Submitted:
28 September 2025
Posted:
29 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Osmotically Dehydrated and Freeze-Dried Strawberries
2.2. Dry Matter, Water Activity and Density
2.3. Acoustic and Mechanical Properties
2.4. Bioactive of Substance
2.5. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Content, Water Activity and Density Results
| Code of samples | Dry matter content (g/ 100 g) |
Water activity (-) |
Particle density (g / cm3) |
Apparent density (g / cm3) | Porosity (-) |
|---|---|---|---|---|---|
| Non-dehydrated | 87.20 ± 0.15a | 0.275 ± 0.013b | 0.163± 0.001a | 1.228 ± 0.117a | 0.87 ± 0.01c |
| Sucrose 1h | 90.96 ± 0.27b | 0.261 ± 0.013b | 0.199 ± 0.000b | 1.368 ± 0.015b | 0.85 ± 0.01c |
| Sucrose 2h | 91.74 ± 3.38b | 0.298 ± 0.016b | 0.239 ± 0.000c | 1.383 ± 0.007b | 0.82 ± 0.01b |
| Sucrose 3h | 94.50 ± 0.36c | 0.284 ± 0.018b | 0.329 ± 0.000g | 1.405 ± 0.008b | 0.77 ± 0.00a |
| Chokeberry juice 1h | 89.03 ± 1.58b | 0.177 ± 0.005a | 0.241 ± 0.000d | 1.378 ± 0.035b | 0.82 ± 0.00b |
| Chokeberry juice 2h | 89.02 ± 1.51b | 0.185 ± 0.027a | 0.256 ± 0.001e | 1.423 ± 0.048b | 0.82 ± 0.00b |
| Chokeberry juice 3h | 94.83 ± 1.43c | 0.191 ± 0.001a | 0.319 ± 0.000f | 1.414 ± 0.008b | 0.77 ± 0.00a |
3.2. Crunchiness of Freeze-Dried Strawberries
| Code of samples | Energy of acoustic event (j.u.) | Number of AE event |
Amplitude of sound (μV) | Force (N) |
Work (mJ) |
Crunchiness index | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Non-dehydrated | 2610.83 ± 581.86b | 2626 ± 563b | 497.14 ± 51.66cd | 70.51 ± 16.44b | 285.17 ± 73.14c | 9.21 ± 1.97bc | |||||||
| Sucrose 1h | 1827.13 ± 182.23a | 1678 ± 263ab | 451.75 ± 35.16bc | 38.58 ± 5.54ab | 155.28 ± 29.83ab | 10.80 ± 1.70c | |||||||
| Sucrose 2h | 3931.55 ± 293.53c | 8727 ± 695c | 551.36 ± 21.45d | 28.88 ± 4.79a | 120.53 ± 32.91a | 72.12 ± 5.75e | |||||||
| Sucrose 3h | 3420.86 ± 628.17c | 8618 ± 502c | 542.29 ± 28.90d | 52.79 ± 20.08ab | 197.23 ± 54.91abc | 38.70 ± 15.00d | |||||||
| Chokeberry juice 1h | 1420.33 ± 150.03a | 1907 ± 923ab | 409.75 ± 45.92ab | 130.02 ± 45.51c | 475.25 ± 110.23d | 5.25 ± 2.24ab | |||||||
| Chokeberry juice 2h | 1599.25 ± 205.42a | 1759 ± 693ab | 423.50 ± 47.72ab | 150.53 ± 24.75ab | 261.04 ± 108.52bc | 6.74 ± 2.66ab | |||||||
| Chokeberry juice 3h | 1514.00 ± 169.23a | 1471 ± 655a | 389.89 ± 25.70a | 187.53 ± 67.19d | 426.83 ± 156.63d | 3.44 ± 1.53a | |||||||

3.3. Bioactive Substans Results
| Code of samples | Total phenolic (mg acid GAE / 100g d.m.) |
Anthocyanin (mg c3g/100g) |
Flavonoid (mg quercetin / g d.m.) |
|---|---|---|---|
| Non-dehydrated material | 1975.17 ± 35.32a | 130.23 ± 14.18b | 10.03 ± 0.78a |
| Sucrose 1h | 2581.30 ± 22.58ab | 139.00 ± 1 97b | 8.13 ± 0.18a |
| Sucrose 2h | 2669.40 ± 581.94ab | 173.32 ± 5.71cd | 16.24 ± 1.20c |
| Sucrose 3h | 3076.14 ± 271.14b | 208.95 ± 2.47e | 15.91 ± 0.18c |
