Submitted:
08 October 2025
Posted:
08 October 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. General Expression of URs and Basic Relationship
2.1. General Expression of URs for Two PQs
2.2. Basic Relationship
2.3. General Expression of URs for n PQs
3. Planck Scale
3.1. Basic Planck Scale
3.2. Derived Planck Scale
3.3. Classifications
4. GRE
4.1. Proof of Basic Relationship
4.2. GRE
4.3. Proving GRE
4.4. Proving URs
5. Application
5.1. Bing Bang UR and SBH UR
5.1.1. Big Bang UR
5.1.2. SBH UR
5.2. Power Product Relationship Between Two PQs
5.2.0. For the GRE (15), when n = 2, We Obtain
5.2.1. Assuming That Energy E Has Relations with Mass M only, We Find
5.2.1.1. Ordering 1+b = 0, → b =−1, We Obtain
5.2.1.2. Instructing 5+b = 0, → b =−5,We Have
5.2.1.3. Ordering b = 1, We Gain
5.2.2. Supposing That Energy E Has Relations with Frequency ω Merely, We Find
5.2.2.1. Instructing 1+b = 0, → b =−1, We Gain
5.2.2.2. Ordering 1−b = 0, → b = 1, We Obtain
5.2.2.3. Instructing b =−3, We Have
5.2.3. Assuming That Energy E Has Relations with Energy Density ρ Only, We Find
5.2.3.1. Ordering 1−2b = 0, → b = 1/2, We Obtain
5.2.3.2. Instructing 1+4b = 0, → b =−1/4, We Obtain
5.2.3.3. Ordering b =−1/2, We Gain
5.2.4. Supposing That Distance R Has Relations with mass M Merely, We Find
5.2.4.1. Instructing 1+b = 0, → b =−1, We Obtain
5.2.4.2. Ordering 1−b = 0, → b = 1, We Gain
5.2.4.3. Instructing 3−b = 0, → b = 3, We Have
5.2.4.4. Ordering b =−3, We Obtain
5.2.5. Assuming That Energy Density ρ Has Relations with Distance R Only, We Find
5.2.5.1. Instructing 2−b = 0, → b = 2, We Obtain
5.2.5.2. Ordering 4−b = 0, → b = 4, We Gain
5.2.5.3. Instructing 14−3b = 0, → b = 14/3, We Have
5.2.5.4. Ordering b = 6, We Obtain
5.2.6. Supposing That Per Area Force f Has Relations with Distance R Merely, We Find
5.2.6.1. Instructing 4−b = 0, → b = 4, We Gain
5.2.6.2. Ordering 2−b = 0, → b = 2, We Obtain
5.2.6.3. Instructing 14−3b = 0, → b =14/3, We Have
5.2.6.4. Ordering b = 6, We Obtain
5.2.7. Assuming That Radiation Density has Relations with Frequency Only, We Find
5.2.7.1. Instructing 3+b = 0, → b =−3, We Obtain
5.2.7.2. Ordering 1+b = 0, → b =−1, We Gain
5.2.7.3. Instructing 9+5b = 0, → b =−9/5, We Have
5.2.7.4. Ordering b =−5, We Get
5.2.8. Supposing That Energy Density has Relations with Temperature T Merely, We Find
5.2.8.1. Instructing 4+b = 0, → b =−4, We Obtain
5.2.8.2. Ordering 2−b = 0, → b = 2, We Gain
5.2.8.3. Instructing 14+5b = 0, → b =−14/5, We Obtain
5.2.8.4. Ordering b =−2, We Get
5.2.9. Assuming That Acceleration a Has Relations with Temperature T Only, We Find
5.2.9.1. Instructing 1+b = 0, → b =−1, We Gain
5.2.9.2. Ordering 1−b = 0, → b = 1, We Obtain
5.2.9.3. Instructing 7+5b = 0, → b =−7/5, We Have
5.2.9.4. Ordering b =−3, We Obtain
5.2.10. Supposing That Entropy Density s Has Relations with Temperature T Merely, We Find
5.2.10.1. Instructing 3+b = 0, → b =−3, We Obtain
5.2.10.2. Ordering 3−b = 0, → b = 3, We Have
5.2.10.3. Instructing 9+5b = 0, → b =−9/5, We Get
5.2.10.4. Ordering 1−b = 0, → b = 1, We Gain
5.2.10.5. Instructing b =−1, We Obtain
5.2.11. Assuming That Energy Density ρ Has Relations with Acceleration a Only, We Find
5.2.11.1. Instructing 2+α = 0, → α = −2, We Obtain
