Submitted:
13 October 2025
Posted:
15 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. From Root Causes to Mitochondria: Cancer as the Lead Indication
2.1. Mechanistic Convergence
| Upstream Driver | Mitochondrial Lesion | Cancer (Lead Example) | ASCVD Parallel | T2DM Parallel |
| Environmental & industrial toxins (heavy metals, pesticides, air pollutants) | ETC inhibition; ↑ROS; mtDNA damage | Warburg shift, genomic instability, therapy resistance[2,4,9,22,23,24,25] | Endothelial mitochondrial ROS → ↓NO bioavailability; vascular calcification[11,12,13,14,15,16] | β-cell oxidative stress → impaired ATP/ADP signaling; insulin secretory failure[26,34,35,36,37,38,39,40] |
| High-carbohydrate / ultra-processed diet; hyperinsulinemia | Metabolic inflexibility; sustained glycolysis; lipotoxicity | Tumor glucose dependence; anabolic signaling[4,5,6,7,8,9,41,42,43] | Dyslipidemia; foam-cell inflammation; adverse cardiometabolic profiles[11,12,14,15,16] | Insulin resistance; hepatic steatosis; adverse metabolomic signatures[34,35,36,37,38,39,40] |
| Micronutrient insufficiency (C, D3, K2, Mg, Se, Niacin) | Redox collapse; ↓OXPHOS enzyme activity | Impaired apoptosis; immune escape[10,26,27,28,29,30,31,32,33] | ↑Oxidative burden; endothelial dysfunction[26,27,28,29,30,31,32,33] | ↓Mitochondrial biogenesis; reduced insulin sensitivity[26,27,28,29,30,31,32,33] |
| Chronic infection/inflammation; stress hormones | Cytokine-driven ROS/RNS; mtDNA editing | Pro-tumor microenvironment; resistance[10,17,18,19,21,36] | Plaque inflammation; immune activation[11,12,13,14,15,16] | Systemic low-grade inflammation; β-cell fatigue[34,35,36,37,38,39,40] |
| Iatrogenic & lifestyle stressors (drugs, radiation, inactivity, poor sleep) | Accumulated oxidative load; circadian disruption | Therapy resistance; stem-cell survival[10,17,18,19,21,36] | Accelerated vascular aging; metabolic syndrome features[11,12,13,14,15,16] | Circadian insulin dysregulation; insulin resistance[34,35,36,37,38,39,40] |
2.2. Conceptual Shift
3. The Triple-Principle Intervention Model (TPIM)
3.1. Safety First
- Low-toxicity metabolic and orthomolecular modalities. Ketogenic/metabolic therapy (KMT) and related approaches show acceptable tolerability in contemporary reviews and case-series across tumor types [41,42,43,45]. High-dose intravenous vitamin C (HDIVC) has extensive clinical experience with documented safety signals and modern pharmacologic understanding; adverse-event reviews and clinical protocols emphasize key contraindications (e.g., G6PD deficiency, significant renal impairment) and practical safeguards [30,31,46,47,48,49].
- Safety monitoring (labs/biomarkers). Standard hepatobiliary panels (ALT/AST, bilirubin, ALP, bile-acid profiles where indicated) remain foundational for detecting treatment-related liver stress [50,51,52]. The GGT + ferritin pair can function as an early, low-cost screen for oxidative/toxic burden and metabolic risk, supporting risk stratification and follow-up [53,54,55].
3.2. Effectiveness via Titration-to-Target
- Terrain correction through diet quality. Evidence linking ultra-processed foods (UPFs) with adverse cardiometabolic profiles and cancer risk underscores diet quality as a titratable lever within IOCT [11,12,13,14,15,16], with metabolomic and insulin-resistance signatures (e.g., TyG, TG/HDL) supporting monitoring [34,35,36,37,38,39,40].
- Orthomolecular repletion. Mechanistic and translational literature supports targeted correction of micronutrient insufficiencies (ascorbate, D3/K2, Mg, Se, niacin/NAD⁺) to stabilize redox, support OXPHOS, and improve therapy tolerance [10,26,27,28,29,30,31,32,33]; HDIVC delivers pharmacologic ascorbate levels with tumor-selective effects and host redox support [33,47,48,49]. (Note: HDIVC can transiently interfere with point-of-care glucose meters; confirm glucose with laboratory assays when needed.)
- Mitochondrial Repair and Restoration as the Ultimate Target
3.3. Affordability and Accessibility
4. Clinical Application: Integrative Orthomolecular Cancer Therapy (IOCT)
4.1. Environmental & Occupational Toxins– The Dominant Driver of Global Mortality
4.1.1. Assessment
- Laboratory testing:
- ○
- ○
- ○
- Functional biomarkers:
- ○
- ○
- ○
- ○
- ○
- Clinical history: Occupational exposures (mining, welding, agriculture, manufacturing), residential proximity to industrial/agricultural zones, and lifestyle habits (plastic use, processed foods, contaminated water).
4.1.2. Mechanistic Impact on Carcinogenesis
4.1.3. Management – Detoxification & Resilience Building
- Source elimination:
- ○
- ○
- Reduction of plastic exposure, safe household and personal care products[25].
- Biochemical detoxification:
- ○
- ○
- ○
- Mitochondrial repair and antioxidant defense:
- ○
- ○
- ○
4.1.4. Clinical Imperative
4.2. Dietary & Metabolic Stressors
4.2.1. Restricted Ketogenic Diet and Intermittent Fasting
Continuous Monitoring
Clinical Goals
4.2.2. Ultra-Processed Foods (UPFs): A Dual Driver of Metabolic Stress and Toxic Exposure
Defining UPFs
Metabolic Impact
- Hyperglycemia and hyperinsulinemia: Refined starches and sugars create repeated glucose surges, feeding glycolysis and promoting chronic insulin signaling that favors tumor growth and increases overall cancer risk, while fructose—abundant in UPFs—specifically drives pancreatic cancer proliferation through the non-oxidative pentose phosphate pathway for nucleic acid synthesis[34,35,36,37].
- Micronutrient dilution: Despite their caloric load, UPFs are deficient in protective nutrients such as vitamin D, vitamin C, magnesium, selenium, and omega-3 fatty acids. This compounds orthomolecular insufficiency and weakens mitochondrial and immune defenses.
Toxicological Burden
- Pesticide residues in grains, oils, and processed produce bioaccumulate with chronic intake.
- Endocrine disruptors (phthalates, BPA) leach from plastics and packaging.
- Chemical additives (emulsifiers, preservatives, sweeteners) disrupt gut microbiota, increase intestinal permeability, and promote chronic inflammation.
- Oxidized seed oils and AGEs (advanced glycation end-products) act as oxidative stressors, damaging DNA and proteins, and generating mutagenic byproducts.
Clinical Assessment
- Dietary history: Quantify daily caloric proportion derived from packaged, ready-to-eat, or fast foods.
- Biomarkers: Elevated fasting insulin, HOMA-IR, TG/HDL ratio, and GGT often reflect UPF-induced metabolic stress and hepatic burden.