| Chokeberry juice 1h | 4661.58 ± 32.14c | 74.13 ± 5.47a | 16.29 ± 0.39c |
| Chokeberry juice 2h | 4878.52 ± 287.06c | 152.06 ± 7.09bc | 17.03 ± 0.94c |
| Chokeberry juice 3h | 5000.80 ± 72.01c | 200.34 ± 3.35de | 15.14 ± 0.00c |
3.4. A Comprehensive Description of the Texture of Osmotically Dehydrated and Freeze-Dried Strawberries

4. Conclusions
Supplementary Materials
Funding
Author contributions
Conflicts of Interest
References
- Pellegrino, R.; Luckett, C.R. Aversive textures and their role in food rejection. Journal of Texture Studies 2020, 51, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Surmacka-Szcześniak, A. Texture is a sensory property. Food Quality Preference 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Wang, X.; Njehia, N.S.; Katsuno, N.; Nishizu, T. An acoustic study on the texture of cellular brittle foods. Reviews in Agricultural Science 2020, 8, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Fillion, L.; Kilcast, D. Consumer perception of crispness and crunchiness in fruits and vegetables. Food Quality and Preference 2002, 13, 23–29. [Google Scholar] [CrossRef]
- Luyten, A.; Pluter, J.J.; Vliet, T. Crispy/crunchy crusts of cellular solid foods: A literature review with discussion. Journal of Texture Studies 2004, 35445–35492. [Google Scholar] [CrossRef]
- Chauvin, M.A.; Younce, F.; Ross, C.; Swansons, B. Standard scales for crispness, crackliness and crunchiness in dry and wet foods: Relationship with acoustical determinations. Journal of Texture Studies 2008, 39, 345–368. [Google Scholar] [CrossRef]
- Sabella, P.; Farina, A.; Leporati, A. Methodology of Chewing’s sound acquisition by different detectors for dry food in terms of crispness and crunchiness. Applied Acoustics 2024, 204–218, 109889. [Google Scholar] [CrossRef]
- Vickers, Z.M.; Bourn, M.C. A psychoacoustic theory of crispness. Journal of Food Science 1976, 41, 1158–1164. [Google Scholar] [CrossRef]
- Duizer, L. A review of acoustic research for studying the sensory perception of crisp, crunchy and crackly textures. Trends in Food Science and Technology 2001, 12, 17–24. [Google Scholar] [CrossRef]
- Saeleaw, M.; Schleining, G. A review: Crispness in dry foods and quality measurements based on acoustic–mechanical destructive techniques. Journal Food Engineering 2011, 105, 387–399. [Google Scholar] [CrossRef]
- Andreani, P.; de Moraes, J.O.; Murta, B.H.P.; Link, J.V.; Tribuzi, G.; Laurindo, J.B.; Paul, S.; Carciofi, B.A.M. Spectrum crispness sensory scale correlation with instrumental acoustic high-sampling rate and mechanical analyses. Food Res. Int. 2020, 697, 108886. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, K. Food texture–sensory evaluation and instrumental measurement. In: Textural Characteristics of World Foods, First Edition. Edited by Katsuyoshi Nishinari.© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd., 1-13.