5.2.11.2. Ordering 4+α = 0, → α = −4, We Gain
5.2.11.3. Instructing α =−6, We Obtain
5.2.12. Assuming That Curvature Tensor
5.2.12.1. Ordering 1+b = 0, → b =−1, We Gain
5.2.12.2. Instructing 1+2b = 0, → b =−1/2, We Obtain
5.2.12.3. Ordering 3+7b = 0, → b =−3/7, We Have
5.2.13. Supposing That Lagrange Density Function
5.2.13.1. Instructing 2+b = 0, → b =−2, We Obtain only
5.2.14. Assuming That Superfluid Density has Relations with Voltage Only, We Find
5.2.14.1. Ordering 2+b = 0, → b =−2, We Obtain
5.2.14.2. Instructing 6+5b = 0, → b =−6/5, We Obtain
5.3. Power Product Relationship Between Three PQs
5.3.0. Similarly When n = 3, We Obtain
5.3.1. Assuming That Energy E Has Relations with Mass M and Distance r, We Find
5.3.1.1. Instructing 1+b+j = 0, and 5+b−3j = 0 → b =−2 and j = 1, We Obtain
5.3.1.2. Ordering 1+b−j = 0, and 5+b−3j = 0 → b = 1 and j = 2, We Gain
5.3.1.3. Instructing 1+b+j = 0, and 1+b−j = 0 → b =−1 and j = 0, We Obtain
5.3.1.4. Ordering b =−1 and j =2, We Gain
5.3.2. Supposing That Energy E has Relations with Electric Charge Q and Distance r, We Find
5.3.2.1. Ordering 1+b+j = 0, and 1−j = 0 → b =−2 and j = 1, also 5+b−3j = 0, We Gain Only
5.3.3. Assuming That Acceleration a Has Relations with Force F and Mass M, We Find
5.3.3.1. Instructing 1−j = 0, and 1+2b+j = 0 → b =−1 and j = 1, also 7+8b+j = 0, We Obtain Merely
5.3.4. Supposing That Acceleration a Has Relations with Mass M and Distance r, We Find
5.3.4.1. Ordering 1−b−j = 0, and 7+b−3j = 0 → b =−1 and j = 2, We Gain
5.3.4.2. Instructing 1+b−j = 0, and 7+b−3j = 0 → b = 2 and j = 3, We Have
5.3.4.3. Ordering 1−b−j = 0, and 1+b−j = 0 → b = 0 and j = 1, We Obtain
5.3.5. Assuming That Pressure p Has Relations with Volume V and Temperature T, We Find
5.3.5.1. Instructing 2−3b−j = 0, and 4−3b+j = 0 → b = 1 and j =−1, also 14−9b+5j = 0, We Obtain Only
5.3.6. Assuming That Thickness D Has Relations with Temperature T and Resistance R, We Find
5.3.6.1. Ordering 1−b = 0 → b = 1, We Obtain
5.3.6.2. Instructing 1−b = 0, and 3−5b+2j = 0 → b = 1 and j = 1, We Gain Also
5.3.6.3. Ordering 1+b = 0 and 3−5b+2j = 0→ b =−1 and j =−4, We Obtain
5.3.7. Supposing That Temperature T has Relations with Superfluid Density
5.3.7.1. Ordering 1+2b+j = 0→j =−(1+2b), We Get
5.3.7.2. Ordering 1−2b+j = 0 and 5+6b+j = 0, → b =−1/2, j =−2, We Gain
5.3.8. Assuming That Conductivity
5.3.8.1. Ordering 1−b−3j = 0, and 5−5b−9j = N → b =(2−N)/2 and j = N/6, Where N Is a Fitted Number, We Gain
5.3.8.2. Instructing 1+b−3j = 0, and 5−5b−9j = N → b =(2−N)/8 and j = (10−N)/24, We Gain
5.3.9. Supposing That Force F Has Relations with Hamiltonian Function H and Curvature , We Find
5.3.9.1. Instructing b−j = 0, and 2+b+j = 0 → b =−1 and j =−1, also 8+5b+3j = 0, We Obtain Merely
5.4. Power Product Relationship Between Four PQs
5.4.0. Similarly When n = 4, We Obtain
5.4.1. Supposing That Force F Has Relations with Mass M, Speed
5.4.1.1. Ordering b+l = 0, 2+b−l = 0 and 8+b+2j−3l = 0
6. Conclusion
Notes
-
1Chien Wei-Zang used L, M, T, θ and Q indicated the dimensions of length, mass, time, temperature and electric charge separately in [97].
References
- W. Heisenberg, Z. Phys. 43, 172 (1927); The Physical Principles of the Quantum Theory, University of Chicago Press (1930), Dover edition (1949).