- Functional measures: Microbiome imbalance and gut permeability testing can reveal downstream effects of UPF consumption.
Management – Elimination as Core Therapy
- Strict elimination of UPFs: Central to dietary intervention; without this step, neither ketogenic strategies nor micronutrient repletion can achieve full efficacy.
- Replacement with nutrient-dense whole foods: Pasture-raised animal proteins, low-carb vegetables, wild-caught fish, and orthomolecular supplementation.
- Ketogenic and fasting integration: Rebuilds metabolic flexibility, reverses insulin resistance, and restores mitochondrial resilience.
- Gut restoration: Anti-inflammatory diets, probiotics, and antioxidant-rich whole foods to repair intestinal barrier and microbiota disrupted by UPFs.
Clinical Imperative
- Provide the substrates that fuel tumor glycolysis.
- Deliver a toxicological payload of pesticides, endocrine disruptors, and synthetic additives.
- Displace the very nutrients needed to maintain redox stability, mitochondrial function, and immune surveillance.
4.3. Micronutrient Deficiencies – The Orthomolecular Foundation of Cancer Management
4.3.1. Assessment of Micronutrient Status
- Core serum markers: 25(OH)D (Vitamin D3), plasma ascorbate (Vitamin C), serum magnesium, selenium, zinc, iodine, lipid profile with omega-3 index.
- Functional assays: Organic acids test for mitochondrial intermediates, oxidative stress panels (glutathione status, F2-isoprostanes, 8-OHdG), redox balance (GGT + ferritin pair).
- Clinical context: History of long-term medication use (statins, metformin, PPIs, chemotherapy), dietary recall (low intake of fresh animal foods, fish, and nutrient-dense vegetables), and symptom clusters (fatigue, depression, immune suppression, bone fragility).
4.3.2. Mechanistic Rationale
- Vitamin C (ascorbate): Master antioxidant and electron donor; protects DNA from oxidative mutagenesis, supports collagen matrix integrity, and at pharmacologic IV doses generates hydrogen peroxide selectively cytotoxic to tumor cells.
- Vitamin D3: Regulates over 2,000 genes, including those controlling cell cycle, apoptosis, and immune function; deficiency promotes immune escape and unchecked proliferation.
- Vitamin K2 (MK-7): Directs calcium away from soft tissues and into bone, reducing vascular calcification and tumor-associated microcalcifications; synergistic with D3.
- Magnesium: Essential for >300 enzymes, stabilizes ATP, DNA repair enzymes, and mitochondrial oxidative phosphorylation; deficiency accelerates genomic instability.
- Niacin (Vitamin B3): Precursor of NAD⁺, central to mitochondrial respiration and DNA repair (PARP enzymes); high-dose niacin restores redox capacity and improves lipid and metabolic profiles.
- Selenium: Critical for glutathione peroxidase and thioredoxin reductase, neutralizing peroxides and supporting immune function; selenium deficiency is linked to higher cancer incidence.
- Omega-3 fatty acids (EPA/DHA): Compete with pro-inflammatory omega-6 fats, produce resolvins/protectins, stabilize membranes, and modulate oncogenic signaling pathways.
- Zinc and Iodine: Cofactors for DNA repair, thyroid metabolism, and antioxidant defense; deficiencies impair immune surveillance and endocrine regulation.
4.3.3. Management: Orthomolecular Repletion
- Vitamin C: 5–15 g/day orally (in divided doses), plus high-dose intravenous vitamin C (HDIVC) up to 1,500 mg/kg body weight, administered 2–3 times per week in advanced cases[30,46,47,48,49,106]. Dosing should be titrated by bowel tolerance and plasma ascorbate monitoring, with screening for G6PD deficiency, renal impairment, and oxalate risk prior to initiation. Clinicians should also note that HDIVC can transiently interfere with point-of-care glucose meters, occasionally producing falsely elevated readings; confirm with laboratory glucose assays when clinically relevant.
- Vitamin D3: 5,000–30,000 IU/day, carefully titrated to maintain serum 25(OH)D levels between 50–100 ng/mL for the general population and up to 100–150 ng/mL in patients with autoimmune comorbidities. Such dosing should be conducted only under clinician supervision with regular monitoring of serum calcium, renal function, and parathyroid hormone. Avoid calcium co-supplementation and pair with magnesium and vitamin K₂ for optimal balance and safety [102,107,108,109,110,111].
- Vitamin K2: Plays a key role in activating matrix Gla protein and osteocalcin, thereby helping prevent vascular calcification and supporting bone integrity—especially important in patients with ASCVD or concomitant bone loss. A dose as high as 45 mg/day has been suggested in clinical studies of osteoporosis, though the optimal formulation and dosing for cardiovascular protection remain under investigation[112,113,114,115,116,117,118,119].
- Magnesium: 400–800 mg/day (elemental; glycinate/threonate/citrate forms; titrate to bowel tolerance; adjust for CKD).
- Niacin (IR): 500–3,000 mg/day, titrated upward for lipid normalization, NAD⁺ replenishment, and mitochondrial support; manage flush with gradual escalation.
- Selenium: 200–400 μg/day (selenomethionine or sodium selenite).
- Omega-3 (EPA/DHA): 2–4 g/day, titrated to achieve Omega-3 index ≥8%.
- Zinc and Iodine: Individualized dosing, guided by labs and thyroid status.
4.3.4. High-Dose Intravenous Vitamin C (HDIVC): Hallmark of Orthomolecular Oncology
- Mechanisms:
- ○
- Generates extracellular hydrogen peroxide cytotoxic to cancer cells deficient in catalase.
- ○
- Enhances mitochondrial respiration and redox stability in normal tissues.
- ○
- Promotes collagen synthesis, reinforcing tissue barriers to invasion.
- ○
- Reduces inflammation and chemotherapy toxicity.
- Dosing: Typically 25–100 g per infusion, 2–3 times weekly; in advanced cases up to 1,500 mg/kg bodyweight[106].
- Safety: Decades of clinical use demonstrate an excellent profile, with contraindications limited to G6PD deficiency, renal insufficiency, and active oxalate nephropathy.
- Safe (low toxicity, decades of use),
- Effective (selectively stresses tumor metabolism while protecting host),
- Accessible (low cost relative to targeted drugs).
4.3.5. Clinical Integration
- It corrects the biochemical insufficiency that renders cells vulnerable to carcinogenesis.
- It enhances host resilience against chemotherapy and radiation toxicity.
- It potentiates metabolic and immune therapies, creating synergistic benefits.
4.4. Chronic Infections & Immune Dysregulation
- Assessment: Viral (HBV, HCV, EBV, HPV), bacterial, fungal or biofilm-related pathogens; labs—hsCRP, ESR, cytokines, autoantibodies.
- Management: Eradicate active infections; strengthen terrain with Vit D, Vit C, zinc, selenium; low-dose naltrexone (LDN); immune cell therapies (NK/T-cell, dendritic) where feasible.
4.5. Hormonal Imbalance & Endocrine Disruption
- Assessment: Thyroid (TSH, fT3, fT4, antibodies, rT3), sex hormones (E2, P, T, DHEA, SHBG), adrenal function (cortisol rhythm via saliva), melatonin.