- Marzec, A.; Kowalska, H.; Zadrożna, M. Analysis of instrumental and sensory texture attributes of microwave–convective dried apples. Journal of Texture Studies 2010, 41, 417–439. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Gondek, E.; Tryzno, E. Application of novel acoustic measurement techniques for texture analysis of co-extruded snacks. LWT - Food Science and Technology 2017, 75, 582–589. [Google Scholar] [CrossRef]
- Dias-Faceto, L S; Salvador, A.; Conti-Silva, A.C. Acoustic settings combination as a sensory crispness indicator of dry crispy food. Journal of Texture Studies 2020, 51, 232–241. [CrossRef]
- Lewicki, P.P.; Marzec, A.; Ranachowski, Z. 2009. Acoustic properties of foods. Chapter 24. in: Food Properties Handbook, Second Edition (ed. M. Shafiur Rahman). CRC Press Taylor & Francis Group, Boca Raton Londyn New York, 2009, 811-841.
- Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E. The effect of composition, pre-treatment on the mechanical and acoustic properties of apple gels and freeze-dried materials. Gels 2022, 8, 110. [Google Scholar] [CrossRef]
- Zdunek, A.; Konopacka, D.; Jesionkowska, K. Crispness and crunchiness judgment of apples based on contact acoustic emission. Journal of Texture Studies 2010, 41, 75–91. [Google Scholar] [CrossRef]
- Taniwaki, M.; Kohyama, K. Mechanical and acoustic evaluation of potato chip crispness using a versatile texture analyzer. Journal of Food Engineering 2012, 112, 268–273. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Xiang, K.; Li, D.; Liu, C.; Wang, H.; Pang, W.; Niu, l.; Yu, R.; Sun, X. Factors affecting chemical and textural properties of dried tuber, fruit and vegetable. Journal of Food Engineering 2024, 365, 111828. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele składu i wartości odżywczej żywności. PZWL Wydawnictwo Lekarskie, 2020, Warszawa.
- Diamanti, J.; Capocasa, F.; Denoyes, B.; Petit, A .; Chartier, P.; Faedi, W.; Maltoni, M.L.; Battino, M.; Mezzetti B. Standardized method for evaluation of strawberry (Fragaria × ananassa Duch.) germplasm collections as a genetic resource for fruit nutritional compounds. Journal of Food Composition and Analysis 2012, 28, 170–178. [CrossRef]
- Bahmani, R.; Razavi, F.; Mortazavi, S.N.; Gohari, G.; Juárez-Maldonado, A. Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage. Horticulturae 2022, 8, 648. [Google Scholar] [CrossRef]
- Salazar-Orbea, G.; García-Villalba, R.; Bernal, M.; Hernández, A.; Tomás-Barberán, F.; Sánchez-Siles, L. Stability of phenolic compounds in apple and strawberry: Effect of different processing techniques in industrial set up. Food Chemistry 2023, 401, 134099. [Google Scholar] [CrossRef]
- Tahir, H. E.; Xiaobo, Z.; Jiyong, S.; Mahunu, G. K.; Zhai, X.; Mariod, A. A. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia senegal) edible coating. Journal of Food Biochemistry 2018, 42, e12527. [Google Scholar] [CrossRef]
- Macedo, L.L.; Corrêa, J.G.; da Silva Araújo, C.; et al. Use of Ethanol to Improve Convective Drying and Quality Preservation of Fresh and Sucrose and Coconut Sugar-impregnated Strawberries. Food Bioprocess Technolgy 2023, 16, 2257–2271. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry 2009, 25, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, E.; Tryzno-Gendek, E.; Kot, A.; Kamińska-Dwórznicka, A.; Nowak, D. Pre-Treatment Impact on Freeze-Drying Process and Properties of Dried Blueberries. Processes 2025, 13, 537. [Google Scholar] [CrossRef]