- J.A. Wheeler, W.H. Zurek (Eds.), Quantum Theory and Measurement, Princeton Univ. Press, Princeton, NJ, P. 62, 84 (1983).
- S.W. Hawking, Commun. Particle creation by black holes, Math. Phys. 43, 199-220 (1975); Nature (London). 248 30 (1974). [CrossRef]
- Y-d. Zhang, J-w. Pan, H. Rauch, Fundamental Problems in Quantum Theory: Annals of the New York Academy of Sciences, 755 353, 353-360 (1995).
- D. Amati, M. Ciafaloni, and G. Veneziano, Can spacetime be probed below the string size? Phys. Lett.B216, 41 (1989). [CrossRef]
- A. Kempf, G. Mangano, and R. B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D52, 1108 (1995). [CrossRef]
- L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations, Phys.Rev. D65,125027 (2002). [CrossRef]
- L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D65,125028 (2002).
- A. Tawfik and A. Diab, Generalized Uncertainty Principle: Approaches and Applications, Int. J. Mod. Phys. D 1430025 (2014). [CrossRef]
- J.L. Cortes and J. Gamboa, Quantum uncertainty in doubly special relativity, Phys. Rev. D 71, 065015 (2005). [CrossRef]
- J. MagueijoandL. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67, 044017 (2003). [CrossRef]
- G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer- independent (Planckian) length scale, Int. J. Mod. Phys. D 11, 35 (2002); Doubly-Special Relativity: First Results and Key Open Problems, Int. J. Mod. Phys. D 11, 1643 (2002).
- A. Tawfik, Impacts of Generalized Uncertainty Principle on Black Hole Thermodynamics and Salecker-Wigner Inequalities, JCAP 1307, 040 (2013). [CrossRef]
- A. F. Ali and A. Tawfik, Adv. Modified Newton‖s Law of Gravitation due to Minimal Length in Quantum Gravity, High Energy Phys. 2013, 126528 (2013); 2013 Effects of the Generalized Uncertainty Principle on Compact Stars, Int. J. Mod. Phys. D 22, 1350020 (2013).
- A. Tawfik, H. Magdy and A.Farag Ali, Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe, Gen. Rel. Grav. 45, 1227 (2013); Lorentz Invariance Violation and Generalized Uncertainty Principle, arXiv: physics.gen- ph/1205.5998.
- I. Elmashad, A.F. Ali, L.I. Abou-Salem, Jameel-Un Nabi and A. Tawfik, Quantum Gravity effect on the Quark-Gluon Plasma, Trans. Theor. Phys, 1,106 (2014).
- A. Tawfik and A. Diab, Black Hole Corrections due to Minimal Length and Modified Dispersion Relation, submitted to Int. J. Mod. Phys. D (2014). [CrossRef]
- A. F. Ali, S. Das and E. C. Vagenas, The Generalized Uncertainty Principle and Quantum Gravity Phenomenology, The Twelfth Marcel Grossmann Meeting: pp. 2407-2409. (2012). A. Na. Tawfik, Generalized Uncertainty Principle and Recent Cosmic Inflation Observations, Electron. J. Theor. Phys. 12, 9-30 (2015). M. Faizal, M. M. Khalil, S. Das, Time Crystals from Minimum Time Uncertainty, Eur. Phys. J. C 76, 30 (2016).
- Jun-Li Li, Cong-Feng Qiao, Reformulating the Quantum Uncertainty Relation, Sic. Rep. 5, 12708 (2015). [CrossRef]
- S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan, and T.Takeuchi, Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation, Phys. Rev. D66, 026003 (2002). [CrossRef]
- P. Dzierzak, J. Jezierski, P. Malkiewicz, and W. Piechocki, The minimum length problem of loop quantum cosmology, ActaPhys.Polon. B 41, 717 (2010).
- L. J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10, 145 (1995). [CrossRef]
- C. Bambi, F. R. Urban, Natural extension of the Generalised Uncertainty Principle, Class. Quantum Grav. 25, 095006 (2008). [CrossRef]
- K. Nozari, Phys. Minimal length and bouncing-particle spectrum, Lett. B. 629, 41 (2005). [CrossRef]
- A. Kempf, G. Mangano and R. B. Mann, Phys. Rev. D 52, 1108 (1995).
- A. Kempf, Nonpointlike Particles in Harmonic Oscillators, J. Phys. A 30, 2093 (1997). [CrossRef]
- S. Das, and E. C. Vagenas, Universality of Quantum Gravity Corrections, Phys. Rev. Lett. 101, 221301 (2008). [CrossRef]
- S. Das, E. C. Vagenas and A. F. Ali, iscreteness of space from GUP II: Relativistic wave equations, Phys. Lett. B 690, 407 (2010). [CrossRef]
- M.J.W. Hall, Quantum properties of classical Fisher information, Phys. Rev. A 62, 012107 (2000); Exact uncertainty relations, Phys. Rev.A64 052103 (2001).