- Management: BHRT (bioidentical hormones for thyroid, adrenal, sex hormones), circadian rhythm alignment (light/dark therapy, sleep hygiene), melatonin (10–100 mg).
4.6. Lifestyle & Behavioral Risk Factors
- Assessment: Exercise level, sleep quality, alcohol use, smoking, screen time, stress load.
- Management: Outdoor exercise with sunlight exposure, progressive strength training, sleep optimization, alcohol/smoking cessation, structured breathing and relaxation practices.
4.7. Psychosocial & Emotional Stress
- Assessment: Chronic stress, trauma history, depression, anxiety, HRV monitoring.
- Management: Mindfulness, cognitive behavioral therapy, resilience training, community/social support, adaptogens (ashwagandha, rhodiola), omega-3s, high-dose B vitamins.
4.8. Developmental & Early-Life Programming
- Assessment: Birth history, early malnutrition, toxin/vaccine exposures, childhood illnesses, methylation/epigenetic testing if available.
- Management: Lifelong orthomolecular nutrition, detox support, mitochondrial repair (CoQ10, carnitine, NAD precursors), regenerative therapies (stem cells, PBMT).
4.9. Genetic & Epigenetic Susceptibility
- Assessment: Family history of cancer, germline mutations, somatic drivers (NGS panels), methylation profiles.
- Management: Personalized nutrition (e.g., methyl donors in MTHFR), fasting, red-blue PBMT therapy, polyphenols as epigenetic modulators, exercise and hormesis.
4.10. Iatrogenic Injury
- Assessment: History of chemotherapy, radiation, chronic drug use (statins, PPIs, metformin, steroids), nutrient-depletion side effects.
- Management: Corrective orthomolecular support (e.g., CoQ10 with statins, B12 with metformin, Mg with diuretics), integrative oncology protocols to minimize side effects, patient education on medication risks.
4.11. Restoration of Mitochondrial Function: Reversing Malignancy
- Supportive oncology: PBMT at 660/850 nm is guideline-endorsed for oral mucositis and has demonstrated benefit for neuropathic pain, wound healing, and fatigue in cancer patients, per MASCC/ISOO clinical practice guidelines[125].
- Integration with IOCT: Red–Blue Therapy can be combined with HDIVC, ketogenic metabolic therapy, niacin, CoQ10, magnesium, and lifestyle-based mitochondrial conditioning to consolidate OXPHOS resilience, terrain optimization, and therapy tolerance.
- Safety: Both PBMT (when delivered at appropriate fluence and with eye protection) and low-dose MB have favorable long-term safety records, with well-defined contraindications (e.g., serotonergic medications, G6PD deficiency).
- Effectiveness: Improvements in fatigue, neuropathy, cognitive function, and mitochondrial biomarkers are measurable and titratable.
- Affordability: PBMT devices emitting 660/850 nm wavelengths are increasingly accessible, and MB is inexpensive at therapeutic doses compared to conventional biologics.
4.12. Integrated Care Model
- Mapping all 10 categories via labs, imaging, and history.
- Prioritizing interventions based on safety, impact, and feasibility.
- Titrating therapies-to-target (e.g., GKI, Vit D3 levels).
- Continuous monitoring with labs, imaging, and symptom feedback.
5. Research and Trial Implications: TP-ARC
- Testing programs, not isolated agents
- Allowing titration and personalization
- Embedding safety, effectiveness, and affordability metrics
- Using real-world populations with comorbidities
- Measuring survival, quality of life, and cost rather than short-term surrogates
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Intellectual Property Statement
Conceptual Continuity Statement
References
- Cheng, R.Z. From Mutation to Metabolism: Root Cause Analysis of Cancer’s Initiating Drivers. 2025. [CrossRef]
- Cheng, R.Z. From Mutation to Metabolism: Environmental and Dietary Toxins as Upstream Drivers of Mitochondrial Dysfunction and Chronic Disease. 2025. [CrossRef]
- Cheng, R.Z. A Paradigm Shift in Epidemic and Chronic Disease Management. Orthomolecular Medicine News Service, 2024. v20, n23. Available online: https://orthomolecular.org/resources/omns/v20n23.shtml (accessed 13 March 2025).
- Seyfried, T.N.; Flores, R.E.; Poff, A.M.; D’Agostino, D.P. Cancer as a Metabolic Disease: Implications for Novel Therapeutics. Carcinogenesis 2014, 35, (3), 515–527. [CrossRef]
- Seyfried, T.N. Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer; Wiley, 2012. Available online: https://www.wiley.com/en-us/Cancer+as+a+Metabolic+Disease%3A+On+the+Origin%2C+Management%2C+and+Prevention+of+Cancer-p-9780470584927.
- Zhao, Y.; Liu, H.; Riker, A.I.; Fodstad, O.; Ledoux, S.P.; Wilson, G.L.; Tan, M. Emerging Metabolic Targets in Cancer Therapy. Front Biosci (Landmark Ed) 2011, 16, (5), 1844–1860. [CrossRef]
- Pan, J.G.; Mak, T.W. Metabolic Targeting as an Anticancer Strategy: Dawn of a New Era? Sci STKE 2007, 2007, (381), pe14. [CrossRef]
- Dang, C.V.; Hamaker, M.; Sun, P.; Le, A.; Gao, P. Therapeutic Targeting of Cancer Cell Metabolism. J Mol Med (Berl) 2011, 89, (3), 205–212. [CrossRef]
- Seyfried, T.N. Cancer as a Mitochondrial Metabolic Disease. Front Cell Dev Biol 2015, 3, 43. [CrossRef]
- Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.-S.; Kroemer, G.; Galluzzi, L. Mitochondrial Metabolism and Cancer. Cell Res 2018, 28, (3), 265–280. [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr 2018, 21, (1), 5–17. [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; Worsley, A.; Friel, S.; Lawrence, M. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes Rev 2020, 21, (12), e13126. [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, (10), 3390. [CrossRef]
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-Processed Products Are Becoming Dominant in the Global Food System. Obes Rev 2013, 14 Suppl 2, 21–28. [CrossRef]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary Share of Ultra-Processed Foods and Metabolic Syndrome in the US Adult Population. Prev Med 2019, 125, 40–48. [CrossRef]
- Anastasiou, I.A.; Kounatidis, D.; Vallianou, N.G.; Skourtis, A.; Dimitriou, K.; Tzivaki, I.; Tsioulos, G.; Rigatou, A.; Karampela, I.; Dalamaga, M. Beneath the Surface: The Emerging Role of Ultra-Processed Foods in Obesity-Related Cancer. Curr Oncol Rep 2025, 27, (4), 390–414. [CrossRef]
- Bhat, T.A.; Kumar, S.; Chaudhary, A.K.; Yadav, N.; Chandra, D. Restoration of Mitochondria Function as a Target for Cancer Therapy. Drug Discov Today 2015, 20, (5), 635–643. [CrossRef]
- Vasan, K.; Werner, M.; Chandel, N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020, 32, (3), 341–352. [CrossRef]
- Miao, X.; Jiang, P.; Wang, Z.; Kong, W.; Feng, L. Mitochondrial Transplantation: A Novel Therapeutic Approach for Treating Diseases. MedComm (2020) 2025, 6, (6), e70253. [CrossRef]
- Liu, Y.; Sun, Y.; Guo, Y.; Shi, X.; Chen, X.; Feng, W.; Wu, L.-L.; Zhang, J.; Yu, S.; Wang, Y.; Shi, Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023, 19, (3), 897–915. [CrossRef]
- Li, Z.; Zhang, W.; Guo, S.; Qi, G.; Huang, J.; Gao, J.; Zhao, J.; Kang, L.; Li, Q. A Review of Advances in Mitochondrial Research in Cancer. Cancer Control 2024, 31, 10732748241299072. [CrossRef]
- Henkler, F.; Brinkmann, J.; Luch, A. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics. Cancers (Basel) 2010, 2, (2), 376–396. [CrossRef]
- Talha; Zahoor, U.; Azhar, S.; Yasin, A.; Saleem, S.; Yousaf, S.; Nawaz, I.; Khanzada, A.; Aslam, M.A. Oxidative Stress Pathways in Cancer: Lessons Learned from Heavy Metal Exposures: Oxidative Stress and Heavy Metals. Journal of Health and Rehabilitation Research 2024, 4, (3), 1–6; Available online: https://jhrlmc.com/index.php/home/article/view/1703. [CrossRef]
- Patrick, L. Toxic Metals and Antioxidants: Part II. The Role of Antioxidants in Arsenic and Cadmium Toxicity. Altern Med Rev 2003, 8, (2), 106–128.
