Submitted:
01 October 2025
Posted:
02 October 2025
You are already at the latest version
Abstract
Keywords:
1. Numerical Cognition in Animals
2. Social Dynamics Requires Numbers
2.1. Counting the Group Members
2.2. Ordering the Group
2.3. Group Decision
3. Evolutionary Pressure
3.1. The Adaptive Value of Cognition
3.2. The Social Intelligence Hypothesis
3.3. Refining the Proxies of Sociality
4. Effects of Early Social Deprivation
5. Conclusions & Future Directions
| Pressure | Advantages of numerical processing | |
|---|---|---|
| Individual behavior | Resources availability | Discriminating food resources (feeding) |
| Mating opportunities | Discriminating number of male and female (reproduction) | |
| Habitat complexity | Counting landmark as reference point (navigation) | |
| Parasitism | Reject parasitized eggs (parental care) | |
| Social behavior | Collective foraging and hunting | Optimal distribution during foraging and numerical assessments during hunting strategies (feeding) |
| Territory defense | Use numerical assessment to establish advantages during intergroup conflict (aggression and defense) | |
| Predatory risk | Join larger groups for defense from predators (defense) | |
| Group organization | Ordering group member in hierarchy (navigate social system) | |
| Group cohesion | Initiate collective action (decision-making) |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| OFS | Object File System |
| AMS | Analogue Magnitude System |
| EIH | Ecological Intelligence Hypothesis |
| SIH | Social Intelligence Hypothesis |
References
- Butterworth, B. Can Fish Count?: What Animals Reveal About Our Uniquely Mathematical Minds, New edition; Basic Books, 2022; ISBN 978-1-5416-2081-0. [Google Scholar]
- Rugani, R. Towards Numerical Cognition’s Origin: Insights from Day-Old Domestic Chicks. Philos Trans R Soc Lond B Biol Sci 2017, 373, 20160509. [Google Scholar] [CrossRef]
- Vallortigara, G. Comparative Cognition of Number and Space: The Case of Geometry and of the Mental Number Line. Philos Trans R Soc Lond B Biol Sci 2017, 373, 20170120. [Google Scholar] [CrossRef]
- Pfungst, O. Das Pferd des Herrn von Osten: Der kluge Hans. Ein Beitrag zur experimentellen Tier- und ...; J. A. Barth, 1907.
- Koehler, O. Vom Erlernen unbenannter Anzahlen bei Vögeln. Naturwissenschaften 1941, 29, 201–218. [Google Scholar] [CrossRef]
- Emmerton, J.; Lohmann, A.; Niemann, J. Pigeons’ Serial Ordering of Numerosity with Visual Arrays. Animal Learning & Behavior 1997, 25, 234–244. [Google Scholar] [CrossRef]
- Emmerton, J. Numerosity Differences and Effects of Stimulus Density on Pigeons’ Discrimination Performance. Animal Learning & Behavior 1998, 26, 243–256. [Google Scholar] [CrossRef]
- Meck, W.H.; Church, R.M. A Mode Control Model of Counting and Timing Processes. J Exp Psychol Anim Behav Process 1983, 9, 320–334. [Google Scholar] [CrossRef]
- Jordan, K.E.; Brannon, E.M. A Common Representational System Governed by Weber’s Law: Nonverbal Numerical Similarity Judgments in 6-Year-Olds and Rhesus Macaques. Journal of Experimental Child Psychology 2006, 95, 215–229. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Discrimination of Small Numerosities in Young Chicks. Journal of Experimental Psychology: Animal Behavior Processes 2008, 34, 388–399. [Google Scholar] [CrossRef]
- Dehaene, S. The Number Sense : How the Mind Creates Mathematics; New York : Oxford University Press, 2011; ISBN 978-0-19-975387-1. [Google Scholar]
- Lorenzi, E.; Kobylkov, D.; Vallortigara, G. Is There an Innate Sense of Number in the Brain? Cereb Cortex 2025, 35, bhaf004. [Google Scholar] [CrossRef]
- Burr, D.C.; Anobile, G.; Arrighi, R. Psychophysical Evidence for the Number Sense. Philosophical Transactions of the Royal Society B: Biological Sciences 2018, 373, 20170045. [Google Scholar] [CrossRef] [PubMed]
- Halberda, J.; Mazzocco, M.M.M.; Feigenson, L. Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature 2008, 455, 665–668. [Google Scholar] [CrossRef]
- Starr, A.; Libertus, M.E.; Brannon, E.M. Number Sense in Infancy Predicts Mathematical Abilities in Childhood. Proc Natl Acad Sci U S A 2013, 110, 18116–18120. [Google Scholar] [CrossRef] [PubMed]
- Brannon, E.M.; Terrace, H.S. Ordering of the Numerosities 1 to 9 by Monkeys. Science 1998, 282, 746–749. [Google Scholar] [CrossRef]
- Hauser, M.D.; Carey, S.; Hauser, L.B. Spontaneous Number Representation in Semi–Free–Ranging Rhesus Monkeys. Proceedings of the Royal Society of London. Series B: Biological Sciences 2000, 267, 829–833. [Google Scholar] [CrossRef]
- Rugani, R.; Vallortigara, G.; Priftis, K.; Regolin, L. Number-Space Mapping in the Newborn Chick Resembles Humans’ Mental Number Line. Science 2015, 347, 534–536. [Google Scholar] [CrossRef]
- Agrillo, C.; Piffer, L.; Bisazza, A.; Butterworth, B. Evidence for Two Numerical Systems That Are Similar in Humans and Guppies. PLOS ONE 2012, 7, e31923. [Google Scholar] [CrossRef]
- Howard, S.R.; Avarguès-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Numerical Ordering of Zero in Honey Bees. Science 2018, 360, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Kilian, A.; Yaman, S.; von Fersen, L.; Güntürkün, O. A Bottlenose Dolphin Discriminates Visual Stimuli Differing in Numerosity. Learning & Behavior 2003, 31, 133–142. [Google Scholar] [CrossRef]
- Davis, H.; Bradford, S.A. Counting Behavior by Rats in a Simulated Natural Environment. Ethology 1986, 73, 265–280. [Google Scholar] [CrossRef]
- Izard, V.; Sann, C.; Spelke, E.S.; Streri, A. Newborn Infants Perceive Abstract Numbers. Proceedings of the National Academy of Sciences 2009, 106, 10382–10385. [Google Scholar] [CrossRef] [PubMed]
- Wynn, K. Addition and Subtraction by Human Infants. Nature 1992, 358, 749–750. [Google Scholar] [CrossRef]
- Xu, F.; Spelke, E.S. Large Number Discrimination in 6-Month-Old Infants. Cognition 2000, 74, B1–B11. [Google Scholar] [CrossRef]
- Feigenson, L.; Carey, S.; Spelke, E. Infants’ Discrimination of Number vs. Continuous Extent. Cognitive Psychology 2002, 44, 33–66. [Google Scholar] [CrossRef]
- Lipton, J.S.; Spelke, E.S. Origins of Number Sense: Large-Number Discrimination in Human Infants. Psychol Sci 2003, 14, 396–401. [Google Scholar] [CrossRef]
- Xu, F. Numerosity Discrimination in Infants: Evidence for Two Systems of Representations. Cognition 2003, 89, B15–B25. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, K.D.; Spelke, E.S. Core Systems in Human Cognition. Prog Brain Res 2007, 164, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Spelke, E.S. Core Knowledge. American Psychologist 2000, 55, 1233–1243. [Google Scholar] [CrossRef]
- Vallortigara, G.; Chiandetti, C.; Rugani, R.; Sovrano, V.A.; Regolin, L. Animal Cognition. Wiley Interdiscip Rev Cogn Sci 2010, 1, 882–893. [Google Scholar] [CrossRef]
- Trick, L.M.; Pylyshyn, Z.W. Why Are Small and Large Numbers Enumerated Differently? A Limited-Capacity Preattentive Stage in Vision. Psychol Rev 1994, 101, 80–102. [Google Scholar] [CrossRef]