- M.J.W. Halland M. Reginatto, Schrodinger equation from an exact uncertainty principle, J. Phys. A: Math. Gen. 35, 3289 (2002); Quantum mechanics from a Heisenberg- type equality, Fortschritte der Physik 50, 646-651 (2002).
- Ch-F. Li, J-Sh. Xu, X-Y. Xu, K. Li, G-c. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nature. Phy., 7, 10, 752, 756 (2011). [CrossRef]
- H. P. Robertson, The Uncertainty Principle, Phys. Rev. 34, 163-164 (1929). [CrossRef]
- E. Arthurs, M. S. Goodman, Quantum Correlations: A Generalized Heisenberg Uncertainty Relation, Phys. Rev. Lett. 60, 2447–2449 (1988). [CrossRef]
- S. Ishikawa, Uncertainty relations in simultaneous measurements for arbitrary observables, Rep. Math. Phys. 29, 257-273 (1991). [CrossRef]
- M. Ozawa, Quantum limits of measurements and uncertainty principle. pp 3-17 in Bendjaballah, C. et al. (eds) Quantum Aspects of Optical Communications. (Springer, Berlin, 1991).
- M. Ozawa, Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A 67, 042105 (2003); Uncertainty Relations for Noise and Disturbance in Generalized Quantum Measurements, Ann. Phys. 311, 350-416 (2004); Physical content of Heisenberg’s uncertainty relation: Limitation and reformulation, Phys. Lett. A 318, 21-29 (2003).
- R. F. Werner, The uncertainty relation for joint measurement of position and momentum, Inf. Comput. 4, 546-562 (2004).
- M. Ozawa, Universal Uncertainty Principle in the Measurement Operator Formalism, J. Opt. B: Quantum Semiclass. Opt. 7, S672 (2005). [CrossRef]
- J. Erhart, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegawa, Experimental demonstration of a universally valid error–disturbance uncertainty relation in spin measurements, Nature Physics volume 8, pages185–189 (2012).
- Wenchao Ma et al., Experimental Demonstration of Uncertainty Relations for the Triple Components of Angular Momentum, Phys.Rev.Lett. 118, 180402 (2017). [CrossRef]
- M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, 1987; Vol. I and Vol. II, Cambridge University Press, 1988.
- J. Polchinski, String Theory, Vol. I and Vol. II, Cambridge University Press (1998).
- K. Becker, M. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press (2007).
- C. Revelli, L. Smolin, Loop space representation of quantum general relativity, Nuclear physics B 331, 80 (1990). [CrossRef]
- M. Bojowald, Absence of a Singularity in Loop Quantum Cosmology, Phys. Rev. Lett.86, 5227-5230 (2001). [CrossRef]
- H. Viqar, W. Oliver, Phys. Singularity resolution in quantum gravity, Rev. D 69, 084016 (2004). [CrossRef]
- L. Modesto, Phys. Disappearance of the black hole singularity in loop quantum gravity, Rev. D 70, 124009 (2004). [CrossRef]
- LIU ChangZhou, YU Guoxiang, XIE ZhiFang, The spacetime singularity resolution of Schwarichild-de Sitter black hole in loop quantum gravity, Acta. Physica. Sinica., 59, 3 (2010).
- Y.J. Wang, Black Hole Physics, ChangSha: HuNan Normal University Press (2000.4).
- A.F. Ali, S. Das, Cosmology from Quantum Potential, Phys. Lett. B 741, 276-279 (2015). [CrossRef]
- D. Wang, F. Ming, M. L. Hu, L. Ye. Quantum-memory- assisted entropic uncertainty relations, Ann. Phys. (Berlin) 531, 1900124 (2019). [CrossRef]
- D. Deutsch, Uncertainty in Quantum Measurements, Phys. Rev. Lett. 50, 631 (1983). [CrossRef]
- S. Wehner, A. Winter, New. Entropic uncertainty relations - A survey, J. Phys. 12, 025009 (2010). [CrossRef]
- K. Kraus, Phys. Rev. D 35, 3070 (1987).