- Koedrith, P.; Seo, Y.R. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers. Int J Mol Sci 2011, 12, (12), 9576–9595. [CrossRef]
- Konieczna, J.; Morey, M.; Abete, I.; Bes-Rastrollo, M.; Ruiz-Canela, M.; Vioque, J.; Gonzalez-Palacios, S.; Daimiel, L.; Salas-Salvadó, J.; Fiol, M.; Martín, V.; Estruch, R.; Vidal, J.; Martínez-González, M.A.; Canudas, S.; Jover, A.J.; Fernández-Villa, T.; Casas, R.; Olbeyra, R.; Buil-Cosiales, P.; Babio, N.; Schröder, H.; Martínez, J.A.; Romaguera, D.; PREDIMED-Plus investigators Contribution of Ultra-Processed Foods in Visceral Fat Deposition and Other Adiposity Indicators: Prospective Analysis Nested in the PREDIMED-Plus Trial. Clin Nutr 2021, 40, (6), 4290–4300. [CrossRef]
- Donohoe, C.L.; Doyle, S.L.; Reynolds, J.V. Visceral Adiposity, Insulin Resistance and Cancer Risk. Diabetol Metab Syndr 2011, 3, 12. [CrossRef]
- Cameron, E.; Pauling, L. Ascorbic Acid and the Glycosaminoglycans. An Orthomolecular Approach to Cancer and Other Diseases. Oncology 1973, 27, (2), 181–192. [CrossRef]
- Hoffer, A. Orthomolecular Treatment of Cancer. In Nutrients in Cancer Prevention and Treatmenteds.: K.N. Prasad, L. Santamaria, R.M. Williams, Humana Press, Totowa, NJ, 1995, pp. 373–391; Available online: http://link.springer.com/10.1007/978-1-4612-0237-0_23. [CrossRef]
- Riordan, H.D.; Hunninghake, R.B.; Riordan, N.H.; Jackson, J.J.; Meng, X.; Taylor, P.; Casciari, J.J.; González, M.J.; Miranda-Massari, J.R.; Mora, E.M.; Rosario, N.; Rivera, A. Intravenous Ascorbic Acid: Protocol for Its Application and Use. P R Health Sci J 2003, 22, (3), 287–290.
- Riordan, H.D.; Riordan, N.H.; Jackson, J.A.; Casciari, J.J.; Hunninghake, R.; González, M.J.; Mora, E.M.; Miranda-Massari, J.R.; Rosario, N.; Rivera, A. Intravenous Vitamin C as a Chemotherapy Agent: A Report on Clinical Cases. P R Health Sci J 2004, 23, (2), 115–118.
- Levy, T.E. A Guide to the Optimal Administration of Vitamin C; MedFox Publishing, 2022. Available online: https://orthomolecular.org/resources/omns/Thomas-Levy-Guide-To-The-Optimal-Administration-of-Vitamin-C.pdf?
- Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic Ascorbic Acid Concentrations Selectively Kill Cancer Cells: Action as a pro-Drug to Deliver Hydrogen Peroxide to Tissues. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, (38), 13604–13609. [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-Processed Food Consumption and Cancer Risk: A Systematic Review and Meta-Analysis. Clin Nutr 2023, 42, (6), 919–928. [CrossRef]
- Venkateswaran, V.; Haddad, A.Q.; Fleshner, N.E.; Fan, R.; Sugar, L.M.; Nam, R.; Klotz, L.H.; Pollak, M. Association of Diet-Induced Hyperinsulinemia with Accelerated Growth of Prostate Cancer (LNCaP) Xenografts. J Natl Cancer Inst 2007, 99, (23), 1793–1800. [CrossRef]
- Liu, H.; Huang, D.; McArthur, D.L.; Boros, L.G.; Nissen, N.; Heaney, A.P. Fructose Induces Transketolase Flux to Promote Pancreatic Cancer Growth. Cancer Res 2010, 70, (15), 6368–6376. [CrossRef]
- Hirabayashi, S.; Baranski, T.J.; Cagan, R.L. Transformed Drosophila Cells Evade Diet-Mediated Insulin Resistance through Wingless Signaling. Cell 2013, 154, (3), 664–675. [CrossRef]
- Handakas, E.; Chang, K.; Khandpur, N.; Vamos, E.P.; Millett, C.; Sassi, F.; Vineis, P.; Robinson, O. Metabolic Profiles of Ultra-Processed Food Consumption and Their Role in Obesity Risk in British Children. Clin Nutr 2022, 41, (11), 2537–2548. [CrossRef]
- O’Connor, L.E.; Hall, K.D.; Herrick, K.A.; Reedy, J.; Chung, S.T.; Stagliano, M.; Courville, A.B.; Sinha, R.; Freedman, N.D.; Hong, H.G.; Albert, P.S.; Loftfield, E. Metabolomic Profiling of an Ultraprocessed Dietary Pattern in a Domiciled Randomized Controlled Crossover Feeding Trial. J Nutr 2023, 153, (8), 2181–2192. [CrossRef]
- Harlan, T.S.; Gow, R.V.; Kornstädt, A.; Alderson, P.W.; Lustig, R.H. The Metabolic Matrix: Re-Engineering Ultraprocessed Foods to Feed the Gut, Protect the Liver, and Support the Brain. Front Nutr 2023, 10, 1098453. [CrossRef]
- Barrea, L.; Caprio, M.; Tuccinardi, D.; Moriconi, E.; Di Renzo, L.; Muscogiuri, G.; Colao, A.; Savastano, S.; Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group Could Ketogenic Diet “Starve” Cancer? Emerging Evidence. Crit Rev Food Sci Nutr 2022, 62, (7), 1800–1821. [CrossRef]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic Diet in the Treatment of Cancer - Where Do We Stand? Mol Metab 2020, 33, 102–121. [CrossRef]
- Woolf, E.C.; Scheck, A.C. The Ketogenic Diet for the Treatment of Malignant Glioma. J Lipid Res 2015, 56, (1), 5–10. [CrossRef]
- Cheng, R.Z. RCTs: The Foundational Flaw of Modern Medicine? Orthomolecular Medicine News Service. Available online: https://orthomolecular.org/resources/omns/index.shtml.