- Piotrowski. D.; Kostyra. E.; Grzegory. P.. Influence of drying methods on the structure. mechanical and sensory properties of strawberries. European Food Research and Technology 2021, 247, 1859–1867. [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Lv, W.; Xiao, H. Optimizing crispness and nutrient retention in carrot snacks: Multi-stage drying via microwave-infrared and negative pressure puffing with moisture-dependent transition. Innovative Food Science & Emerging Technologies 2025, 105, 104171. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Mujumdar, A. Berry drying: Mechanism, pretreatment, drying technology, nutrient preservation, and mathematical models. Food Eng. Rev. 2019, 11, 61–77. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Tiliwa, S.E.; Yan, W.; Roknul Azam, S.; Yuan, J.; Wei, B.; Zhou, C.; Ma, H. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry 2021, 78, 105714. [Google Scholar] [CrossRef] [PubMed]
- Biernacka. B.; Dziki. D.; Rudy. S.; Krzykowski. A.; Polak. R.; Dziki. L. Influence of Pretreatments and Freeze-Drying Conditions of Strawberries on Drying Kinetics and Physicochemical Properties. Processes 2022, 10, 1588. [CrossRef]
- Michalczyk, M.; Macura, R.; Matuszak, I. The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. Journal of Food Processing and Preservation 2009, 33, 11–21. [Google Scholar] [CrossRef]
- Masztalerz, K.; Lech, K.; Wojdyło, A.; Nowicka, P.; Michalska-Ciechanowska, A.; Figiel, A. The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples. Drying Technology 2020, 39, 1074–1086. [Google Scholar] [CrossRef]
- Nowacka, M.; Matys, A.; Witrowa-Rajchert, D. Innovative Technologies for Improving the Sustainability of the Food Drying Industry. Curr Food Sci Tech Rep 2024, 2, 231–239. [Google Scholar] [CrossRef]
- Alabi, K. P.; Fadeyibi, A.; Adebayo, K. R.; Gabriel, L.O. Effects of Osmotic Dehydration-Assisted Freezing at Different Pressure Rates on Mass Transfer and Quality of Fresh-Cut Apple. Journal Food Process Engineering 2025, 48, e70133. [Google Scholar] [CrossRef]
- Tylewicz, U.; Oliveira, G.; Alminger, M.; Nohynek, L.; Dalla Rosa, M.; Romani, S. Antioxidant and Antimicrobial Properties of Organic Fruits Subjected to PEF-Assisted Osmotic Dehydration. Innov. Food Sci. Emerg. Technol. 2020, 62. [Google Scholar] [CrossRef]
- Arnold, M.; Tylewicz, U.; Suliburska, J.; Świeca, M. ; Wojdyło,A.; Gramza-Michałowska, A. Vacuum and Ultrasound-Assisted Impregnation of Gala Apples with Sea Buckthorn Juice and Calcium Lactate: Functional Properties. Antioxidant Profile. and Activity of Polyphenol Oxidase and Peroxidase of Freeze-Dried Products. Polish Journal of Food and Nutrition Sciences, 2025; in press. [Google Scholar]
- Ciurzyńska, A. , Lenart, A., Siemiątkowska, M. Wpływ odwadniania osmotycznego na barwę i właściwości mechaniczne liofilizowanych truskawek. Acta Agrophysica 2011, 17, 17–32. [Google Scholar]
- Wrolstad, R.E.; Skrede, G.; Lea, P.; Enersen, G. Influence of sugar on anthocyanin pigment stability in frozen strawberries. Journal of Food Science 1990, 55, 1064–1065. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Ciurzyńska, A.; Czajkowska, K.; Cichowska, J.; Rybak, K.; Lenart, A. Osmotic dehydration of Honeoye strawberries in solutions enriched with natural bioactive molecules. LWT - Food Science and Technology 2017, 85, Part. [Google Scholar] [CrossRef]