- H. Maassen, J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988). [CrossRef]
- H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89, 115101 (2014). [CrossRef]
- Z. Y. Xu, W. L. Yang, M. Feng, Quantum-memory- assisted entropic uncertainty relation under noise, Phys. Rev. A 86, 012113 (2012). [CrossRef]
- A. J. Huang, J. D. Shi, D. Wang, L. Ye, Steering quantum memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017). [CrossRef]
- J. Zhang, Y. Zhang, C. S. Yu, Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory, Sci. Rep. 5, 11701 (2015). [CrossRef]
- S. Liu, L. Z. Mu, H. Fan, Entropic uncertainty relations for multiple measurements, Phys. Rev. A 91, 042133 (2015). [CrossRef]
- D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7, 1066 (2017). [CrossRef]
- D. Wang, A. J. Huang, W. Y. Sun, J. D. Shi, L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14, 055205 (2017). [CrossRef]
- M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6, 659 (2010). [CrossRef]
- Y. H. Kim, Y. Shih, Found. Phys.29, 1849 (1999).
- M. Tomamichel, R. Renner, Uncertainty Relation for Smooth Entropies, Phys. Rev. Lett. 106, 110506 (2011). [CrossRef]
- C. F. Li, J. S. Xu, X. Y. Xu, K. Li, G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7, 752 (2011). [CrossRef]
- R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7, 757 (2011). [CrossRef]
- J. M. Renes, J. C. Boileau, Conjectured Strong Complementary Information Tradeoff, Phys. Rev. Lett. 103, 020402 (2009). [CrossRef]
- P. Bosso, G. G. Luciano, L. Petruzziello, et al., 30 years in: Quo vadis generalized uncertainty principle? Class. Quant. Grav. 40, 19, 195014 (2023). [CrossRef]
- R. A. El-Nabulsi, W. Anukool, Generalized uncertainty principle from long-range kernel effects: The case of the Hawking black hole temperature. Chin. Phys. B, 2023, Vol. 32(9): 090303 (2023). [CrossRef]
- H. Garcia-Compean, D. Mata-Pacheco, Generalized uncertainty principle effects in the Hořava-Lifshitz quantum theory of gravity, arXiv: gr-qc/2112.10903.
- A. Iorio, G. Lambiase, P. Pais, F. Scardigli, Generalized uncertainty principle in three-dimensional gravity and the BTZ black hole. Journal reference: Phys. Rev. D 101, 105002 (2020), arXiv: hep-th/1910.09019.
- R. C. Pantig, K. Y. Paul, E. T. Rodulfo, A. Övgün, Shadow and weak deflection angle of extended uncertainty principle black hole surrounded with dark matter. Annals of Physics 436, 168722 (2022), arXiv: gr-qc/2104.04304.
- A. Pachoł, Generalized Extended Uncertainty Principles, Liouville theorem and density of states: Snyder-de Sitter and Yang models. Nucl. Phys. B 1010, 116771 (2025), arXiv: hep-th/2409.05110.
- F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects, Nuovo. Cim, A 42, 390 (1966). [CrossRef]
- P.K. Kovtun, D.T. Son and A. O. Starinets, Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics, Phys. Rev. Lett.94, 111601(2005). [CrossRef]
- T. Yoneya, Duality and Indeterminacy Principle in String Theory in Wandering in the Fields, eds. K. Kawarabayashi and A. Ukawa, P.419 (World Scientific, 1987); see also String Theory and Quantum Gravity in uantum String Theory, eds. N. Kawamoto and T. Kugo, P.23 (Spring, 1988).
- T. Yoneya, Mod. on The Interpretation of Miniml Length in String Theories, Phys. Lett. A4, 1587 (1989). [CrossRef]
- M. Li and T. Yoneya,Short-Distance Space-Time Structure and Black Holes in String Theory: A Short Review of the Present Status, Chaos Solitons Fractals 10: 423-443 (1999). [CrossRef]
- T. Yoneya, Schild Action and Space-Time Uncertainty Principle in String Theory, Prog. Theor. Phys. 97, 949 (1997); D-Particles, D-Instantons, and A Space-Time Uncertainty Principle in String Theory, arXiv: hep-th/9707002; String Theory and the Space-Time Uncertainty Principle, Prog. Theor. Phys. 103, 1081 (2000); Space-time uncertainty and noncommutativity in string theory, Int. J. Mod. Phys. A 16, 945 (2001); e-Print: hep-th/0010172.