- Duraj, T.; Kalamian, M.; Zuccoli, G.; Maroon, J.C.; D’Agostino, D.P.; Scheck, A.C.; Poff, A.; Winter, S.F.; Hu, J.; Klement, R.J.; Hickson, A.; Lee, D.C.; Cooper, I.; Kofler, B.; Schwartz, K.A.; Phillips, M.C.L.; Champ, C.E.; Zupec-Kania, B.; Tan-Shalaby, J.; Serfaty, F.M.; Omene, E.; Arismendi-Morillo, G.; Kiebish, M.; Cheng, R.; El-Sakka, A.M.; Pflueger, A.; Mathews, E.H.; Worden, D.; Shi, H.; Cincione, R.I.; Spinosa, J.P.; Slocum, A.K.; Iyikesici, M.S.; Yanagisawa, A.; Pilkington, G.J.; Chaffee, A.; Abdel-Hadi, W.; Elsamman, A.K.; Klein, P.; Hagihara, K.; Clemens, Z.; Yu, G.W.; Evangeliou, A.E.; Nathan, J.K.; Smith, K.; Fortin, D.; Dietrich, J.; Mukherjee, P.; Seyfried, T.N. Clinical Research Framework Proposal for Ketogenic Metabolic Therapy in Glioblastoma. BMC Med 2024, 22, (1), 578. [CrossRef]
- Padayatty, S.J.; Sun, A.Y.; Chen, Q.; Espey, M.G.; Drisko, J.; Levine, M. Vitamin C: Intravenous Use by Complementary and Alternative Medicine Practitioners and Adverse Effects. PLoS One 2010, 5, (7), e11414. [CrossRef]
- Giansanti, M.; Karimi, T.; Faraoni, I.; Graziani, G. High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients. Cancers (Basel) 2021, 13, (6), 1428. [CrossRef]
- Böttger, F.; Vallés-Martí, A.; Cahn, L.; Jimenez, C.R. High-Dose Intravenous Vitamin C, a Promising Multi-Targeting Agent in the Treatment of Cancer. J Exp Clin Cancer Res 2021, 40, (1), 343. [CrossRef]
- Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting Cancer Vulnerabilities with High-Dose Vitamin C. Nat Rev Cancer 2019, 19, (5), 271–282. [CrossRef]
- Ennulat, D.; Magid-Slav, M.; Rehm, S.; Tatsuoka, K.S. Diagnostic Performance of Traditional Hepatobiliary Biomarkers of Drug-Induced Liver Injury in the Rat. Toxicol Sci 2010, 116, (2), 397–412. [CrossRef]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am J Gastroenterol 2017, 112, (1), 18–35. [CrossRef]
- Luo, L.; Schomaker, S.; Houle, C.; Aubrecht, J.; Colangelo, J.L. Evaluation of Serum Bile Acid Profiles as Biomarkers of Liver Injury in Rodents. Toxicol Sci 2014, 137, (1), 12–25. [CrossRef]
- Mohapatra, E.; Priya, R.; Nanda, R.; Patel, S. Serum GGT and Serum Ferritin as Early Markers for Metabolic Syndrome. J Family Med Prim Care 2020, 9, (7), 3458–3463. [CrossRef]
- Wei, D.; Chen, T.; Li, J.; Gao, Y.; Ren, Y.; Zhang, X.; Yu, H.; Tian, H. Association of Serum Gamma-Glutamyl Transferase and Ferritin with the Metabolic Syndrome. J Diabetes Res 2015, 2015, 741731. [CrossRef]
- Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis Markers 2015, 2015, 818570. [CrossRef]
- Meidenbauer, J.J.; Mukherjee, P.; Seyfried, T.N. The Glucose Ketone Index Calculator: A Simple Tool to Monitor Therapeutic Efficacy for Metabolic Management of Brain Cancer. Nutrition & metabolism 2015, 12, 12; Available online: http://www.ncbi.nlm.nih.gov/pubmed/25798181 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4367849. [CrossRef]
- Akgoc, Z.; Mukherjee, P.; Seyfried, T.N. The Glucose Ketone Index Predicts Overall Survival and Metastasis of Mouse Tumor Cells to Visceral Organs and Brain. Longhua Chinese Medicine 2022, 5, (0); Available online: https://lcm.amegroups.org/article/view/8366. [CrossRef]
- Seyfried, T.N.; Mukherjee, P.; Iyikesici, M.S.; Slocum, A.; Kalamian, M.; Spinosa, J.-P.; Chinopoulos, C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020, 7, 21. [CrossRef]
- Phillips, M.C.L.; Thotathil, Z.; Dass, P.H.; Ziad, F.; Moon, B.G. Ketogenic Metabolic Therapy in Conjunction with Standard Treatment for Glioblastoma: A Case Report. Oncol Lett 2024, 27, (5), 230. [CrossRef]
- Rashmi, B.M.; Pattanshetty, S.; Bhagyajyoti; Savadi, B.V.; Prashanth, G. Association of Serum Ferritin and Gamma-Glutamyl Transferase Levels with Metabolic Syndrome and Insulin Resistance. Dentistry and Medical Research 2023, 11, (1), 26; Available online: https://journals.lww.com/dmrs/fulltext/2023/11010/association_of_serum_ferritin_and_gamma_glutamyl.6.aspx. [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; Cropper, M.; Ferraro, G.; Hanna, J.; Hanrahan, D.; Hu, H.; Hunter, D.; Janata, G.; Kupka, R.; Lanphear, B.; Lichtveld, M.; Martin, K.; Mustapha, A.; Sanchez-Triana, E.; Sandilya, K.; Schaefli, L.; Shaw, J.; Seddon, J.; Suk, W.; Téllez-Rojo, M.M.; Yan, C. Pollution and Health: A Progress Update. Lancet Planet Health 2022, 6, (6), e535–e547. [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N.; Chiles, T.; Mahidol, C.; Coll-Seck, A.M.; Cropper, M.L.; Fobil, J.; Fuster, V.; Greenstone, M.; Haines, A.; Hanrahan, D.; Hunter, D.; Khare, M.; Krupnick, A.; Lanphear, B.; Lohani, B.; Martin, K.; Mathiasen, K.V.; McTeer, M.A.; Murray, C.J.L.; Ndahimananjara, J.D.; Perera, F.; Potočnik, J.; Preker, A.S.; Ramesh, J.; Rockström, J.; Salinas, C.; Samson, L.D.; Sandilya, K.; Sly, P.D.; Smith, K.R.; Steiner, A.; Stewart, R.B.; Suk, W.A.; Schayck, O.C.P. van; Yadama, G.N.; Yumkella, K.; Zhong, M. The Lancet Commission on Pollution and Health. Lancet 2018, 391, (10119), 462–512. [CrossRef]
- Baron, P.; Schweinsberg, F. [A study of the literature on the concentrations of arsenic, lead, cadmium and mercury in body fluids and tissues to define normal values and detection of overload. 1. Description of analytical methods and arsenic]. Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med 1988, 186, (4), 289–310.
