Submitted:
26 September 2025
Posted:
02 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Decision Support System for Agrotechnology Transfer
2.3. NEX-GDDP-CMIP6
2.4. Drought Indices
2.5. Copula-Based Model
- For any
- if , where means that for all
- is -increasing, i.e., for any box with non-empty volume,
3. Results
3.1. DSSAT Model Calibration and Validation
3.2. Impacts of Future Climate Change on Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in South Asia. Sci. Data 2017, 4, 170145. [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [CrossRef]
- Canadian Canola Growers Association. Canola: Growing Canadian Prosperity. https://www.ccga.ca/advocacy/priorities, (accessed on 19 April 2022).
- Zhang, X.; Flato, G.; Cannon, A.; Wan, H.; Wang, X.; Rong, R.; et al. Changes in temperature and precipitation across Canada. Environ. Clim. Change Can. 2019. https://natural-resources.canada.ca/.
- Agriculture and Agri-Food Canada. Statistical Overview of the Canadian Agriculture Industry 2021; Agriculture and Agri-Food Canada: Ottawa, Canada, 2021. https://agriculture.canada.ca/.
- Heim, R.R. Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [CrossRef]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate change and drought: A risk assessment of crop production in China. Agric. Ecosyst. Environ. 2009, 134, 341–347. [CrossRef]
- Wakatsuki, H.; Ju, H.; Nelson, G.C.; Farrell, A.D.; Deryng, D.; Meza, F.; Hasegawa, T. Research trends and gaps in climate change impacts and adaptation potentials in major crops. Curr. Opin. Environ. Sustain. 2023, 61, 101249. [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [CrossRef]
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Páscoa, P. Copula-based agricultural drought risk of rainfed cropping systems. Agric. Water Manag. 2019, 223, 105689. [CrossRef]
- Li, P.; Huang, Q.; Huang, S.; Leng, G.; Peng, J.; Wang, H.; Fang, W. Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities. Agric. Water Manag. 2022, 261, 107391. [CrossRef]
- Wu, H.; Su, X.; Singh, V.P.; Feng, K.; Niu, J. Agricultural drought prediction based on conditional distributions of vine copulas. Water Resour. Res. 2021, 57, e2021WR029562. [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44, 7799–7807. [CrossRef]
- Zare, M.; Sauchyn, D.; Noorisameleh, Z. Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies under the Effect of Climate Change. Climate 2025, 13, 179. [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; et al. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]
- El-Mahroug, S.E.; Suleiman, A.A.; Zoubi, M.M.; Al-Omari, S.; Abu-Afifeh, Q.Y.; Al-Jawaldeh, H.F.; Alta’any, Y.A.; Al-Nawaiseh, T.M.F.; Obeidat, N.; Alsoud, S.H.; et al. Predictive modeling of climate-driven crop yield variability using DSSAT towards sustainable agriculture. AgriEngineering 2025, 7, 156. [CrossRef]
- Hanesiak, J.M.; Stewart, R.E.; Bonsal, B.R.; Harder, P. Characterization and summary of the 1999–2005 Canadian Prairie drought. Atmos.–Ocean 2011, 49, 421–452. [CrossRef]
- McGinn, S.M. Weather and climate patterns in Canada’s Prairies grassland. In Arthropods of Canadian Grasslands: Ecology and Interactions in Grasslands Habitats; Shorthouse, J.D., Floate, K.D., Eds.; Biological Survey of Canada: Ottawa, ON, Canada, 2010; Volume 1, pp. 105–119. https://profils-profiles.science.gc.ca/.
- Bailey, W.G.; Oke, T.R.; Rouse, W.R. The Surface Climates of Canada; McGill–Queen’s University Press: Montreal-Kingston, QC, Canada, 1997. https://www.mqup.ca/.
- Gregorich, E.G.; Anderson, D.W. Effects of cultivation and erosion on soils of four toposequences in the Canadian prairies. Geoderma 1985, 36, 343–354. [CrossRef]
- Statistics Canada. Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units. Table 32-10-0359-01. Statistics Canada: Ottawa, ON, Canada, 2019. https://www150.statcan.gc.ca/. (accessed on 12 June 2024).