- M. Li and T. Yoneya, Pointlike D-brane Dynamics and Space-Time Uncertainty Relation, Phys. Rev. Lett. 78, 1219 (1997); Chaos Solitons Fractals10, 423 (1999). [CrossRef]
- A. Jevicki and T. Yoneya, Space-time uncertainty principle and conformal symmetry in D-particle dynamics, Nucl. Phys. B 535, 335 (1998). [CrossRef]
- H. Awata, M. Li, D. Minic and T. Yoneya, On the Quantization of Nambu Brackets, JHEP 0102, 013 (2001). [CrossRef]
- D. Minic, On the space-time uncertainty principle and holography, Phys. Lett. B 442, 102 (1998). [CrossRef]
- L. N. Chang,Z. Lewis,D. Minic,and T. Takeuchi, On the Minimal Length Uncertainty Relation and the Foundations of String Theory, Advances in High Energy Physics 2011, 493514 (2011). [CrossRef]
- C.J. Hogan, Quantum Gravitational Uncertainty of Transverse Position, arXiv: astro-ph/0703775; Spacetime Indeterminacy and Holographic Noise, arXiv: gr-qc/0706.1999.
- M. Li and Y. Wang, Quantum UV/IR Relations and Holographic Dark Energy from Entropic Force, Phys. Lett. B 687: 243-247 (2010). [CrossRef]
- Y-X. Chen and Y. Xiao, Space–time uncertainty relation from quantum and gravitational principles, Phys. Lett. B 666: 371 (2008). [CrossRef]
- M. Planck, über irreversible Strahlungsvorgänge, Akad. Wiss. Berlin, Kl. Math-Phys. Tech., 5: 440–480 (1899).
- M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, P. 164. J.A. Barth, Leipzig (1906).
- J. Magueijo, and L. Smolin, Lorentz Invariance with an Invariant Energy Scale, Phys. Rev. Lett. 88, 190403 (2002); String theories with deformed energy-momentum relations, and a possible nontachyonic bosonic string, Phys. Rev. D 71, 026010 (2005).
- J. L. Cortes and J. Gamboa, Quantum uncertainty in doubly special relativity, Phys. Rev. D 71, 065015 (2005). [CrossRef]
- M. Duff, L.B. Okun, G. Veneziano, Trialogue on the number of fundamental constants, JHEP 0203, 023 (2002); arXiv: physics.class-ph /0110060.
- F. Wilczek, Fundamental Constants, arXiv: physics.gen- ph/ 0708.4361; Frank Wilczek web site.
- S. Weinstein and D. Rickles, Quantum gravity, in Edward N. Zalta, editor, The Stanford Ency-clopedia of Philosophy. Spring 2011 edition (2011).
- M. Tajmar, Derivation of the Planck Mass from Gravitational Polarization of the Quantum Vacuum, Physics Essays 25(3), 466-469 (2012).
- Chien Wei-Zang, Applied Mathematics, Anhui Science and Technology Press, P. 154 (1993).
- S. Weinberg, The cosmological constant problem, Rev. Mod. Phys.61, 1 (1989). [CrossRef]
- G. Moultaka, M. Rausch de Traubenberg and D. Tant, Low Energy Supergravity Revisited (I), arXiv: hep-th /1611.10327.
- S. Ferrara and A. Sagnotti, Supergravity at 40: Reflections and Perspectives, Riv. NuovoCim. 40, no. 6, 1 (2017). [CrossRef]
- P. C. West, Introduction to supersymmetry and supergravity, Singapore, Singapore: World Scientific 425 p (1990).
- J. Wess and J. Bagger, Supersymmetry and Supergravity, Second Edition, Princeton University Press (1992).
- I. L. Buchbinder and S. M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, Bristol, UK: IOP 656 p (1998).
- D. Z. Freedman and A. Van Proeyen, ‘Supergravity’, Cambridge, UK: ISBN: 9781139368063 (eBook), 9780521194013 (Print) (Cambridge University Press). Page 371 (2012); PranNath, Supersymmetry, Supergravity, and Unification (Cambridge Monographs on Mathematical Physics), Dec 15 (2016).
- M. Kaku, Quantum Field Theory, A Modern Introduction, Oxford University Press (1993).
- F. Englert, Broken Symmetry and the Mass of Gauge Vector Mesons, R. Brout, Phys. Rev. Lett., 13, 9: 321–23 (1964).
- P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett.,13, 508-509 (1964).
- G.S. Guralnik, C. R.Hagen, T. W. B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett.13, 20: 585–587 (1964).
- P. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.,12, 2: 132–133 (1964).
- O’Luanaigh, C, New results indicate that new particle is a Higgs boson, CERN. (2013-10-09).
- Bryner, J, Particle confirmed as Higgs boson, NBC News. (2013-03-14).
- Heilprin, J, Higgs Boson Discovery Confirmed After Physicists Review Large Hadron Collider Data at CERN,The Huffington Post. (2013-03-14).
- D. Finkelstein, The space-time code, Phys. Rev.184, 1261-71 (1969). [CrossRef]
- J. Myrheim, Statistical Geometry, CERN preprint TH2538 (1978).
