16.2581 km2 (1625.81 ha).
- The city area has been increased by 5.6037 km2 (560.37 ha).
- Bare land (soil) area has been increased by 13.8979 km2 (1389.79 ha).
- The social variables of farmers have no effect on the occurrence of the LCC event, except that the age of the farmer increases the probability of the LCC occurring.
- Economic variables, such as methods of irrigation, the modern one have a significant negative effect on the probability of an LCC event occurring.
- happened events and agricultural practices, the utilization of modern technology, absence of scavenger manpower decreases the probability of LCC occurring, whereas the small holding size and the climate change increases the probability of LCC occurring. the urban sprawl has a non-significant negative effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Municipal and Rural Affairs. Al-Ahsa City Profile. Ed. Herman Pennard, Salvatore Fondaro, and Costanza La Mantia. Future Saudi Cities Programme City Profiles Series: Al-Ahsa, Saudi, 2019. Available at https://saudiarabia.un.org/sites/default/files/2020-03/AL-HASA.pdf.(Visited 25/04/2024).
- SAGIA. Eastern Region Economic Report, 1434/1435, Review of Regional Planning in Saudi Arabia - The Case of the Eastern Region, FSCP Dammam City Review Report, FSCP National Spatial Strategy Review, UN-Habitat.2014.
- Almadini, A. M.; Hassaballa, A. A. Depicting changes in land surface cover at Al-Hassa oasis of Saudi Arabia using remote sensing and GIS techniques. PloS one 2019, 14(11), e0221115. [CrossRef]
- Mbarek, H.; Hajji, Z. Urban sprawl on agricultural areas and its environmental effects in Al-Ahsa Governorate using remote sensing technology and geographic information systems. Maǧallaẗ Buḥūṯ Kulliyyaẗ Al-Adāb - Ǧamiʿāẗ Al-Munūfiyyaẗ (Researches journal of literary college- university of Munufia) 2019, 30(17), 2213-2240. [CrossRef]
- Turner II, B.L.; Meyfroidt, P.; Kuemmerle, T.; Daniel Müller, D.; Chowdhury, R.R. Framing the search for a theory of land use. Journal of Land Use Science 2020, 15:4, 489-508. [CrossRef]
- Nedd, R.; Anandhi, A. Land Use Changes in the Southeastern United States: Quantitative Changes, Drivers, and Expected Environmental Impacts. Land 2022, 11(12), 2246; [CrossRef]
- Turner, B. L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-use and land-cover change: science/research plan, 1995. https://asu.elsevierpure.com/en/publications/land-use-and-land-cover-change-scienceresearch-plan-2.
- [No source information available].
- Lambing, E. F.; Geist, H. J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources 2003, 28(1), 205-241. [CrossRef]
- Alam, A.; Bhat, M. S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529-1543. [CrossRef]
- Abdullah, A. Y. M.; Masrur, A.; Adnan, M. S. G.; Baky, M. A. A.; Hassan, Q. K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sensing 2019, 11(7), 790. [CrossRef]
- Tahir, Z.; Haseeb, M.; Mahmood, S.A.; Batool, S.; Abdallah-Al-Wadud, M.; Ullah, S.; Tariq, A. Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Scientific Reports 2025, 15, 3271. [CrossRef]
- Briassoulis, H. Factors influencing land-use and land-cover change. Land Cover Land Use GlobChange. EOLSS 2009, 1:126–146.
- Thuiller, W.; Guéguen, M.; Georges, D.; Bonet, R.; Chalmandrier, L.; Garraud, L.; ... & Lavergne, S. Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography 2014, 37(12), 1254-1266. [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J. L. B.; ... & Grabherr, G. Recent plant diversity changes on Europe’s mountain summits. Science 2012, 336(6079), 353-355. [CrossRef]
- Dwomoh, F. K.; Auch, R. F.; Brown, J. F.; Tollerud, H. J. Trends in tree cover change over three decades related to interannual climate variability and wildfire in California. Environmental Research Letters 2023, 18(2), 024007. [CrossRef]
- Tan, K. C.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences 2010, 60, 1509-1521. [CrossRef]
- Silva, L. A.; Sano, E. E.; Parreiras, T. C.; Bolfe, É. L.; Marcos, M.; Filgueiras, R.; Souza, C. M.; Silva, C. R.; Leite, M. E. Climate Change Effects on Land Use and Land Cover Suitability in the Southern Brazilian Semiarid Region. Land 2024, 13(12), 2008. [CrossRef]
- Dewan, A. M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied geography 2009, 29(3), 390-401. [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D. T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landscape and urban planning 2012, 106(2), 149-157. [CrossRef]
- Tran, D. X.; Pla, F.; Latorre-Carmona, P.; Myint, S. W.; Caetano, M.; Kieu, H. V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing 2017, 124, 119-132. [CrossRef]