- Filipoiu, D.C.; Bungau, S.G.; Endres, L.; Negru, P.A.; Bungau, A.F.; Pasca, B.; Radu, A.-F.; Tarce, A.G.; Bogdan, M.A.; Behl, T.; Nechifor, A.C.; Hassan, S.S.U.; Tit, D.M. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. Toxics 2022, 10, (12), 716. [CrossRef]
- Keil, D.E.; Berger-Ritchie, J.; McMillin, G.A. Testing for Toxic Elements: A Focus on Arsenic, Cadmium, Lead, and Mercury.; Available online:. [CrossRef]
- Esteban, M.; Castaño, A. Non-Invasive Matrices in Human Biomonitoring: A Review. Environ Int 2009, 35, (2), 438–449. [CrossRef]
- Dorgan, J.F.; Brock, J.W.; Rothman, N.; Needham, L.L.; Miller, R.; Stephenson, H.E.; Schussler, N.; Taylor, P.R. Serum Organochlorine Pesticides and PCBs and Breast Cancer Risk: Results from a Prospective Analysis (USA). Cancer Causes Control 1999, 10, (1), 1–11. [CrossRef]
- Porta, M.; Bosch de Basea, M.; Benavides, F.G.; López, T.; Fernandez, E.; Marco, E.; Alguacil, J.; Grimalt, J.O.; Puigdomènech, E.; PANKRAS II Study Group Differences in Serum Concentrations of Organochlorine Compounds by Occupational Social Class in Pancreatic Cancer. Environ Res 2008, 108, (3), 370–379. [CrossRef]
- Sévère, S.; Marchand, P.; Guiffard, I.; Morio, F.; Venisseau, A.; Veyrand, B.; Le Bizec, B.; Antignac, J.-P.; Abadie, J. Pollutants in Pet Dogs: A Model for Environmental Links to Breast Cancer. Springerplus 2015, 4, 27. [CrossRef]
- Lord, R.S.; Bralley, J.A. Clinical Applications of Urinary Organic Acids. Part I: Detoxification Markers. Altern Med Rev 2008, 13, (3), 205–215.
- Kałużna-Czaplińska, J. Noninvasive Urinary Organic Acids Test to Assess Biochemical and Nutritional Individuality in Autistic Children. Clin Biochem 2011, 44, (8–9), 686–691. [CrossRef]
- Pieczenik, S.R.; Neustadt, J. Mitochondrial Dysfunction and Molecular Pathways of Disease. Exp Mol Pathol 2007, 83, (1), 84–92. [CrossRef]
- Zamek-Gliszczynski, M.J.; Hoffmaster, K.A.; Nezasa, K.; Tallman, M.N.; Brouwer, K.L.R. Integration of Hepatic Drug Transporters and Phase II Metabolizing Enzymes: Mechanisms of Hepatic Excretion of Sulfate, Glucuronide, and Glutathione Metabolites. Eur J Pharm Sci 2006, 27, (5), 447–486. [CrossRef]
- Jancova, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II Drug Metabolizing Enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010, 154, (2), 103–116. [CrossRef]
- Grant, D.M. Detoxification Pathways in the Liver. J Inherit Metab Dis 1991, 14, (4), 421–430. [CrossRef]
- Geenen, S.; Preez, F.B. du; Snoep, J.L.; Foster, A.J.; Sarda, S.; Kenna, J.G.; Wilson, I.D.; Westerhoff, H.V. Glutathione Metabolism Modeling: A Mechanism for Liver Drug-Robustness and a New Biomarker Strategy. Biochim Biophys Acta 2013, 1830, (10), 4943–4959. [CrossRef]
- Bock, K.W.; Lilienblum, W.; Fischer, G.; Schirmer, G.; Bock-Henning, B.S. The Role of Conjugation Reactions in Detoxication. Arch Toxicol 1987, 60, (1–3), 22–29. [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis. Mol Aspects Med 2009, 30, (1–2), 1–12. [CrossRef]
- Silva, M.; Carvalho, M. da G. Detoxification Enzymes: Cellular Metabolism and Susceptibility to Various Diseases. Rev Assoc Med Bras (1992) 2018, 64, (4), 307–310. [CrossRef]
- Simeonova, D.; Ivanovska, M.; Murdjeva, M.; Carvalho, A.F.; Maes, M. Recognizing the Leaky Gut as a Trans-Diagnostic Target for Neuroimmune Disorders Using Clinical Chemistry and Molecular Immunology Assays. Curr Top Med Chem 2018, 18, (19), 1641–1655. [CrossRef]
- Fukui, H. Endotoxin and Other Microbial Translocation Markers in the Blood: A Clue to Understand Leaky Gut Syndrome. Cellular & Molecular Medicine: Open access 2016, 3, (2); Available online: https://cellular-molecular-medicine.imedpub.com/abstract/endotoxin-and-other-microbial-translocation-markers-in-the-blood-a-clue-to-understand-leaky-gut-syndrome-17990.html. [CrossRef]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol Rev 2011, 91, (1), 151–175. [CrossRef]
- Shemesh, J.; Henschke, C.I.; Shaham, D.; Yip, R.; Farooqi, A.O.; Cham, M.D.; McCauley, D.I.; Chen, M.; Smith, J.P.; Libby, D.M.; Pasmantier, M.W.; Yankelevitz, D.F. Ordinal Scoring of Coronary Artery Calcifications on Low-Dose CT Scans of the Chest Is Predictive of Death from Cardiovascular Disease. Radiology 2010, 257, (2), 541–548. [CrossRef]
- Greenland, P.; Blaha, M.J.; Budoff, M.J.; Erbel, R.; Watson, K.E. Coronary Calcium Score and Cardiovascular Risk. J Am Coll Cardiol 2018, 72, (4), 434–447. [CrossRef]
- Onnis, C.; Virmani, R.; Kawai, K.; Nardi, V.; Lerman, A.; Cademartiri, F.; Scicolone, R.; Boi, A.; Congiu, T.; Faa, G.; Libby, P.; Saba, L. Coronary Artery Calcification: Current Concepts and Clinical Implications. Circulation 2024, 149, (3), 251–266. [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, (5930), 1029–1033. [CrossRef]
- Whyatt, R.M.; Santella, R.M.; Jedrychowski, W.; Garte, S.J.; Bell, D.A.; Ottman, R.; Gladek-Yarborough, A.; Cosma, G.; Young, T.L.; Cooper, T.B.; Randall, M.C.; Manchester, D.K.; Perera, F.P. Relationship between Ambient Air Pollution and DNA Damage in Polish Mothers and Newborns. Environ Health Perspect 1998, 106 Suppl 3, (Suppl 3), 821–826. [CrossRef]
- Knudsen, L.E.; Norppa, H.; Gamborg, M.O.; Nielsen, P.S.; Okkels, H.; Soll-Johanning, H.; Raffn, E.; Järventaus, H.; Autrup, H. Chromosomal Aberrations in Humans Induced by Urban Air Pollution: Influence of DNA Repair and Polymorphisms of Glutathione S-Transferase M1 and N-Acetyltransferase 2. Cancer Epidemiol Biomarkers Prev 1999, 8, (4 Pt 1), 303–310.