- Feigenson, L.; Carey, S.; Hauser, M. The Representations Underlying Infants’ Choice of More: Object Files Versus Analog Magnitudes. Psychol Sci 2002, 13, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Gallistel, C.R.; Gelman, R. Preverbal and Verbal Counting and Computation. Cognition 1992, 44, 43–74. [Google Scholar] [CrossRef]
- Wynn, K. Psychological Foundations of Number: Numerical Competence in Human Infants. Trends in Cognitive Sciences 1998, 2, 296–303. [Google Scholar] [CrossRef]
- Feigenson, L.; Libertus, M.E.; Halberda, J. Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Dev Perspect 2013, 7, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Piazza, M.; Facoetti, A.; Trussardi, A.N.; Berteletti, I.; Conte, S.; Lucangeli, D.; Dehaene, S.; Zorzi, M. Developmental Trajectory of Number Acuity Reveals a Severe Impairment in Developmental Dyscalculia. Cognition 2010, 116, 33–41. [Google Scholar] [CrossRef]
- Moyer, R.S.; Landauer, T.K. Time Required for Judgements of Numerical Inequality. Nature 1967, 215, 1519–1520. [Google Scholar] [CrossRef]
- Nieder, A. The Evolutionary History of Brains for Numbers. Trends in Cognitive Sciences 2021, 25, 608–621. [Google Scholar] [CrossRef]
- Peters, L.; De Smedt, B. Arithmetic in the Developing Brain: A Review of Brain Imaging Studies. Developmental Cognitive Neuroscience 2018, 30, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.E.; De Smedt, B. Developmental Brain Dynamics of Numerical and Arithmetic Abilities. npj Sci. Learn. 2021, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, E.; Perrino, M.; Vallortigara, G. Numerosities and Other Magnitudes in the Brains: A Comparative View. Front. Psychol. 2021, 12. [Google Scholar] [CrossRef]
- Ditz, H.M.; Nieder, A. Neurons Selective to the Number of Visual Items in the Corvid Songbird Endbrain. Proceedings of the National Academy of Sciences 2015, 112, 7827–7832. [Google Scholar] [CrossRef]
- Wagener, L.; Nieder, A. Categorical Representation of Abstract Spatial Magnitudes in the Executive Telencephalon of Crows. Current Biology 2023, 33, 2151–2162.e5. [Google Scholar] [CrossRef]
- Sawamura, H.; Shima, K.; Tanji, J. Numerical Representation for Action in the Parietal Cortex of the Monkey. Nature 2002, 415, 918–922. [Google Scholar] [CrossRef]
- Kobylkov, D.; Mayer, U.; Zanon, M.; Vallortigara, G. Number Neurons in the Nidopallium of Young Domestic Chicks. Proceedings of the National Academy of Sciences 2022, 119, e2201039119. [Google Scholar] [CrossRef]
- Lorenzi, E.; Perrino, M.; Messina, A.; Zanon, M.; Vallortigara, G. Innate Responses to Numerousness Reveal Neural Activation in Different Brain Regions in Newly-Hatched Visually Naïve Chicks. Heliyon 2024, 10. [Google Scholar] [CrossRef]
- Luu, P.; Nadtochiy, A.; Zanon, M.; Moreno, N.; Messina, A.; Petrazzini, M.E.M.; Torres Perez, J.V.; Keomanee-Dizon, K.; Jones, M.; Brennan, C.H.; et al. Neural Basis of Number Sense in Larval Zebrafish. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Ditz, H.M.; Nieder, A. Numerosity Representations in Crows Obey the Weber–Fechner Law. Proceedings of the Royal Society B: Biological Sciences 2016, 283, 20160083. [Google Scholar] [CrossRef] [PubMed]
- Szűcs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Cognitive Components of a Mathematical Processing Network in 9-Year-Old Children. Developmental Science 2014, 17, 506–524. [Google Scholar] [CrossRef]
- Feigenson, L.; Dehaene, S.; Spelke, E. Core Systems of Number. Trends Cogn Sci 2004, 8, 307–314. [Google Scholar] [CrossRef]
- Nieder, A.; Dehaene, S. Representation of Number in the Brain. Annual Review of Neuroscience 2009, 32, 185–208. [Google Scholar] [CrossRef]
- Barnard, A.M.; Hughes, K.D.; Gerhardt, R.R.; DiVincenti, L.; Bovee, J.M.; Cantlon, J.F. Inherently Analog Quantity Representations in Olive Baboons (Papio Anubis). Front. Psychol. 2013, 4. [Google Scholar] [CrossRef]
- Beran, M.J.; Evans, T.A.; Leighty, K.A.; Harris, E.H.; Rice, D. Summation and Quantity Judgments of Sequentially Presented Sets by Capuchin Monkeys (Cebus Apella). American Journal of Primatology 2008, 70, 191–194. [Google Scholar] [CrossRef]
- Flombaum, J.I.; Junge, J.A.; Hauser, M.D. Rhesus Monkeys (Macaca Mulatta) Spontaneously Compute Addition Operations over Large Numbers. Cognition 2005, 97, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Kilian, A.; Yaman, S.; von Fersen, L.; Güntürkün, O. A Bottlenose Dolphin Discriminates Visual Stimuli Differing in Numerosity. Learning & Behavior 2003, 31, 133–142. [Google Scholar] [CrossRef]
- Panteleeva, S.; Reznikova, Z.; Vygonyailova, O. Quantity Judgments in the Context of Risk/Reward Decision Making in Striped Field Mice: First “Count,” Then Hunt. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef]
- Perdue, B.M.; Talbot, C.F.; Stone, A.M.; Beran, M.J. Putting the Elephant Back in the Herd: Elephant Relative Quantity Judgments Match Those of Other Species. Anim Cogn 2012, 15, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Emmerton, J.; Renner, J.C. Scalar Effects in the Visual Discrimination of Numerosity by Pigeons. Learn Behav 2006, 34, 176–192. [Google Scholar] [CrossRef]
- Pepperberg, I.M. Cognitive and Communicative Abilities of Grey Parrots. Applied Animal Behaviour Science 2006, 100, 77–86. [Google Scholar] [CrossRef]
- Kelly, E.M. Counting on Your Friends: The Role of Social Environment on Quantity Discrimination. Behav Processes 2016, 128, 9–16. [Google Scholar] [CrossRef]
- Hunter, H.; Blackburn, G.; Ashton, B.J.; Ridley, A.R. Group Size Affects Spontaneous Quantity Discrimination Performance in Wild Western Australian Magpies (Gymnorhina Tibicen Dorsalis). Anim Cogn 2025, 28, 41. [Google Scholar] [CrossRef]
- Agrillo, C.; Dadda, M.; Serena, G.; Bisazza, A. Do Fish Count? Spontaneous Discrimination of Quantity in Female Mosquitofish. Anim Cogn 2008, 11, 495–503. [Google Scholar] [CrossRef]
- Agrillo, C.; Miletto Petrazzini, M.E.; Tagliapietra, C.; Bisazza, A. Inter-Specific Differences in Numerical Abilities Among Teleost Fish. Front. Psychol. 2012, 3. [Google Scholar] [CrossRef]
- Gómez-Laplaza, L.M.; Gerlai, R. Spontaneous Discrimination of Small Quantities: Shoaling Preferences in Angelfish (Pterophyllum Scalare). Anim Cogn 2011, 14, 565–574. [Google Scholar] [CrossRef]
- Potrich, D.; Sovrano, V.A.; Stancher, G.; Vallortigara, G. Quantity Discrimination by Zebrafish (Danio Rerio). Journal of Comparative Psychology 2015, 129, 388–393. [Google Scholar] [CrossRef]
- Stancher, G.; Sovrano, V.A.; Potrich, D.; Vallortigara, G. Discrimination of Small Quantities by Fish (Redtail Splitfin, Xenotoca Eiseni). Anim Cogn 2013, 16, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Krusche, P.; Uller, C.; Dicke, U. Quantity Discrimination in Salamanders. Journal of Experimental Biology 2010, 213, 1822–1828. [Google Scholar] [CrossRef]
- Stancher, G.; Rugani, R.; Regolin, L.; Vallortigara, G. Numerical Discrimination by Frogs (Bombina Orientalis). Anim Cogn 2015, 18, 219–229. [Google Scholar] [CrossRef]