- Kowalska, J.; Roszkowska, S.; Kowalska, H. The influence of chokeberry juice and inulin as osmotic-enriching agents in pre-treatment on polyphenols content and sensory quality of dried strawberries. Agricultural and Food Science 2019, 28, 190–199. [Google Scholar] [CrossRef]
- Karasawa, M.M.G; Mohan, C. Fruits as Prospective Reserves of Bioactive Compounds: A Review. Natural Products and Bioprospecting 2018, 8, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Loayza-Salazar, S.; Siche, R.; Vegas, C.; et al. Novel Technologies in the Freezing Process and Their Impact on the Quality of Fruits and Vegetables. Food Engineering Reviews 2024, 16, 371–395. [Google Scholar] [CrossRef]
- Da Silva, D.L.; Silveira, A.S.; Ronzoni, A.F.; Hermes, C.J.L. Effect of freezing rate on the quality of frozen strawberries (Fragaria x ananassa). Intnational Journal Refrigeration 2022, 144, 46–54. [Google Scholar] [CrossRef]
- Gautam, A.; Gill, P.P.S.; Singh, N.; Jawandha, S.K.; Arora, R.; Singh, A. Composite coating of xanthan gum with sodium nitroprusside alleviates quality deterioration in strawberry fruit. Food Hydrocolloids 2024, 155, 110208. [Google Scholar] [CrossRef]
- Alonzo-Macías, M.; Montejano-Gaitán, G.; Allaf, K. Texture Measurement of Dried Strawberry Slices. Journal of Texture Studies 2014, 45, 246–259. [Google Scholar] [CrossRef]
- Dacremont, C. Spectral composition of eating sounds generated by crispy, crunchy and crackly foods. Journal Texture Studies 1995, 26, 27–43. [Google Scholar] [CrossRef]
- Zhu C, Hu X, Jia X, Ji Z, Wang Z, Shen W. Correlation between acoustic characteristics and sensory evaluation of puffed-grain food based on energy analysis. Journal Texture Studies 2024, 55, e12832. [CrossRef] [PubMed]
- Akcicek A, Avci E, Tekin-Cakmak ZH, Kasapoglu MZ, Sagdic O, Karasu S. Influence of Different Drying Techniques on the Drying Kinetics, Total Bioactive Compounds, Anthocyanin Profile, Color, and Microstructural Properties of Blueberry Fruit. ACS Omega 2023, 8, 41603–41611. [CrossRef] [PubMed] [PubMed Central]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT- Food Science and Technology 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Mendelova, A.; Mendel, Ľ.; Solgajová, M.; Kolesárová, A.; Mareček, J; Zeleňáková, L. Comparison of the influence of different fruit drying methods on the content of selected bioactive substances. Journal of Microbiology, Biotechnology and Food Sciences 2022, 12. [CrossRef]
- Lech, K.; Michalska, A.; Wojdyło, A.; Nowicka, P.; Figiel, A. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules 2017, 22, 2246. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M. J.; Varo, M.; Mérida, J.; Serratosa, M.P. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT- Food Science and Technology 2019, 120, 108931. [Google Scholar] [CrossRef]
- López, J.; Shun Ah-Hen, K.; Vega-Gálvez, A.; Morales, A.; García-Segovia, P.; Uribe, E. Effects of drying methods on quality attributes of murta (ugni molinae turcz) berries: Bioactivity, nutritional aspects, texture profile, microstructure and functional properties. Journal Food Processing Engineering 2017, 40, e12511. [Google Scholar] [CrossRef]
- Bojarska, J.E.; Czaplicki, S.; Zarecka, K.; Zadernowski, R. Phenolic compounds of selected varieties of strawberry. ŻYWNOŚĆ. Nauka. Technologia. Jakość, Supl. 2006, 2, 20–27. [Google Scholar]
- Sarpong, F. , Yu, X., Zhou, C. et al. The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa ssp.) slices using controlled humidity convective air drying. Food Measure 2018, 12, 1935–1946. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