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Endocrine Disrupting Chemicals and Breast Cancer: A Systematic Review of Epidemiological Studies. Crit Rev Food Sci Nutr 2022, 62, (24), 6549–6576. [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015, 36, (6), 593–602. [CrossRef]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine Disrupting Chemicals and Disease Susceptibility. J Steroid Biochem Mol Biol 2011, 127, (3–5), 204–215. [CrossRef]
- Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives. Medicine (Baltimore) 2015, 94, (1), e211. [CrossRef]
- Di Donato, M.; Cernera, G.; Giovannelli, P.; Galasso, G.; Bilancio, A.; Migliaccio, A.; Castoria, G. Recent Advances on Bisphenol-A and Endocrine Disruptor Effects on Human Prostate Cancer. Mol Cell Endocrinol 2017, 457, 35–42. [CrossRef]
- Giulivo, M.; Lopez de Alda, M.; Capri, E.; Barceló, D. Human Exposure to Endocrine Disrupting Compounds: Their Role in Reproductive Systems, Metabolic Syndrome and Breast Cancer. A Review. Environ Res 2016, 151, 251–264. [CrossRef]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the Pathogenesis of Lung Cancer and Chronic Airway Inflammatory Diseases. Oncol Lett 2018, 15, (5), 7506–7514. [CrossRef]
- Karin, M. NF-kappaB as a Critical Link between Inflammation and Cancer. Cold Spring Harb Perspect Biol 2009, 1, (5), a000141. [CrossRef]
- Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a Tumor Promoter in Cancer Induction. Semin Cancer Biol 2004, 14, (6), 433–439. [CrossRef]
- Mayland, C.; Allen, K.R.; Degg, T.J.; Bennet, M. Micronutrient Concentrations in Patients with Malignant Disease: Effect of the Inflammatory Response. Ann Clin Biochem 2004, 41, (Pt 2), 138–141. [CrossRef]
- Luo, M.; Fernandez-Estivariz, C.; Jones, D.P.; Accardi, C.R.; Alteheld, B.; Bazargan, N.; Hao, L.; Griffith, D.P.; Blumberg, J.B.; Galloway, J.R.; Ziegler, T.R. Depletion of Plasma Antioxidants in Surgical Intensive Care Unit Patients Requiring Parenteral Feeding: Effects of Parenteral Nutrition with or without Alanyl-Glutamine Dipeptide Supplementation. Nutrition 2008, 24, (1), 37–44. [CrossRef]
- Fritz, H.; Kennedy, D.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, A.; Sagar, S.; Wong, R.; Seely, D. Selenium and Lung Cancer: A Systematic Review and Meta Analysis. PLoS One 2011, 6, (11), e26259. [CrossRef]
- Steele, E.; Liu, D.; Omer, E. Managing Micronutrient Deficiencies in High-Risk Patients: No Small Feat! Curr Nutr Rep 2024, 13, (3), 668–678. [CrossRef]
- Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, (2), 277. [CrossRef]
- Savchenko, A.A.; А, С.А.; Kasparov, E.V.; В, К.Э.; Borisov, S.A.; А, Б.С.; Masterova, A.A.; А, М.А.; Borisov, A.G.; Геннадьевич, Б.А. Evaluation of the effectiveness of detoxification in the immunorehabilitation of cancer patients. Cytokines and inflammation 2022, 19, (1–4), 61–68; Available online: https://doi.org/10.17816/CI2022221-4-11. [CrossRef]
- Cassileth, B. Gerson Regimen. Oncology (Williston Park) 2010, 24, (2), 201.
- Lee, C.; Raffaghello, L.; Longo, V.D. Starvation, Detoxification, and Multidrug Resistance in Cancer Therapy. Drug Resist Updat 2012, 15, (1–2), 114–122. [CrossRef]
- NCI, N. Intravenous Vitamin C (PDQ®) - NCI. 2025 nciglobal,ncienterprise; Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/vitamin-c-pdq.
- Takacs, I.; Bakos, B.; Nemeth, Z.; Toth, B.E.; Szili, B.; Lakatos, P. Controlled Randomized Open Label Clinical Study Comparing the Safety and Efficacy of Loading Schedules in Vitamin D Deficient Patients. J Steroid Biochem Mol Biol 2023, 231, 106330. [CrossRef]
- Amon, U.; Yaguboglu, R.; Ennis, M.; Holick, M.F.; Amon, J. Safety Data in Patients with Autoimmune Diseases during Treatment with High Doses of Vitamin D3 According to the “Coimbra Protocol.” Nutrients 2022, 14, (8), 1575. [CrossRef]
- McCullough, P.J.; Lehrer, D.S.; Amend, J. Daily Oral Dosing of Vitamin D3 Using 5000 TO 50,000 International Units a Day in Long-Term Hospitalized Patients: Insights from a Seven Year Experience. J Steroid Biochem Mol Biol 2019, 189, 228–239. [CrossRef]
- Grant, W.B.; Boucher, B.J.; Cheng, R.Z.; Pludowski, P.; Wimalawansa, S.J. Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence. Nutrients 2025, 17, (13), 2102. [CrossRef]
- Lemke, D.; Klement, R.J.; Schweiger, F.; Schweiger, B.; Spitz, J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front Immunol 2021, 12, 655739. [CrossRef]
- Hariri, E.; Kassis, N.; Iskandar, J.-P.; Schurgers, L.J.; Saad, A.; Abdelfattah, O.; Bansal, A.; Isogai, T.; Harb, S.C.; Kapadia, S. Vitamin K2-a Neglected Player in Cardiovascular Health: A Narrative Review. Open Heart 2021, 8, (2), e001715. [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. The Health Benefits of Vitamin K. Open Heart 2015, 2, (1), e000300. [CrossRef]
- Vik, H. Highlighting The Substantial Body Of Evidence Confirming The Importance Of Vitamin K2 As A Cardio-Support Nutrient, And How The Right K2 Makes All The Difference. Integr Med (Encinitas) 2019, 18, (6), 24–28.