- Uller, C.; Jaeger, R.; Guidry, G.; Martin, C. Salamanders (Plethodon Cinereus) Go for More: Rudiments of Number in an Amphibian. Anim Cogn 2003, 6, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, A.; Vallortigara, G.; Pellitteri-Rosa, D. Continuous and Discrete Quantity Discrimination in Tortoises. Biology Letters 2018, 14, 20180649. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Fraccaroli, I.; Gariboldi, F.; Agrillo, C.; Bisazza, A.; Bertolucci, C.; Foà, A. Quantitative Abilities in a Reptile (Podarcis Sicula). Biology Letters 2017, 13, 20160899. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.-C.; Whiting, M.J.; Hsieh, M.-Y.; Shaner, P.-J.L.; Lin, S.-M. Superior Continuous Quantity Discrimination in a Freshwater Turtle. Frontiers in Zoology 2021, 18, 49. [Google Scholar] [CrossRef]
- Szabo, B.; Noble, D.W.A.; McCloghry, K.J.; Monteiro, M.E.S.; Whiting, M.J. Spontaneous Quantity Discrimination in a Family-Living Lizard. Behav Ecol 2021, 32, 686–694. [Google Scholar] [CrossRef]
- Giurfa, M. Honeybees Foraging for Numbers. J Comp Physiol A 2019, 205, 439–450. [Google Scholar] [CrossRef]
- Howard, S.R.; Avarguès-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Numerical Cognition in Honeybees Enables Addition and Subtraction. Science Advances 2019, 5, eaav0961. [Google Scholar] [CrossRef]
- Pahl, M.; Si, A.; Zhang, S. Numerical Cognition in Bees and Other Insects. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef]
- Rodríguez, R.L.; Briceño, R.D.; Briceño-Aguilar, E.; Höbel, G. Nephila Clavipes Spiders (Araneae: Nephilidae) Keep Track of Captured Prey Counts: Testing for a Sense of Numerosity in an Orb-Weaver. Anim Cogn 2015, 18, 307–314. [Google Scholar] [CrossRef]
- Tanner, C.J. Numerical Assessment Affects Aggression and Competitive Ability: A Team-Fighting Strategy for the Ant Formica Xerophila. Proceedings of the Royal Society B: Biological Sciences 2006, 273, 2737–2742. [Google Scholar] [CrossRef]
- Yang, T.-I.; Chiao, C.-C. Number Sense and State-Dependent Valuation in Cuttlefish. Proceedings of the Royal Society B: Biological Sciences 2016, 283, 20161379. [Google Scholar] [CrossRef]
- Krebs, J.R.; Ryan, J.C.; Charnov, E.L. Hunting by Expectation or Optimal Foraging? A Study of Patch Use by Chickadees. Animal Behaviour 1974, 22, 953–IN3. [Google Scholar] [CrossRef]
- Davis, H.; Pérusse, R. Numerical Competence in Animals: Definitional Issues, Current Evidence, and a New Research Agenda. Behavioral and Brain Sciences 1988, 11, 561–615. [Google Scholar] [CrossRef]
- Bogale, B.A.; Kamata, N.; Mioko, K.; Sugita, S. Quantity Discrimination in Jungle Crows, Corvus Macrorhynchos. Animal Behaviour 2011, 82, 635–641. [Google Scholar] [CrossRef]
- Swenson, L.C. One versus Two Discrimination by Whitenecked Ravens (Corvus Cryptoleucus) with Non-Number Dimensions Varied. Animal Behaviour 1970, 18, 454–460. [Google Scholar] [CrossRef]
- Potrich, D.; Zanon, M.; Vallortigara, G. Archerfish Number Discrimination. eLife 2022, 11, e74057. [Google Scholar] [CrossRef]
- Bortot, M.; Agrillo, C.; Avarguès-Weber, A.; Bisazza, A.; Miletto Petrazzini, M.E.; Giurfa, M. Honeybees Use Absolute Rather than Relative Numerosity in Number Discrimination. Biology Letters 2019, 15, 20190138. [Google Scholar] [CrossRef]
- Harper, D.G.C. Competitive Foraging in Mallards: “Ideal Free’ Ducks. Animal Behaviour 1982, 30, 575–584. [Google Scholar] [CrossRef]
- Rugani, R.; Vallortigara, G.; Regolin, L. The Use of Proportion by Young Domestic Chicks (Gallus Gallus). Anim Cogn 2015, 18, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Rugani, R.; McCrink, K.; de Hevia, M.-D.; Vallortigara, G.; Regolin, L. Ratio Abstraction over Discrete Magnitudes by Newly Hatched Domestic Chicks (Gallus Gallus). Sci Rep 2016, 6, 30114. [Google Scholar] [CrossRef]
- Godin, J.-G.J.; Keenleyside, M.H. Foraging on Patchily Distributed Prey by a Cichlid Fish (Teleostei, Cichlidae): A Test of the Ideal Free Distribution Theory. Animal Behaviour 1984, 32, 120–131. [Google Scholar] [CrossRef]
- Drucker, C.B.; Rossa, M.A.; Brannon, E.M. Comparison of Discrete Ratios by Rhesus Macaques (Macaca Mulatta). Anim Cogn 2016, 19, 75–89. [Google Scholar] [CrossRef]
- Rakoczy, H.; Clüver, A.; Saucke, L.; Stoffregen, N.; Gräbener, A.; Migura, J.; Call, J. Apes Are Intuitive Statisticians. Cognition 2014, 131, 60–68. [Google Scholar] [CrossRef]
- Rakoczy, H.; Clüver, A.; Saucke, L.; Stoffregen, N.; Gräbener, A.; Migura, J.; Call, J. Apes Are Intuitive Statisticians. Cognition 2014, 131, 60–68. [Google Scholar] [CrossRef]
- Agrillo, C.; Dadda, M.; Serena, G. Choice of Female Groups by Male Mosquitofish (Gambusia Holbrooki). Ethology 2008, 114, 479–488. [Google Scholar] [CrossRef]
- Pilastro, A.; Scaggiante, M.; Rasotto, M.B. Individual Adjustment of Sperm Expenditure Accords with Sperm Competition Theory. Proceedings of the National Academy of Sciences 2002, 99, 9913–9915. [Google Scholar] [CrossRef]
- Carazo, P.; Font, E.; Forteza-Behrendt, E.; Desfilis, E. Quantity Discrimination in Tenebrio Molitor: Evidence of Numerosity Discrimination in an Invertebrate? Anim Cogn 2009, 12, 463–470. [Google Scholar] [CrossRef]
- Carazo, P.; Fernández-Perea, R.; Font, E. Quantity Estimation Based on Numerical Cues in the Mealworm Beetle (Tenebrio Molitor). Front. Psychol. 2012, 3. [Google Scholar] [CrossRef]
- Lyon, B.E. Egg Recognition and Counting Reduce Costs of Avian Conspecific Brood Parasitism. Nature 2003, 422, 495–499. [Google Scholar] [CrossRef]
- Suzuki, K.; Kobayashi, T. Numerical Competence in Rats (Rattus Norvegicus): Davis and Bradford (1986) Extended. Journal of Comparative Psychology 2000, 114, 73–85. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Rudimental Numerical Competence in 5-Day-Old Domestic Chicks (Gallus Gallus): Identification of Ordinal Position. Journal of Experimental Psychology: Animal Behavior Processes 2007, 33, 21–31. [Google Scholar] [CrossRef]
- Rugani, R.; Zhang, Y.; Scarsi, B.; Regolin, L. Hybro Chicks Outperform Ross308 in a Numerical-Ordinal Task. Cognitive and Behavioral Comparisons between 2 Broiler Strains of Newborn Domestic Chicks (Gallus Gallus). Poultry Science 2023, 102, 103148. [Google Scholar] [CrossRef] [PubMed]
- Rugani, R.; Kelly, D.M.; Szelest, I.; Regolin, L.; Vallortigara, G. Is It Only Humans That Count from Left to Right? Biology Letters 2010, 6, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Potrich, D.; Rugani, R.; Sovrano, V.A.; Regolin, L.; Vallortigara, G. Use of Numerical and Spatial Information in Ordinal Counting by Zebrafish. Sci Rep 2019, 9, 18323. [Google Scholar] [CrossRef] [PubMed]
- Chittka, L.; Geiger, K. Can Honey Bees Count Landmarks? Animal Behaviour 1995, 49, 159–164. [Google Scholar] [CrossRef]
- Scarf, D.; Colombo, M. Knowledge of the Ordinal Position of List Items in Pigeons. Journal of Experimental Psychology: Animal Behavior Processes 2011, 37, 483–487. [Google Scholar] [CrossRef]
- Lyons, I.M.; Vogel, S.E.; Ansari, D. On the Ordinality of Numbers: A Review of Neural and Behavioral Studies. Prog Brain Res 2016, 227, 187–221. [Google Scholar] [CrossRef]
- Brunamonti, E.; Mione, V.; Bello, F.D.; Pani, P.; Genovesio, A.; Ferraina, S. Neuronal Modulation in the Prefrontal Cortex in a Transitive Inference Task: Evidence of Neuronal Correlates of Mental Schema Management. J. Neurosci. 2016, 36, 1223–1236. [Google Scholar] [CrossRef]