- Parcerisas L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850- 2005). Environmental Science & Policy 2012, 23,120-132. [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C., Danielson, P., ... & Riitters, K. Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS Journal of Photogrammetry and Remote Sensing 2020, 162, 184-199. [CrossRef]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Zavala, M. A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62-75. [CrossRef]
- Hietela, E.; Waldhardtb, R.; Otteb, A. Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. Journal of Environmental Management 2004, 1–11. [CrossRef]
- Simon, O.; Lyimo, J.; Yamungu, N. Exploring the impact of socioeconomic factors on land use and cover changes in Dar es Salaam, Tanzania: a remote sensing and GIS approach. Arab J Geosci. 2024, 17, 99. [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; George, P.S.; Homewood, K.; Imbernon, J.; Leemans, R.; Li, X.; Moran, E.F.; Mortemore, M.; Ramakrishnan, P.S.; Richards, J.F.; Skanes, H.; Xu, J. The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 2001, 11(4), 261–269. [CrossRef]
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Gómez, I. Socioeconomic factors influencing land cover changes in rural areas: the case of the Sierra de Albarracín (Spain). Applied Geography 2014, 52, 34–45. [CrossRef]
- Handavu, F.; Chirwa, P.W.C.; Syampungani, S. Socio-economic factors influencing land-use and land-cover changes in the miombo woodlands of the Copperbelt province in Zambia. Forest Policy and Economics 2019, 100, 75–94. [CrossRef]
- Lai, Y.; Huang, G.; Chen, S.; Lin, S.; Lin, W.; Lyu, J. Land Use Dynamics and Optimization from 2000 to 2020 in East Guangdong Province, China. Sustainability 2021, 13, 3473. [CrossRef]
- Yono, A.; Mokua, R.A.; Dube, T. Remote sensing of land cover change dynamics in mountainous catchments and semi-arid environments: a review. Geocarto International 2025, 40(1), 2476602. [CrossRef]
- US-EPA: United states Environmental Protection Agency. Land cover: What are the trends in land cover and their effects on human health and the environment? Available at https://www.epa.gov/report-environment/land-cover. (Visited 08/04/2025).
- Chen, Y.; Nakatsugawa, M. Analysis of Changes in Land Use/Land Cover and Hydrological Processes Caused by Earthquakes in the Atsuma River Basin in Japan. Sustainability 2021, 13, 13041. [CrossRef]
- Xiao, Y.; Mignolet, C.; Mari, J. F.; Benoît, M. Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Computers and Electronics in Agriculture 2014, 102, 51-63. [CrossRef]
- Saudi Irrigation Organisation (SIO) – Kingdom of Saudi Arabia. Available at http://www.sio.gov.sa/ ( visited 10/12/ 2021).
- Burrough, P. A. Principles of geographic information Systems for hand resources assessment. Clarendon. Oxford.1986.
- Maguire, D. J. An overview and definition of GIS. Geographical information systems: Principles and applications 1991, 1(1), 9-20..
- McHarg, I. L. Design sixth nature, Doubleday, New York. 1969, cited in Maguire D.J. (NA): an overview and Definition of GIS.
- Mylopoulos, J.; Borgida, A.; Jarke, M.; Koubarakis, M. Telos: Representing knowledge about information systems. ACM Transactions on Information Systems (TOIS) 1990, 8(4), 325-362. [CrossRef]
- Burrough, P. A. GIS and geostatistics: Essential partners for spatial analysis. Environmental and ecological statistics 2001, 8, 361-377. [CrossRef]
- Jassim, H.; Nisreen, A. H. A course on remote sensing techniques and geographic information systems in detecting changes in the smart cover in Najaf Governorate using the index (NDVI and SAVI). Al-Adab Magazine 2021, 2, (139).
- Todd G. Nick and Kathleen M. Cambell. Methods in Molecular Biology, vol. 404: Topics in Biostatistics. Ed. Walter T. Ambrosius, Humana Press Inc., Totowa, NJ. 2007. Available at https://www.researchgate.net/profile/Douglas-Mahoney/publication/5402488_Linear_Mixed_Effects_Models/links/57e560bf08ae9227da964db4/Linear-Mixed-Effects-Models.pdf#page=278 (Visited 24/02/2025).
- Hosmer Jr, D. W.; Lemeshow, S.; Sturdivant, R. X. Applied logistic regression. John Wiley & Sons. 2013..
- Nagelkerke, N. J. A note on a general definition of the coefficient of determination. biometrika 1991, 78(3), 691-692. http://links.jstor.org/sici?sici=0006-3444%28199109%2978%3A3%3C691%3AANOAGD%3E2.0.CO%3B2-V.
- AlWatan newspaper. Ministerial committee to prevent encroachments on Al-Ahsa Oasis. 14/03/2019. Available at https://www.alwatan.com.sa/article/401982 (Visited 17/04/2024).