- Wheaton, E.; Kulshreshtha, S.; Wittrock, V.; Koshida, G. Dry times: hard lessons from the Canadian drought of 2001 and 2002. Can. Geogr. 2008, 52, 241–262. [CrossRef]
- Mardian, J.; Champagne, C.; Bonsal, B.; Daneshfar, B.; Berg, A. From drought hazard to risk: A spring wheat vulnerability assessment in the Canadian Prairies. Agric. For. Meteorol. 2024, 353, 110056. [CrossRef]
- Sattar, F. Spring wheat cultivar coefficients: GenCalc vs GLUE. Asian J. Emerg. Res. 2020, 2, 17–18. [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [CrossRef]
- Loague, K.; Freeze, R.A. A comparison of rainfall–runoff modeling techniques: Event-based simulation using measured parameter values. Water Resour. Res. 1985, 21, 229–248. [CrossRef]
- Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; Goldscheider, N. When best is the enemy of good – critical evaluation of performance criteria in hydrological models. Hydrol. Earth Syst. Sci. 2023, 27, 2397–2411. [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; et al. NASA global daily downscaled projections, CMIP6. Sci. Data 2022, 9, 262. [CrossRef]
- Hauser, M.; Engelbrecht, F.; Fischer, E.M. Transient global warming levels for CMIP5 and CMIP6. Zenodo 2021. https://zenodo.org/records/7390473.
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index (SPEI). J. Clim. 2010, 23, 1696–1718. [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. A Math. Phys. Sci. 1948, 193, 120–145. https://www.jstor.org/stable/98151.
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Eng. 1982, 108, 223–230. [CrossRef]
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Modeling dryness severity using artificial neural network at the Okavango Delta, Botswana. Glob. Nest J. 2016, 18, 463–481. [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [CrossRef]
- Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231.
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006.
- Madadgar, S.; Moradkhani, H. A Bayesian framework for probabilistic seasonal drought forecasting. J. Hydrol. 2013, 14 (6), 1685–1705. [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [CrossRef]
- Genest, C.; Rémillard, B. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann. Inst. Stat. Math. 2008, 60, 1–23. [CrossRef]
- Sadegh, M.; Ragno, E.; AghaKouchak, A. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 2017, 53, 5166–5183. [CrossRef]
- Huffman, T.; Qian, B.; De Jong, R.; Liu, J.; Wang, H.; McConkey, B.; Brierley, T.; Yang, J. Upscaling modelled crop yields to regional scale: A case study using DSSAT for spring wheat on the Canadian Prairies. Can. J. Soil Sci. 2015, 95, 49–61. [CrossRef]
- Hoogenboom, G.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5; DSSAT Foundation: Gainesville, FL, USA, 2019. https://DSSAT.net.
- Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; … Asseng, S. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 2015, 72, 287–303. [CrossRef]
- Qian, B.; He, J.; Song, C.; Wang, H.; Jing, Q.; Hoogenboom, G.; Drury, C.; Yang, J.; He, P.; Zhou, W. Simulated canola yield responses to climate change and adaptation in Canada. Agron. J. 2018, 110, 1331–1344. [CrossRef]
- Qian, B.; De Jong, R.; Huffman, T.; Wang, H.; Yang, J. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theor. Appl. Climatol. 2016, 123, 651–669. https://profils-profiles.science.gc.ca/.
- Mohamed, I.; Najafi, M.R.; Joe, P.; Brimelow, J. Multivariate analysis of compound hail, wind and rainfall extremes in Alberta’s hail alley. Weather Clim. Extremes 2024, 46, 100718. [CrossRef]
- Khaledi-Alamdari, M.; Majnooni-Heris, A.; Fakheri-Fard, A.; Russo, A. Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index. Agric. Water Manag. 2023, 289, 108542. [CrossRef]