- Shiraki, M.; Shiraki, Y.; Aoki, C.; Miura, M. Vitamin K2 (Menatetrenone) Effectively Prevents Fractures and Sustains Lumbar Bone Mineral Density in Osteoporosis. J Bone Miner Res 2000, 15, (3), 515–521. [CrossRef]
- Knapen, M.H.J.; Schurgers, L.J.; Vermeer, C. Vitamin K2 Supplementation Improves Hip Bone Geometry and Bone Strength Indices in Postmenopausal Women. Osteoporos Int 2007, 18, (7), 963–972. [CrossRef]
- Bunyaratavej, N.; Penkitti, P.; Kittimanon, N.; Boonsangsom, P.; Bonjongsat, A.; Yunoi, S. Efficacy and Safety of Menatetrenone-4 Postmenopausal Thai Women. J Med Assoc Thai 2001, 84 Suppl 2, S553-559.
- Villa, J.K.D.; Diaz, M.A.N.; Pizziolo, V.R.; Martino, H.S.D. Effect of Vitamin K in Bone Metabolism and Vascular Calcification: A Review of Mechanisms of Action and Evidences. Crit Rev Food Sci Nutr 2017, 57, (18), 3959–3970. [CrossRef]
- Iwamoto, J. Vitamin K2 Therapy for Postmenopausal Osteoporosis. Nutrients 2014, 6, (5), 1971–1980; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4042573/. [CrossRef]
- Baghli, I.; Makis, W.; Marik, P.E.; Gonzalez, M.J.; Grant, W.B.; Hunninghake, R.; Levy, T.E.; Lim, H.; Cheng, R.Z.; Bondarenko, I.; Bousquet, P.; Ortiz, R.; Mary, M.; D’Agostino, D.P.; Martinez, P. Targeting the Mitochondrial-Stem Cell Connection in Cancer Treatment: A Hybrid Orthomolecular Protocol. Journal of Orthomolecular Medicine 2024, 39, (3).; Available online: https://isom.ca/wp-content/uploads/2024/09/Targeting-the-Mitochondrial-Stem-Cell-Connection-in-Cancer-Treatment-JOM-39.3.pdf.
- Schoenfeld, J.D.; Sibenaller, Z.A.; Mapuskar, K.A.; Wagner, B.A.; Cramer-Morales, K.L.; Furqan, M.; Sandhu, S.; Carlisle, T.L.; Smith, M.C.; Abu Hejleh, T.; Berg, D.J.; Zhang, J.; Keech, J.; Parekh, K.R.; Bhatia, S.; Monga, V.; Bodeker, K.L.; Ahmann, L.; Vollstedt, S.; Brown, H.; Shanahan Kauffman, E.P.; Schall, M.E.; Hohl, R.J.; Clamon, G.H.; Greenlee, J.D.; Howard, M.A.; Schultz, M.K.; Smith, B.J.; Riley, D.P.; Domann, F.E.; Cullen, J.J.; Buettner, G.R.; Buatti, J.M.; Spitz, D.R.; Allen, B.G. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 2017, 31, (4), 487-500.e8. [CrossRef]
- Elliott, R.L.; Jiang, X.P.; Head, J.F. Mitochondria Organelle Transplantation: Introduction of Normal Epithelial Mitochondria into Human Cancer Cells Inhibits Proliferation and Increases Drug Sensitivity. Breast Cancer Res Treat 2012, 136, (2), 347–354. [CrossRef]
- Tan, A.S.; Baty, J.W.; Dong, L.-F.; Bezawork-Geleta, A.; Endaya, B.; Goodwin, J.; Bajzikova, M.; Kovarova, J.; Peterka, M.; Yan, B.; Pesdar, E.A.; Sobol, M.; Filimonenko, A.; Stuart, S.; Vondrusova, M.; Kluckova, K.; Sachaphibulkij, K.; Rohlena, J.; Hozak, P.; Truksa, J.; Eccles, D.; Haupt, L.M.; Griffiths, L.R.; Neuzil, J.; Berridge, M.V. Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metab 2015, 21, (1), 81–94. [CrossRef]
- Scatena, R. Mitochondria and Cancer: A Growing Role in Apoptosis, Cancer Cell Metabolism and Dedifferentiation. Adv Exp Med Biol 2012, 942, 287–308. [CrossRef]
- Zadik, Y.; Arany, P.R.; Fregnani, E.R.; Bossi, P.; Antunes, H.S.; Bensadoun, R.-J.; Gueiros, L.A.; Majorana, A.; Nair, R.G.; Ranna, V.; Tissing, W.J.E.; Vaddi, A.; Lubart, R.; Migliorati, C.A.; Lalla, R.V.; Cheng, K.K.F.; Elad, S.; Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO) Systematic Review of Photobiomodulation for the Management of Oral Mucositis in Cancer Patients and Clinical Practice Guidelines. Support Care Cancer 2019, 27, (10), 3969–3983. [CrossRef]
- Callaway, N.L.; Riha, P.D.; Bruchey, A.K.; Munshi, Z.; Gonzalez-Lima, F. Methylene Blue Improves Brain Oxidative Metabolism and Memory Retention in Rats. Pharmacol Biochem Behav 2004, 77, (1), 175–181. [CrossRef]
- Riha, P.D.; Bruchey, A.K.; Echevarria, D.J.; Gonzalez-Lima, F. Memory Facilitation by Methylene Blue: Dose-Dependent Effect on Behavior and Brain Oxygen Consumption. Eur J Pharmacol 2005, 511, (2–3), 151–158. [CrossRef]
- Rojas, J.C.; Bruchey, A.K.; Gonzalez-Lima, F. Neurometabolic Mechanisms for Memory Enhancement and Neuroprotection of Methylene Blue. Prog Neurobiol 2012, 96, (1), 32–45. [CrossRef]
- Tucker, D.; Lu, Y.; Zhang, Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018, 55, (6), 5137–5153. [CrossRef]
- Gonzalez-Lima, F.; Barksdale, B.R.; Rojas, J.C. Mitochondrial Respiration as a Target for Neuroprotection and Cognitive Enhancement. Biochem Pharmacol 2014, 88, (4), 584–593. [CrossRef]
- Gonzalez-Lima, F.; Auchter, A. Protection against Neurodegeneration with Low-Dose Methylene Blue and near-Infrared Light. Front Cell Neurosci 2015, 9, 179. [CrossRef]
- Donegan, S. Novel Treatment for the Management of Ifosfamide Neurotoxicity: Rationale for the Use of Methylene Blue. J Oncol Pharm Pract 2001, 6, (4), 153–165; Available online: https://doi.org/10.1177/107815520100600404. [CrossRef]
- Jiang, H.; Tiche, S.J.; He, C.J.; Liu, J.; Bian, F.; Jedoui, M.; Forgo, B.; Islam, M.T.; Zhao, M.; Emengo, P.; He, B.; Li, Y.; Li, A.M.; Truong, A.T.; Ho, J.; Simmermaker, C.; Yang, Y.; Zhou, M.-N.; Hu, Z.; Svensson, K.J.; Cuthbertson, D.J.; Hazard, F.K.; Xing, L.; Shimada, H.; Chiu, B.; Ye, J. Restoring Mitochondrial Quantity and Quality to Reverse the Warburg Effect and Drive Neuroblastoma Differentiation. Proc Natl Acad Sci U S A 2025, 122, (36), e2502483122. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