- Bergman, T.J.; Beehner, J.C.; Cheney, D.L.; Seyfarth, R.M. Hierarchical Classification by Rank and Kinship in Baboons. Science 2003, 302, 1234–1236. [Google Scholar] [CrossRef]
- Agrillo, C.; Bisazza, A. Understanding the Origin of Number Sense: A Review of Fish Studies. Philosophical Transactions of the Royal Society B: Biological Sciences 2018, 373, 20160511. [Google Scholar] [CrossRef]
- Nieder, A. The Adaptive Value of Numerical Competence. Trends in Ecology & Evolution 2020, 35, 605–617. [Google Scholar] [CrossRef]
- McComb, K.; Packer, C.; Pusey, A. Roaring and Numerical Assessment in Contests between Groups of Female Lions, Panthera Leo. Animal Behaviour 1994, 47, 379–387. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Heinen, V.K.; Dryer, S.L.; Holekamp, K.E. Numerical Assessment and Individual Call Discrimination by Wild Spotted Hyaenas, Crocuta Crocuta. Animal Behaviour 2011, 82, 743–752. [Google Scholar] [CrossRef]
- Wilson, M.L.; Hauser, M.D.; Wrangham, R.W. Does Participation in Intergroup Conflict Depend on Numerical Assessment, Range Location, or Rank for Wild Chimpanzees? Animal Behaviour 2001, 61, 1203–1216. [Google Scholar] [CrossRef]
- Kitchen, D.M. Experimental Test of Female Black Howler Monkey (Alouatta Pigra) Responses to Loud Calls from Potentially Infanticidal Males: Effects of Numeric Odds, Vulnerable Offspring, and Companion Behavior. American Journal of Physical Anthropology 2006, 131, 73–83. [Google Scholar] [CrossRef]
- Seddon, N.; Tobias, J.A. Communal Singing in the Cooperatively Breeding Subdesert Mesite Monias Benschi: Evidence of Numerical Assessment? Journal of Avian Biology 2003, 34, 72–80. [Google Scholar] [CrossRef]
- Bonanni, R.; Natoli, E.; Cafazzo, S.; Valsecchi, P. Free-Ranging Dogs Assess the Quantity of Opponents in Intergroup Conflicts. Anim Cogn 2011, 14, 103–115. [Google Scholar] [CrossRef]
- Bisazza, A.; Piffer, L.; Serena, G.; Agrillo, C. Ontogeny of Numerical Abilities in Fish. PLoS One 2010, 5, e15516. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Dadda, M. Individual Guppies Differ in Quantity Discrimination Performance across Antipredator and Foraging Contexts. Behav Ecol Sociobiol 2016, 71, 13. [Google Scholar] [CrossRef]
- Mehlis, M.; Thünken, T.; Bakker, T.C.M.; Frommen, J.G. Quantification Acuity in Spontaneous Shoaling Decisions of Three-Spined Sticklebacks. Anim Cogn 2015, 18, 1125–1131. [Google Scholar] [CrossRef]
- Bshary, R.; Noë, R. Red Colobus and Diana Monkeys Provide Mutual Protection against Predators. Animal Behaviour 1997, 54, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Sheardown, E.; Torres-Perez, J.V.; Anagianni, S.; Fraser, S.E.; Vallortigara, G.; Butterworth, B.; Miletto-Petrazzini, M.E.; Brennan, C.H. Characterizing Ontogeny of Quantity Discrimination in Zebrafish. Proc Biol Sci 2022, 289, 20212544. [Google Scholar] [CrossRef]
- Massen, J.J.M.; Pašukonis, A.; Schmidt, J.; Bugnyar, T. Ravens Notice Dominance Reversals among Conspecifics within and Outside Their Social Group. Nat Commun 2014, 5, 3679. [Google Scholar] [CrossRef] [PubMed]
- Weiß, B.M.; Kehmeier, S.; Schloegl, C. Transitive Inference in Free-Living Greylag Geese, Anser Anser. Animal Behaviour 2010, 79, 1277–1283. [Google Scholar] [CrossRef]
- Daisley, J.N.; Vallortigara, G.; Regolin, L. Low-Rank Gallus Gallus Domesticus Chicks Are Better at Transitive Inference Reasoning. Commun Biol 2021, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Degrande, R.; Amichaud, O.; Piégu, B.; Cornilleau, F.; Jardat, P.; Ferreira, V.H.B.; Colson, V.; Lansade, L.; Calandreau, L. Transitive Reasoning in the Adult Domestic Hen in a Six-Term Series Task. Anim Cogn 2024, 27, 77. [Google Scholar] [CrossRef]
- Tibbetts, E.A.; Agudelo, J.; Pandit, S.; Riojas, J. Transitive Inference in Polistes Paper Wasps. Biology Letters 2019, 15, 20190015. [Google Scholar] [CrossRef]
- Cronin, A.L. Ratio-Dependent Quantity Discrimination in Quorum Sensing Ants. Anim Cogn 2014, 17, 1261–1268. [Google Scholar] [CrossRef]
- Doering, G.N.; Pratt, S.C. Queen Location and Nest Site Preference Influence Colony Reunification by the Ant Temnothorax Rugatulus. Insect. Soc. 2016, 63, 585–591. [Google Scholar] [CrossRef]
- Franks, N.R.; Stuttard, J.P.; Doran, C.; Esposito, J.C.; Master, M.C.; Sendova-Franks, A.B.; Masuda, N.; Britton, N.F. How Ants Use Quorum Sensing to Estimate the Average Quality of a Fluctuating Resource. Sci Rep 2015, 5, 11890. [Google Scholar] [CrossRef]
- Boinski, S. Vocal Coordination of Troop Movement among White-Faced Capuchin Monkeys, Cebus Capucinus. American Journal of Primatology 1993, 30, 85–100. [Google Scholar] [CrossRef]
- Strandburg-Peshkin, A.; Farine, D.R.; Couzin, I.D.; Crofoot, M.C. Shared Decision-Making Drives Collective Movement in Wild Baboons. Science 2015, 348, 1358–1361. [Google Scholar] [CrossRef]
- Walker, R.H.; King, A.J.; McNutt, J.W.; Jordan, N.R. Sneeze to Leave: African Wild Dogs (Lycaon Pictus) Use Variable Quorum Thresholds Facilitated by Sneezes in Collective Decisions. Proceedings of the Royal Society B: Biological Sciences 2017, 284, 20170347. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, C.A.H.; Sumpter, D.J.T.; Manser, M.B. Moving Calls: A Vocal Mechanism Underlying Quorum Decisions in Cohesive Groups. Proceedings of the Royal Society B: Biological Sciences 2010, 278, 1482–1488. [Google Scholar] [CrossRef]
- Visscher, P.K.; Seeley, T.D. Coordinating a Group Departure: Who Produces the Piping Signals on Honeybee Swarms? Behav Ecol Sociobiol 2007, 61, 1615–1621. [Google Scholar] [CrossRef]
- Rugani, R.; Fontanari, L.; Simoni, E.; Regolin, L.; Vallortigara, G. Arithmetic in Newborn Chicks. Proceedings of the Royal Society B: Biological Sciences 2009, 276, 2451–2460. [Google Scholar] [CrossRef]
- Rugani, R.; Loconsole, M.; Simion, F.; Regolin, L. Individually Distinctive Features Facilitate Numerical Discrimination of Sets of Objects in Domestic Chicks. Sci Rep 2020, 10, 16408. [Google Scholar] [CrossRef]
- Angulo, E.; Luque, G.M.; Gregory, S.D.; Wenzel, J.W.; Bessa-Gomes, C.; Berec, L.; Courchamp, F. Review: Allee Effects in Social Species. Journal of Animal Ecology 2018, 87, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Clutton-Brock Breeding Together: Kin Selection and Mutualism in Cooperative Vertebrates. Science 2002, 296, 69–72. [CrossRef]
- Cockburn, A. Evolution of Helping Behavior in Cooperatively Breeding Birds. Annual Review of Ecology and Systematics 1998, 29. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Gilfillan, G.; McComb, K. Numerical Assessment in the Wild: Insights from Social Carnivores. Philosophical Transactions of the Royal Society B: Biological Sciences 2018, 373, 20160508. [Google Scholar] [CrossRef]
- Parker, G.A. Assessment Strategy and the Evolution of Fighting Behaviour. Journal of Theoretical Biology 1974, 47, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.P.; Mitani, J.C. Hunting Behavior of Chimpanzees at Ngogo, Kibale National Park, Uganda. International Journal of Primatology 2002, 23, 1–28. [Google Scholar] [CrossRef]