- G. ’t Hooft, Quantum gravity: a fundamental problem and some radical ideas, pp. 323-45, in Recent Developments in Gravitation (Proceedings of the 1978 Cargese Summer Institute) edited by M. Levy and S. Deser (Plenum, 1979).
- R. D. Sorkin, unpublished. See, for example, A Specimen of Theory Construction from Quantum Gravity, pp. 167-179 in J. Leplin (editor) (1979), The Creation of Ideas in Physics: Studies for a Methodology of Theory Construction, Proceedings of the Thirteenth Annual Symposium in Philosophy (1989).
- Luca Bombelli, Joohan Lee, David Meyer, and Rafael D. Sorkin, Space-Time as a Causal Set, Phys. Rev. Lett. 59, 521-24 (1987); Bombelli et al. reply, Phys. Rev. Lett. 60, 656 (1988).
- G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nucl. Phys. B33. 173 (1971); Renormalizable Lagrangians for massive Yang-Mills fields, id, Nucl. Phys. B35, 167 (1971).
- M. Niedermaier, M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Relativity, 9, 5 (2006).
- J. Ambjørn, J. Jurkiewicz and R. Loll, Nonperturbative 3D Lorentzian quantum gravity, Phys. Rev. D 64 044011 (2001); Dynamically Triangulating Lorentzian Quantum Gravity, Nucl.Phys. B610, 347-382 (2001).
- J. Ambjørn, J. Jurkiewicz and R. Loll, Emergence of a 4D World from Causal Quantum Gravity, Phys. Rev. Lett. 93, 131301 (2004). [CrossRef]
- J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral Dimension of the Universe, Phys. Rev. Lett.95, 171301 (2005). [CrossRef]
- J. Ambjørn, J. Jurkiewicz and R. Loll, The Universe from Scratch, Contemp. Phys. 47, 103-117 (2006). [CrossRef]
- A. G. Lisi, An Exceptionally Simple Theory of Everything, arXiv: hep-th/0711.0770; An Explicit Embedding of Gravity and the Standard Model in E8, arXiv: gr-qc/1006.4908; Lie Group Cosmology, arXiv: gr-qc/1506.08073.
- T. Ma and SH.H. Wang, Unified Field Equations Coupling Four Forces and Principle of Interaction Dynamics, DCDS-A, 35: 3, 1103-1138 (2015).
- T. Ma, See Physical World from Mathematical Point of View: Elementary Particle and Unified Field Theory, Science Press (2014).
- Z-Y. Shen, A New Version of Unified Field Theory— Stochastic Quantum Space Theory on Particle Physics and Cosmology, Journal of Modern Physics, 4, 1213-1380 (2013).
- Yue-Liang Wu, Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation, Phys. Rev. D 93, 024012 (2016); Hyperunified field theory and gravitational gauge-geometry duality, Eur. Phys.J. C 78: 28 (2018); arXiv: hep-th/1712.04537.
- J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt et al., Improved measurement of the shape of the electron, Nature 473, 493-496 (2011). [CrossRef]
- S.W. Hawking and R. Penrose, The Singularities of Gravitational Collapse and Cosmology, Proc. Roy. Soc. London. A 314, 529, 48 (1970). [CrossRef]
- S.W. Hawking, F.R. Ellis, The large scale structure of space-time, Cambridge University Press (1973).
- J.K. Beem, and P.E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York (1981).
- L. Masanes, J. Oppenheim, A general derivation and quantification of the third law of thermodynamics, (2017). [CrossRef]
- W.G. Unruh and R.M. Wald, Acceleration radiation and the generalized second law of thermodynamics, Phys. Rev. D 25, 942; How to mine energy from a black hole, Gen. Rel. Grav., 15, 195 (1983); Entropy bounds, acceleration radiation, and the generalized second law, Phys. Rev. D 27, 2271 (1983).
- D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Hec-kel, C.D. Hoyle and H.E. Swanson, Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale, Phys.Rev. Lett. 98, 021101 (2007). [CrossRef]
- R. Sundrum, Fat gravitons, the cosmological constant and submillimeter tests, Phys.Rev. D 69, 044014 (2004). [CrossRef]
- Y. Bao, Relations of Energy Density and Its Entropic Density with Temperature Concerning Schwarzschild Black Hole and Holographic Dark Energy, vixra: 1409.0159.
- A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Physik, 49, 769 (1916).
- M.A. Abramowicz, T. Bulik, M. Bursa, W. Kluzniak, Evidence for a 2: 3 resonance in Sco X-1 kHz QPOs, A&A, 404, L21 (2003).