| Classes | Soil | city | vegetation | Sand | Changes (2020) | Total (2020) |
|---|---|---|---|---|---|---|
| Not classified | 0 | 0 | 0 | 0 | 0 | 30 |
| Sand | 25.471 | 0 | 0.001 | 71.138 | 25.471 | 96.61 |
| Vegetation cover | 3.442 | 02.943 | 28.679 | 01.318 | 7.703 | 36.383 |
| city | 16.517 | 13.907 | 01.350 | 03.558 | 21.425 | 35.331 |
| soil | 209.506 | 12.878 | 09.596 | 36.853 | 59.327 | 268.83 |
| Total for the (2000) | 254.936 | 29.728 | 39.626 | 112.87 | 0 | 0 |
| Changes for (2000) | 45.429 | 15.821 | 10.947 | 41.729 | 0 | 0 |
| Difference between 2000 and 2020 | 13.898 | 5.604 | -3.243 | -16.26 | 0 | 0 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I.for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Age | 23.33 | 4 | 0 | 0 | 0 | 0 | ||
| Age(1) | 23.759 | 17907 | 0 | 1 | 0.999 | 2.08* | 0 | . |
| Age(2) | 4.475 | 0.984 | 20.68 | 1 | 0 | 87.78 | 12.76 | 604.03 |
| Age(3) | 2.716 | 0.777 | 12.20 | 1 | 0 | 15.12 | 3.29 | 69.4 |
| Age(4) | 2.086 | 0.784 | 7.07 | 1 | 0.008 | 8.05 | 1.73 | 37.45 |
| Social status | 0 | 0 | 3.64 | 3 | 0.303 | 0 | 0 | 0 |
| Soc. status(1) | -2.701 | 1.616 | 2.79 | 1 | 0.095 | 0.07 | 0.003 | 1.59 |
| Soc. status(2) | -1.631 | 0.989 | 2.72 | 1 | 0.099 | 0.2 | 0.028 | 1.36 |
| Soc. status(3) | 19.754 | 40193 | 0 | 1 | 1 | 379* | 0 | . |
| Edu. level | 0 | 0 | 3.84 | 6 | 0.699 | 0 | 0 | 0 |
| Edu. level (1) | -1.297 | 1.002 | 1.68 | 1 | 0.195 | 0.27 | 0.038 | 1.95 |
| Edu. level (2) | -0.621 | 0.984 | 0.4 | 1 | 0.528 | 0.54 | 0.078 | 3.7 |
| Edu. level (3) | -0.492 | 1.188 | 0.17 | 1 | 0.679 | 0.61 | 0.06 | 6.28 |
| Edu. level (4) | -0.11 | 1.357 | 0.01 | 1 | 0.935 | 0.9 | 0.063 | 12.8 |
| Edu. level (5) | -1.138 | 1.219 | 0.87 | 1 | 0.351 | 0.32 | 0.029 | 3.49 |
| Edu. level (6) | 0.325 | 1.04 | 0.1 | 1 | 0.755 | 1.38 | 0.18 | 10.63 |
| Nb. Fmly mbr | 0 | 0 | 0.06 | 2 | 0.971 | 0 | 0 | 0 |
| Nb_fmly_mb(1) | -0.129 | 0.786 | 0.03 | 1 | 0.87 | 0.88 | 0.188 | 4.10 |
| Nb fmly mb(2) | 0.059 | 0.691 | 0.01 | 1 | 0.932 | 1.06 | 0.274 | 4.11 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Holding size | 0 | 0 | 3.60 | 1 | 0.058 | 1 | 1 | 1 |
| Methods irrig | 10.6 | 3 | 0.014 | 0 | 0 | 0 | ||
| Methods irrig(1) | -0.183 | 0.397 | 0.21 | 1 | 0.645 | 0.833 | 0.382 | 1.814 |
| Methods irrig(2) | -1.307 | 0.454 | 8.28 | 1 | 0.004 | 0.271 | 0.111 | 0.659 |
| Methods irrig(3) | 0.556 | 0.606 | 0.84 | 1 | 0.359 | 1.743 | 0.532 | 5.713 |
| Rented Land | 0 | 0 | 4.03 | 1 | 0.045 | 1 | 1 | 1 |
| Agr. machinery | 0 | 0 | 1.55 | 1 | 0.213 | 1 | 1 | 1 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Modern tech. (1) | -5.247 | 2.182 | 5.78 | 1 | 0.016 | 0.005 | 0 | 0.379 |
| Climate change(1) | 5.483 | 2.468 | 4.94 | 1 | 0.026 | 240.6 | 1.909 | 30332 |
| Urban sprawl(1) | -0.395 | 1.766 | 0.05 | 1 | 0.823 | 0.673 | 0.021 | 21.453 |
| Avail. Scav. Manp(1) | -3.378 | 1.398 | 5.84 | 1 | 0.016 | 0.034 | 0.002 | 0.529 |
| Small holdings | 5.296 | 1.543 | 11.8 | 1 | 0.001 | 199.5 | 9.699 | 4103.3 |
| High spoilage (1) | 1.648 | 2.198 | 0.56 | 1 | 0.453 | 5.195 | 0.07 | 385.9 |
| Lack productivity(1) | -2.656 | 1.896 | 1.96 | 1 | 0.161 | 0.07 | 0.002 | 2.888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