- Caro, T.M. Antipredator Defenses in Birds and Mammals; University of Chicago Press, 2005; ISBN 978-0-226-09436-6. [Google Scholar]
- Hamilton, W.D. Geometry for the Selfish Herd. Journal of Theoretical Biology 1971, 31, 295–311. [Google Scholar] [CrossRef]
- Kenward, R.E. Hawks and Doves: Factors Affecting Success and Selection in Goshawk Attacks on Woodpigeons. Journal of Animal Ecology 1978, 47, 449–460. [Google Scholar] [CrossRef]
- Krause, J.; Ruxton, G.D. Living in Groups; OUP Oxford, 2002; ISBN 978-0-19-850818-2. [Google Scholar]
- Hager, M.C.; Helfman, G.S. Safety in Numbers: Shoal Size Choice by Minnows under Predatory Threat. Behav Ecol Sociobiol 1991, 29, 271–276. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Imprinted Numbers: Newborn Chicks’ Sensitivity to Number vs. Continuous Extent of Objects They Have Been Reared With. Developmental Science 2010, 13, 790–797. [Google Scholar] [CrossRef]
- Loconsole, M.; Regolin, L.; Rugani, R. Asymmetric Number–Space Association Leads to More Efficient Processing of Congruent Information in Domestic Chicks. Front. Behav. Neurosci. 2023, 17. [Google Scholar] [CrossRef]
- Bugnyar, T. Why Are Ravens Smart? Exploring the Social Intelligence Hypothesis. J Ornithol 2024, 165, 15–26. [Google Scholar] [CrossRef]
- Braun, A.; Bugnyar, T. Social Bonds and Rank Acquisition in Raven Nonbreeder Aggregations. Animal Behaviour 2012, 84, 1507–1515. [Google Scholar] [CrossRef]
- Lazareva, O.F.; Smirnova, A.A.; Bagozkaja, M.S.; Zorina, Z.A.; Rayevsky, V.V.; Wasserman, E.A. Transitive Responding in Hooded Crows Requires Linearly Ordered Stimuli. Journal of the Experimental Analysis of Behavior 2004, 82, 1–19. [Google Scholar] [CrossRef]
- Fernald, R.D. Cognitive Skills and the Evolution of Social Systems. Journal of Experimental Biology 2017, 220, 103–113. [Google Scholar] [CrossRef]
- MacLean, E.L.; Merritt, D.J.; Brannon, E.M. Social Complexity Predicts Transitive Reasoning in Prosimian Primates. Animal Behaviour 2008, 76, 479–486. [Google Scholar] [CrossRef]
- Chase, I.D. Behavioral Sequences During Dominance Hierarchy Formation in Chickens. Science 1982, 216, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Benard, J.; Giurfa, M. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints. Learn Mem 2004, 11, 328–336. [Google Scholar] [CrossRef]
- Regolin, L.; Loconsole, M.; Rosa-Salva, O.; Brosche, K.; Macchinizzi, M.; Felisatti, A.; Rugani, R. Numerical Cognition in Birds. Nat Rev Psychol 2025, 1–15. [Google Scholar] [CrossRef]
- Milton, K. Foraging Behaviour and the Evolution of Primate Intelligence. In Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans; Clarendon Press/Oxford University Press: New York, NY, US, 1988; ISBN 978-0-19-852179-2. [Google Scholar]
- Parker, S.T.; Gibson, K.R. Object Manipulation, Tool Use and Sensorimotor Intelligence as Feeding Adaptations in Cebus Monkeys and Great Apes. Journal of Human Evolution 1977, 6, 623–641. [Google Scholar] [CrossRef]
- Lefebvre, L.; Sol, D. Brains, Lifestyles and Cognition: Are There General Trends? Brain Behavior and Evolution 2008, 72, 135–144. [Google Scholar] [CrossRef]
- Morand-Ferron, J.; Cole, E.F.; Quinn, J.L. Studying the Evolutionary Ecology of Cognition in the Wild: A Review of Practical and Conceptual Challenges. Biological Reviews 2016, 91, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Sayol, F.; Maspons, J.; Lapiedra, O.; Iwaniuk, A.N.; Székely, T.; Sol, D. Environmental Variation and the Evolution of Large Brains in Birds. Nat Commun 2016, 7, 13971. [Google Scholar] [CrossRef] [PubMed]
- Shumway, C.A. Habitat Complexity, Brain, and Behavior. Brain Behavior and Evolution 2008, 72, 123–134. [Google Scholar] [CrossRef]
- Soler, J.J.; Peralta-Sánchez, J.M.; Martín-Vivaldi, M.; Martín-Platero, A.M.; Flensted-Jensen, E.; Møller, A.P. Cognitive Skills and Bacterial Load: Comparative Evidence of Costs of Cognitive Proficiency in Birds. Naturwissenschaften 2012, 99, 111–122. [Google Scholar] [CrossRef]
- Dunn, J.C.; Cole, E.F.; Quinn, J.L. Personality and Parasites: Sex-Dependent Associations between Avian Malaria Infection and Multiple Behavioural Traits. Behav Ecol Sociobiol 2011, 65, 1459–1471. [Google Scholar] [CrossRef]
- Brown, C.; Braithwaite, V.A. Effects of Predation Pressure on the Cognitive Ability of the Poeciliid Brachyraphis Episcopi. Behavioral Ecology 2005, 16, 482–487. [Google Scholar] [CrossRef]
- Ferrari, M.C.O. Short-Term Environmental Variation in Predation Risk Leads to Differential Performance in Predation-Related Cognitive Function. Animal Behaviour 2014, 95, 9–14. [Google Scholar] [CrossRef]
- Tebbich, S.; Teschke, I. Coping with Uncertainty: Woodpecker Finches (Cactospiza Pallida) from an Unpredictable Habitat Are More Flexible than Birds from a Stable Habitat. PLOS ONE 2014, 9, e91718. [Google Scholar] [CrossRef] [PubMed]
- Mazza, V.; Jacob, J.; Dammhahn, M.; Zaccaroni, M.; Eccard, J.A. Individual Variation in Cognitive Style Reflects Foraging and Anti-Predator Strategies in a Small Mammal. Sci Rep 2019, 9, 10157. [Google Scholar] [CrossRef]
- Sonnenberg, B.R.; Branch, C.L.; Pitera, A.M.; Bridge, E.; Pravosudov, V.V. Natural Selection and Spatial Cognition in Wild Food-Caching Mountain Chickadees. Current Biology 2019, 29, 670–676.e3. [Google Scholar] [CrossRef]
- Melin, A.D.; Young, H.C.; Mosdossy, K.N.; Fedigan, L.M. Seasonality, Extractive Foraging and the Evolution of Primate Sensorimotor Intelligence. Journal of Human Evolution 2014, 71, 77–86. [Google Scholar] [CrossRef]
- Tomasello, M. Primate Cognition: Introduction to the Issue. Cognitive Science 2000, 24, 351–361. [Google Scholar] [CrossRef]
- Whiten, A.; Byrne, R.W. Machiavellian Intelligence II: Extensions and Evaluations; Cambridge University Press, 1997; ISBN 978-0-521-55949-2. [Google Scholar]
- Balda, R.P.; Kamil, A.C. Long-Term Spatial Memory in Clark’s Nutcracker, Nucifraga Columbiana. Animal Behaviour 1992, 44, 761–769. [Google Scholar] [CrossRef]
- Raby, C.R.; Alexis, D.M.; Dickinson, A.; Clayton, N.S. Planning for the Future by Western Scrub-Jays. Nature 2007, 445, 919–921. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Harvey, P.H. Primates, Brains and Ecology. Journal of Zoology 1980, 190, 309–323. [Google Scholar] [CrossRef]
- DeCasien, A.R.; Williams, S.A.; Higham, J.P. Primate Brain Size Is Predicted by Diet but Not Sociality. Nat Ecol Evol 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Heldstab, S.A.; Kosonen, Z.K.; Koski, S.E.; Burkart, J.M.; van Schaik, C.P.; Isler, K. Manipulation Complexity in Primates Coevolved with Brain Size and Terrestriality. Sci Rep 2016, 6, 24528. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.E.; Isler, K.; Barton, R.A. Re-Evaluating the Link between Brain Size and Behavioural Ecology in Primates. Proceedings of the Royal Society B: Biological Sciences 2017, 284, 20171765. [Google Scholar] [CrossRef]