- M.A. Abramowicz, W. Kluzniak, A Precise determination of angular momentum in the black hole candidate GRO J1655-40, Astron.Astrophys. 374 L19 (2001); e-Print: astro-ph/0105077.
- M.A. Abramowicz, W. Kluzniak, J.E. McClintock, R.A. Remillard, The Importance of Discovering a 3: 2 Twin-Peak Quasi-periodic Oscillation in an Ultraluminous X-Ray Source, or How to Solve the Puzzle of Intermediate-Mass Black Holes, ApJL, 609, L63 (2004). [CrossRef]
- M.A. Abramowicz, F.K. Liu, Mass estimate of the Swift J 164449.3+573451 supermassive black hole based on the 3: 2 QPO resonance hypothesis, A&A, 548, 3 (2012).
- R.A. Remillard, J.E. McClintock, X-Ray Properties of Black-Hole Binaries, ARA&A, 44, 49 (2006).
- Meng Qing-miao, Generalized Stefan-Boltzmann Law for Spherically Symmetric Dynamic Black Holes, Journal of Heze Teachers College, 26, 2 (2004).
- R.A. Remillard, X-ray QPOs from Black Hole Binary Systems, AIPC, 714, 13 (2004). [CrossRef]
- X-L. Zhou, W.M. Yuan, H-W. Pan, and Z. Hiu, Universal scaling of the 3: 2 twin-peak quasi-periodic oscillation frequencies with black hole mass and spin revisited, ApJ. Letter,798, L5 (2015). [CrossRef]
- R.A. Remillard, M.P. Muno, J.E. McClintock, J.A. Orosz, Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550–564 and GRO J1655–40, ApJ, 580, 1030 (2002). [CrossRef]
- D. Cloweet al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109 (2006), e-print: astro-ph/0608407. [CrossRef]
- M. Li, A Model of Holographic Dark Energy, Phys. Lett. B 603, 1 (2004). [CrossRef]
- LI Miao, LI Xiao-Dong, WANG Shuang, and WANG Yi, Dark Energy, Commun. Theor. Phys., 56, 525-640 (2011).
- Qihong Huang, He Huang, Jun Chen, Lu Zhang, Feiquan Tu, Stability analysis of the Tsallis holographic dark energy model, Class. Quantum Grav. 36, 175001 (2019). [CrossRef]
- Jun-Xian Li, Shuang Wang,A comprehensive numerical study on four categories of holographic dark energy models, JCAP 07, 04, 7 (2025). [CrossRef]
- C-F. Qiao, Introduction to Quantum Field Theory, College of Physical Sciences, Graducate University, Chinese Academy of Science (2008).
- D. Cho, K. M. Bastiaans, D. Chatzopoulos, G. D. Gu, M. P. Allan, A strongly inhomogeneous superfluid in an iron-based superconductor, Nature 574, 541-545 (2019). [CrossRef]
- Y. Ivry et al., Universal scaling of the critical temperature for thin films near the superconducting-to- insulating transition, Phys. Rev. B 90, 214515 (2014). [CrossRef]
- Yong Tao, Scaling Laws for Thin Films near the Superconducting-to-Insulating Transition, Sci. Rep6. 23863 (2016). [CrossRef]
- Y.J. Uemura et al., Universal Correlations between Tc and nsm* (Carrier Density over Effective Mass) in High-Tc Cuprate Superconductors, Phys. Rev. Lett.62, 2317 (1989). [CrossRef]
- I. Bozovic, X. He, J. Wu A.T. Bollinger, Dependence of the critical temperature in overdoped copper oxides on superfluid density, Nature 536, 309-311 (2016). [CrossRef]
- V. V. Nesvizhevskyet al., Measurement of quantum states of neutrons in the Earth’s gravitational field, Phys. Rev. D 67, 102002 (2003); BPS Multi-Walls in Five- Dimensional Supergravity, Phys.Rev. D69, 025007 (2004).
- Y.J. Uemura et al., Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements, Phys. Rev. Lett. 66, 2317 (1991). [CrossRef]
- I. Bozovic, X. He, J. Wu A.T. Bollinger, Dependence of the critical temperature in overdoped copper oxides on superfluid density, Nature 536, 309-311 (2016). [CrossRef]
- Y. Tomioka, I.H. Inoue, Enhanced superconductivity close to a non-magnetic quantum critical point in electron-doped strontium titanate., Nat.Commun. [CrossRef]
- L. D. Hu, D. K. Lian, Q. H. Liu, The centripetal force law and the equation of motion for a particle on a curved hypersurface, Eur. Phys. J. C 76: 655 (2016). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).