- Kabadayi, C.; Taylor, L.A.; von Bayern, A.M.P.; Osvath, M. Ravens, New Caledonian Crows and Jackdaws Parallel Great Apes in Motor Self-Regulation despite Smaller Brains. Royal Society Open Science 2016, 3, 160104. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, T.C.; Salazar, L.T.H.; Laska, M. Numerical Cognition in Black-Handed Spider Monkeys (Ateles Geoffroyi). Behavioural Processes 2022, 201, 104734. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.I.M. The Social Brain Hypothesis. Evolutionary Anthropology: Issues, News, and Reviews 1998, 6, 178–190. [Google Scholar] [CrossRef]
- Humphrey, N.K. The Social Function of Intellect. In Growing points in ethology; Cambridge U Press: Oxford, England, 1976. [Google Scholar]
- Jolly, A. Lemur Social Behavior and Primate Intelligence. Science 1966, 153, 501–506. [Google Scholar] [CrossRef]
- Brosnan, S.F.; Bshary, R. Cooperation and Deception: From Evolution to Mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences 2010, 365, 2593–2598. [Google Scholar] [CrossRef]
- Ashton, B.J.; Thornton, A.; Ridley, A.R. An Intraspecific Appraisal of the Social Intelligence Hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences 2018, 373, 20170288. [Google Scholar] [CrossRef]
- Speechley, E.M.; Ashton, B.J.; Foo, Y.Z.; Simmons, L.W.; Ridley, A.R. Meta-Analyses Reveal Support for the Social Intelligence Hypothesis. Biological Reviews 2024, 99, 1889–1908. [Google Scholar] [CrossRef]
- Mace, G.M.; Harvey, P.H.; Clutton-Brock, T.H. Brain Size and Ecology in Small Mammals. Journal of Zoology 1981, 193, 333–354. [Google Scholar] [CrossRef]
- Deaner, R.O.; Isler, K.; Burkart, J.; van Schaik, C. Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates. Brain Behavior and Evolution 2007, 70, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Barton, R.A. The Evolutionary Ecology of the Primate Brain. 1999.
- Connor, R.C.; Mann, J.; Tyack, P.L.; Whitehead, H. Social Evolution in Toothed Whales. Trends in Ecology & Evolution 1998, 13, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Joffe, T.H.; Dunbar, R.I.M. Visual and Socio–Cognitive Information Processing in Primate Brain Evolution. Proceedings of the Royal Society of London. Series B: Biological Sciences 1997, 264, 1303–1307. [Google Scholar] [CrossRef]
- Dunbar, R.I.M.; Shultz, S. Evolution in the Social Brain. Science 2007, 317, 1344–1347. [Google Scholar] [CrossRef]
- Holekamp, K.E. Questioning the Social Intelligence Hypothesis. Trends in Cognitive Sciences 2007, 11, 65–69. [Google Scholar] [CrossRef]
- Shultz, S.; Dunbar, R. i. m Both Social and Ecological Factors Predict Ungulate Brain Size. Proceedings of the Royal Society B: Biological Sciences 2005, 273, 207–215. [Google Scholar] [CrossRef]
- MacLean, E.L.; Barrickman, N.L.; Johnson, E.M.; Wall, C.E. Sociality, Ecology, and Relative Brain Size in Lemurs. Journal of Human Evolution 2009, 56, 471–478. [Google Scholar] [CrossRef]
- Beauchamp, G.; Fernández-Juricic, E. Is There a Relationship between Forebrain Size and Group Size in Birds? Evol Ecol Res 2004, 6, 833–842. [Google Scholar]
- Burish, M.J.; Kueh, H.Y.; Wang, S.S.-H. Brain Architecture and Social Complexity in Modern and Ancient Birds. Brain Behavior and Evolution 2004, 63, 107–124. [Google Scholar] [CrossRef]
- Iwaniuk, A.N.; Hurd, P.L. The Evolution of Cerebrotypes in Birds. Brain Behavior and Evolution 2005, 65, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Iwaniuk, A.N.; Arnold, K.E. Is Cooperative Breeding Associated With Bigger Brains? A Comparative Test in the Corvida (Passeriformes). Ethology 2004, 110, 203–220. [Google Scholar] [CrossRef]
- Healy, S.D.; Rowe, C. Costs and Benefits of Evolving a Larger Brain: Doubts over the Evidence That Large Brains Lead to Better Cognition. Animal Behaviour 2013, 86, e1–e3. [Google Scholar] [CrossRef]
- MacLean, E.L.; Hare, B.; Nunn, C.L.; Addessi, E.; Amici, F.; Anderson, R.C.; Aureli, F.; Baker, J.M.; Bania, A.E.; Barnard, A.M.; et al. The Evolution of Self-Control. Proceedings of the National Academy of Sciences 2014, 111, E2140–E2148. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Bugnyar, T. Cognition without Cortex. Trends Cogn Sci 2016, 20, 291–303. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.L.; Sandel, A.A.; Bray, J.; Oldenkamp, R.E.; Reddy, R.B.; Hare, B.A. Group Size Predicts Social but Not Nonsocial Cognition in Lemurs. PLOS ONE 2013, 8, e66359. [Google Scholar] [CrossRef]
- Whiten, A.; Byrne, R.W. Tactical Deception in Primates. Behavioral and Brain Sciences 1988, 11, 233–244. [Google Scholar] [CrossRef]
- Deaner, R.O.; van Schaik, C.P.; Johnson, V. Do Some Taxa Have Better Domain-General Cognition than Others? A Meta-Analysis of Nonhuman Primate Studies. Evol Psychol 2006, 4, 147470490600400114. [Google Scholar] [CrossRef]
- Gigerenzer, G. The Modularity of Social Intelligence. In Adaptive Thinking: Rationality in the Real World; Gigerenzer, G., Ed.; Oxford University Press, 2002; ISBN 978-0-19-515372-9. [Google Scholar]
- Reader, S.M.; Hager, Y.; Laland, K.N. The Evolution of Primate General and Cultural Intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences 2011, 366, 1017–1027. [Google Scholar] [CrossRef]
- Kappeler, P.M. A Framework for Studying Social Complexity. Behav Ecol Sociobiol 2019, 73, 13. [Google Scholar] [CrossRef]
- Cords, M.; Aureli, F.; Silk, J.B.; Call, J. CHAPTER 9 Reconciliation and Relationship Qualities. In Natural Conflict Resolution; Aureli, F., Ed.; University of California Press, 2000; pp. 177–198. ISBN 978-0-520-92493-2. [Google Scholar]
- Emery, N.J.; Seed, A.M.; von Bayern, A.M.P.; Clayton, N.S. Cognitive Adaptations of Social Bonding in Birds. Philosophical Transactions of the Royal Society B: Biological Sciences 2007, 362, 489–505. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.; Dunbar, R.I.M. Social Bonds in Birds Are Associated with Brain Size and Contingent on the Correlated Evolution of Life-History and Increased Parental Investment. Biological Journal of the Linnean Society 2010, 100, 111–123. [Google Scholar] [CrossRef]
- Freeberg, T.M.; Dunbar, R.I.M.; Ord, T.J. Social Complexity as a Proximate and Ultimate Factor in Communicative Complexity. Philosophical Transactions of the Royal Society B: Biological Sciences 2012, 367, 1785–1801. [Google Scholar] [CrossRef]
- Amici, F.; Aureli, F.; Call, J. Fission-Fusion Dynamics, Behavioral Flexibility, and Inhibitory Control in Primates. Current Biology 2008, 18, 1415–1419. [Google Scholar] [CrossRef]
- Bond, A.B.; Kamil, A.C.; Balda, R.P. Serial Reversal Learning and the Evolution of Behavioral Flexibility in Three Species of North American Corvids (Gymnorhinus Cyanocephalus, Nucifraga Columbiana, Aphelocoma Californica). Journal of Comparative Psychology 2007, 121, 372–379. [Google Scholar] [CrossRef]
- Lukas, D.; Clutton-Brock, T. Social Complexity and Kinship in Animal Societies. Ecology Letters 2018, 21, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Zuberbühler, K.; Byrne, R.W. Social Cognition. Current Biology 2006, 16, R786–R790. [Google Scholar] [CrossRef]
- References. In Animal Social Complexity: Intelligence, Culture, and Individualized Societies; de Waal, F.B.M., Tyack, P.L., Eds.; Harvard University Press, 2013; pp. 495–593 ISBN 978-0-674-41913-1.
- Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. Social Intelligence in the Spotted Hyena (Crocuta Crocuta). Philosophical Transactions of the Royal Society B: Biological Sciences 2007, 362, 523–538. [Google Scholar] [CrossRef]
- Reader, S.M.; Laland, K.N. Social Intelligence, Innovation, and Enhanced Brain Size in Primates. Proceedings of the National Academy of Sciences 2002, 99, 4436–4441. [Google Scholar] [CrossRef]
- Lefebvre, L.; Giraldeau, L.-A. Is Social Learning an Adaptive Specialization. In Social learning in animals: The roots of culture; Academic Press: San Diego, CA, US, 1996; ISBN 978-0-12-273965-1. [Google Scholar]
- Deaner, R.O.; Nunn, C.L.; van Schaik, C.P. Comparative Tests of Primate Cognition: Different Scaling Methods Produce Different Results. Brain Behavior and Evolution 2000, 55, 44–52. [Google Scholar] [CrossRef]
- Dall, S.R.X.; Giraldeau, L.-A.; Olsson, O.; McNamara, J.M.; Stephens, D.W. Information and Its Use by Animals in Evolutionary Ecology. Trends in Ecology & Evolution 2005, 20, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, A.S.; Stephens, D.W. Reliability, Uncertainty, and Costs in the Evolution of Animal Learning. Current Opinion in Behavioral Sciences 2016, 12, 73–79. [Google Scholar] [CrossRef]
- Jetz, W.; Rubenstein, D.R. Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds. Current Biology 2011, 21, 72–78. [Google Scholar] [CrossRef]
- Brett, Z.H.; Humphreys, K.L.; Fleming, A.S.; Kraemer, G.W.; Drury, S.S. Using Cross-Species Comparisons and a Neurobiological Framework to Understand Early Social Deprivation Effects on Behavioral Development. Development and Psychopathology 2015, 27, 347–367. [Google Scholar] [CrossRef]
- Knudsen, E.I. Sensitive Periods in the Development of the Brain and Behavior. Journal of Cognitive Neuroscience 2004, 16, 1412–1425. [Google Scholar] [CrossRef]
- Brainard, M.S.; Doupe, A.J. What Songbirds Teach Us about Learning. Nature 2002, 417, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, J.J.; Honey, R.C. Imprinting, Learning and Development: From Behaviour to Brain and Back. Trends in Neurosciences 1998, 21, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Di Giorgio, E.; Loveland, J.L.; Mayer, U.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Filial Responses as Predisposed and Learned Preferences: Early Attachment in Chicks and Babies. Behavioural Brain Research 2017, 325, 90–104. [Google Scholar] [CrossRef]
- Ramsay, A.O.; Hess, E.H. A Laboratory Approach to the Study of Imprinting. The Wilson Bulletin 1954, 66, 196–206. [Google Scholar]
- Versace, E.; Vallortigara, G. Origins of Knowledge: Insights from Precocial Species. Front. Behav. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Diorio, J.; Tannenbaum, B.; Caldji, C.; Francis, D.; Freedman, A.; Sharma, S.; Pearson, D.; Plotsky, P.M.; Meaney, M.J. Maternal Care, Hippocampal Glucocorticoid Receptors, and Hypothalamic-Pituitary-Adrenal Responses to Stress. Science 1997, 277, 1659–1662. [Google Scholar] [CrossRef]
- Sheridan, M.A.; McLaughlin, K.A. Dimensions of Early Experience and Neural Development: Deprivation and Threat. Trends in Cognitive Sciences 2014, 18, 580–585. [Google Scholar] [CrossRef]
- Hatch, A.; Wiberg, G.S.; Balazs, T.; Grice, H.C. Long-Term Isolation Stress in Rats. Science 1963, 142, 507–507. [Google Scholar] [CrossRef]
- Suomi, S.J. Early Determinants of Behaviour: Evidence from Primate Studies. British Medical Bulletin 1997, 53, 170–184. [Google Scholar] [CrossRef]
- Bowlby, J. Maternal Care and Mental Health. Bulletin of the World Health Organization 1951, 3, 355–533. [Google Scholar]
- Rutter, M.; Team, the E. and R.A. (ERA) study Developmental Catch-up, and Deficit, Following Adoption after Severe Global Early Privation. The Journal of Child Psychology and Psychiatry and Allied Disciplines 1998, 39, 465–476. [CrossRef]
- Petanjek, Z.; Judaš, M.; Šimić, G.; Rašin, M.R.; Uylings, H.B.M.; Rakic, P.; Kostović, I. Extraordinary Neoteny of Synaptic Spines in the Human Prefrontal Cortex. Proceedings of the National Academy of Sciences 2011, 108, 13281–13286. [Google Scholar] [CrossRef]
- Turner, A.M.; Greenough, W.T. Differential Rearing Effects on Rat Visual Cortex Synapses. I. Synaptic and Neuronal Density and Synapses per Neuron. Brain Research 1985, 329, 195–203. [Google Scholar] [CrossRef]
- Globus, A.; Rosenzweig, M.R.; Bennett, E.L.; Diamond, M.C. Effects of Differential Experience on Dendritic Spine Counts in Rat Cerebral Cortex. Journal of Comparative and Physiological Psychology 1973, 82, 175–181. [Google Scholar] [CrossRef]
- Greenough, W.T.; Volkmar, F.R. Pattern of Dendritic Branching in Occipital Cortex of Rats Reared in Complex Environments. Experimental Neurology 1973, 40, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, F.R.; Greenough, W.T. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science 1972, 176, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.C.; Law, F.; Rhodes, H.; Lindner, B.; Rosenzweig, M.R.; Krech, D.; Bennett, E.L. Increases in Cortical Depth and Glia Numbers in Rats Subjected to Enriched Environment. Journal of Comparative Neurology 1966, 128, 117–125. [Google Scholar] [CrossRef]
- Makinodan, M.; Rosen, K.M.; Ito, S.; Corfas, G. A Critical Period for Social Experience–Dependent Oligodendrocyte Maturation and Myelination. Science 2012, 337, 1357–1360. [Google Scholar] [CrossRef]
- Sabatini, M.J.; Ebert, P.; Lewis, D.A.; Levitt, P.; Cameron, J.L.; Mirnics, K. Amygdala Gene Expression Correlates of Social Behavior in Monkeys Experiencing Maternal Separation. J. Neurosci. 2007, 27, 3295–3304. [Google Scholar] [CrossRef]
- Weaver, I.C.G.; Meaney, M.J.; Szyf, M. Maternal Care Effects on the Hippocampal Transcriptome and Anxiety-Mediated Behaviors in the Offspring That Are Reversible in Adulthood. Proceedings of the National Academy of Sciences 2006, 103, 3480–3485. [Google Scholar] [CrossRef]
- Baroncelli, L.; Scali, M.; Sansevero, G.; Olimpico, F.; Manno, I.; Costa, M.; Sale, A. Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications. J. Neurosci. 2016, 36, 3430–3440. [Google Scholar] [CrossRef]
- Champagne, F.A.; Curley, J.P. How Social Experiences Influence the Brain. Current Opinion in Neurobiology 2005, 15, 704–709. [Google Scholar] [CrossRef]
- Seckl, J.R. Glucocorticoids, Developmental ‘Programming’ and the Risk of Affective Dysfunction. In Progress in Brain Research; De Kloet, E.R., Oitzl, M.S., Vermetten, E., Eds.; Stress Hormones and Post Traumatic Stress Disorder Basic Studies and Clinical Perspectives; Elsevier, 2007; Vol. 167, pp. 17–34. [Google Scholar]
- Arnold, C.; Taborsky, B. Social Experience in Early Ontogeny Has Lasting Effects on Social Skills in Cooperatively Breeding Cichlids. Animal Behaviour 2010, 79, 621–630. [Google Scholar] [CrossRef]
- Nyman, C.; Fischer, S.; Aubin-Horth, N.; Taborsky, B. Effect of the Early Social Environment on Behavioural and Genomic Responses to a Social Challenge in a Cooperatively Breeding Vertebrate. Molecular Ecology 2017, 26, 3186–3203. [Google Scholar] [CrossRef]
- Fahlke, C.; Lorenz, J.G.; Long, J.; Champoux, M.; Suomi, S.J.; Higley, J.D. Rearing Experiences and Stress-Induced Plasma Cortisol as Early Risk Factors for Excessive Alcohol Consumption in Nonhuman Primates. Alcoholism: Clinical and Experimental Research 2000, 24, 644–650. [Google Scholar] [CrossRef]
- Francis, D.D.; Meaney, M.J. Maternal Care and the Development of Stress Responses. Current Opinion in Neurobiology 1999, 9, 128–134. [Google Scholar] [CrossRef]
- Suomi, S.J. Developmental Trajectories, Early Experiences, and Community Consequences: Lessons from Studies with Rhesus Monkeys. In Developmental health and the wealth of nations: Social, biological, and educational dynamics; The Guilford Press: New York, NY, US, 1999; ISBN 978-1-57230-454-3. [Google Scholar]
- Caldji, C.; Diorio, J.; Meaney, M.J. Variations in Maternal Care in Infancy Regulate the Development of Stress Reactivity. Biological Psychiatry 2000, 48, 1164–1174. [Google Scholar] [CrossRef]
- Ladd, C.O.; Huot, R.L.; Thrivikraman, K.V.; Nemeroff, C.B.; Plotsky, P.M. Long-Term Adaptations in Glucocorticoid Receptor and Mineralocorticoid Receptor Mrna and Negative Feedback on the Hypothalamo-Pituitary-Adrenal Axis Following Neonatal Maternal Separation. Biological Psychiatry 2004, 55, 367–375. [Google Scholar] [CrossRef]
- Oers, H.J.J. van; Kloet, E.R. de; Whelan, T.; Levine, S. Maternal Deprivation Effect on the Infant’s Neural Stress Markers Is Reversed by Tactile Stimulation and Feeding But Not by Suppressing Corticosterone. J. Neurosci. 1998, 18, 10171–10179. [Google Scholar] [CrossRef]
- Dettling, A.; Pryce, C.R.; Martin, R.D.; Döbeli, M. Physiological Responses to Parental Separation and a Strange Situation Are Related to Parental Care Received in Juvenile Goeldi’s Monkeys (Callimico Goeldii). Developmental Psychobiology 1998, 33, 21–31. [Google Scholar] [CrossRef]
- Hall, F. s.; Wilkinson, L. s.; Humby, T.; Robbins, T. w. Maternal Deprivation of Neonatal Rats Produces Enduring Changes in Dopamine Function. Synapse 1999, 32, 37–43. [Google Scholar] [CrossRef]
- Schultz, W. Neuronal Reward and Decision Signals: From Theories to Data. Physiol Rev 2015, 95, 853–951. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A. Dopamine, Learning and Motivation. Nat Rev Neurosci 2004, 5, 483–494. [Google Scholar] [CrossRef]
- Graybiel, A.M. The Basal Ganglia: Learning New Tricks and Loving It. Current Opinion in Neurobiology 2005, 15, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, T.; DeLong, M.R. Deep-Brain Stimulation for Basal Ganglia Disorders. Basal Ganglia 2011, 1, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.E.; Grace, A.A. The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory. Neuron 2005, 46, 703–713. [Google Scholar] [CrossRef]
- Shohamy, D.; Adcock, R.A. Dopamine and Adaptive Memory. Trends in Cognitive Sciences 2010, 14, 464–472. [Google Scholar] [CrossRef]
- Nieoullon, A. Dopamine and the Regulation of Cognition and Attention. Progress in Neurobiology 2002, 67, 53–83. [Google Scholar] [CrossRef]
- Nestler, E.J.; Carlezon, W.A. The Mesolimbic Dopamine Reward Circuit in Depression. Biological Psychiatry 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Pizzagalli, D.A. Depression, Stress, and Anhedonia: Toward a Synthesis and Integrated Model. Annual Review of Clinical Psychology 2014, 10, 393–423. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Burns, S.K. Neurophysiological Effects of Early Sensory Restriction. Exp Neurol 1965, 13, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Gluck, J.P.; Sackett, G.P. Extinction Deficits in Socially Isolated Rhesus Monkeys (Macaca Mulatta). Developmental Psychology 1976, 12, 173–174. [Google Scholar] [CrossRef]
- Moretz, J.A.; Martins, E.P.; Robison, B.D. The Effects of Early and Adult Social Environment on Zebrafish (Danio Rerio) Behavior. Environ Biol Fish 2007, 80, 91–101. [Google Scholar] [CrossRef]
- Adkins-Regan, E.; Krakauer, A. Removal of Adult Males from the Rearing Environment Increases Preference for Same-Sex Partners in the Zebra Finch. Animal Behaviour 2000, 60, 47–53. [Google Scholar] [CrossRef]
- Bertin, A.; Richard-Yris, M.-A. Mothering during Early Development Influences Subsequent Emotional and Social Behaviour in Japanese Quail. Journal of Experimental Zoology Part A: Comparative Experimental Biology 2005, 303A, 792–801. [Google Scholar] [CrossRef]
- Bester-Meredith, J.K.; Marler, C.A. Social Experience During Development and Female Offspring Aggression in Peromyscus Mice. Ethology 2007, 113, 889–900. [Google Scholar] [CrossRef]
- Bastian, M.L.; Sponberg, A.C.; Sponberg, A.C.; Suomi, S.J.; Higley, J.D. Long-Term Effects of Infant Rearing Condition on the Acquisition of Dominance Rank in Juvenile and Adult Rhesus Macaques (Macaca Mulatta). Developmental Psychobiology 2003, 42, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Meaney, M.J.; Szyf, M. Maternal Care as a Model for Experience-Dependent Chromatin Plasticity? Trends in Neurosciences 2005, 28, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.; Henzi, S.P.; Lusseau, D. Taking Sociality Seriously: The Structure of Multi-Dimensional Social Networks as a Source of Information for Individuals. Philosophical Transactions of the Royal Society B: Biological Sciences 2012, 367, 2108–2118. [Google Scholar] [CrossRef] [PubMed]

| Social function | Numerical abilities | Species |
|---|---|---|
| Assessment of groups size during conflicts | Proto-numerical Discrimination Proportional Reasoning |
Lions (Panthera leo) [111] Spotted hyenas (Crocuta crocuta) [112] Chimpanzees (Pan troglodytes) [113] Black howler monkey (Alouatta pigra) [114] Subdesert mesite (Monias benschi) [115] Free-ranging dogs (Canis lupus familiaris) [116] Western Australian magpies (Gymnorhina tibicen dorsalis) [62] |
| Protection from predators via group size | Proto-numerical Discrimination | Guppies (Poecilia reticulata) [117,118] Sticklebacks (Gasterosteus aculeatus) [119] Red colobus (Procolobus badius) [120] Diana monkey (Cercopithecus diana) [120] Zebrafish (Danio rerio) [121] |
| Navigation of dominance hierarchies | Ordinal Processing | Baboons (Papio anubis) [108] Ravens (Corvus corax) [122] Greylag geese (Anser anser) [123] Domestic chickens (Gallus gallus) [124,125] Paper wasps (Polistes dominula and Polistes metricus) [126] |
| Initiation of collective actions | Proto-numerical Discrimination Proportional Reasoning |
Ants (Myrmecina nipponica) [127,128,129] Capuchin monkeys (Cebus capucinus) [130] Baboons (Papio anubis) [131] African wild dogs (Lycaon pictus) [132] Meerkats (Suricata suricatta) [133] Honeybees (Apis mellifera) [134] |
| Balancing foraging trade-offs | Proportional Reasoning | Mallards (Anas platyrhynchos) [87] Cichlids (Astatotilapia burtoni) [90] |
| Tracking group members | Proto-Arithmetic | Domestic chicks (Gallus gallus): [135,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