- Schmitt, J.; Offermann, F.; Ribeiro, A.F.S.; Finger, R. Drought risk management in agriculture: A copula perspective on crop diversification. Agric. Econ. 2024, 55, 823–847. [CrossRef]
- Li, M.; Wang, G.; Zong, S.; Chai, X. Copula-based assessment and regionalization of drought risk in China. Int. J. Environ. Res. Public Health 2023, 20, 4074. [CrossRef]
- Lychuk, T.E.; Cutforth, H.; et al. Modelling the effects of climate change, agricultural inputs, cropping diversity, and soil on wheat and canola yields at a long-term Prairie site. Agric. Syst. 2021, 190, 103095. [CrossRef]











| No. | Model | Institution / Country |
|---|---|---|
| 1 | ACCESS-ESM1-5 | CSIRO, Australia |
| 2 | BCC-CSM2-MR | Beijing Climate Center, China |
| 3 | CanESM5 | Canadian Centre for Climate Modelling, Canada |
| 4 | CNRM-CM6-1 | National Center of Meteorological Research, France |
| 5 | CMCC-CM2-SR5 | Euro-Mediterranean Centre, Italy |
| 6 | EC-Earth3 | EC-Earth Consortium, Sweden |
| 7 | FGOALS-g3 | Chinese Academy of Sciences, China |
| 8 | GFDL-CM4 | NOAA Geophysical Fluid Dynamics Lab, USA |
| 9 | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Lab, USA |
| 10 | GISS-E2-1-G | Goddard Institute for Space Studies, USA |
| 11 | HadGEM3-GC31-LL | Met Office, Hadley Centre, UK |
| 12 | INM-CM5-0 | Institute for Numerical Mathematics, Russia |
| 13 | IPSL-CM6A-LR | Institute Pierre-Simon Laplace, France |
| 14 | KACE-1-0-G | Korea Meteorological Administration, South Korea |
| 15 | KIOST-ESM | Korea Institute of Ocean Science & Technology, South Korea |
| 16 | MIROC6 | JAMSTEC, Japan |
| 17 | MIROC-ES2L | JAMSTEC, Japan |
| 18 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany |
| 19 | MRI-ESM2-0 | Meteorological Research Institute, Japan |
| 20 | NorESM2-LM | Norwegian Climate Centre, Norway |
| 21 | UKESM1-0-LL | Met Office, Hadley Centre, UK |
| GCMs model | 1.5 °C | 2.0 °C | 3.0 °C | 4.0 °C |
|---|---|---|---|---|
| ACCESS-ESM1-5 | 2018-2037 | 2030-2049 | 2051-2070 | 2069-2088 |
| BCC-CSM2-MR | 2021-2040 | 2034-2053 | 2056-2075 | |
| CanESM5 | 2003-2022 | 2013-2032 | 2031-2050 | 2045-2064 |
| CNRM-CM6-1 | 2019-2038 | 2031-2050 | 2049-2068 | 2063-2082 |
| CMCC-CM2-SR5 | 2012-2031 | 2024-2043 | 2043-2062 | 2060-2079 |
| EC-Earth3 | 2015-2034 | 2026-2045 | 2048-2067 | 2064-2083 |
| FGOALS-g3 | 2020-2039 | 2038-2057 | 2065-2084 | |
| GFDL-CM4 | 2020-2039 | 2032-2051 | 2050-2069 | 2070-2089 |
| GFDL-ESM4 | 2030-2049 | 2043-2062 | 2066-2085 | |
| GISS-E2-1-G | 2012-2031 | 2020-2039 | 2047-2066 | 2069-2088 |
| HadGEM3-GC31-LL | 2011-2030 | 2021-2040 | 2038-2057 | 2054-2073 |
| INM-CM5-0 | 2021-2040 | 2037-2056 | 2065-2084 | |
| IPSL-CM6A-LR | 2009-2028 | 2025-2044 | 2041-2060 | 2057-2076 |
| KACE-1-0-G | 2005-2024 | 2014-2033 | 2034-2053 | 2053-2072 |
| KIOST-ESM | 2008-2027 | 2029-2048 | 2055-2074 | |
| MIROC6 | 2031-2050 | 2044-2063 | 2067-2086 | |
| MIROC-ES2L | 2025-2044 | 2038-2057 | 2061-2080 | |
| MPI-ESm1-2-LR | 2025-2044 | 2039-2058 | 2062-2081 | |
| MRI-ESM2-0 | 2017-2036 | 2029-2048 | 2055-2074 | 2074-2093 |
| NorESM2-LM | 2033-2052 | 2047-2066 | 2068-2087 | |
| UKESM1-0-LL | 2014-2033 | 2022-2041 | 2037-2056 | 2051-2070 |
| SPEI value | Class |
|---|---|
| Greater than 2.00 | Extremely wet |
| 1.50 to 1.99 | Severely wet |
| 1.00 to 1.49 | Moderately wet |
| 0.50 to 0.99 | Slightly wet |
| -0.49 to 0.49 | Near normal |
| -0.99 to -0.50 | Mild dry |
| -1.49 to -1.00 | Moderately dry |
| -1.99 to -1.5 | Severely dry |
| Less than -2.00 | Extremely dry |

| Crop | Period | Year | Statistical performance | ||||
|---|---|---|---|---|---|---|---|
| Observation | Simulation | d | EF | nRMSE | |||
| Wheat CERES | Calibration | 1992-2010 | 2089 | 2316 | 0.73 | 0.17 | 20.15 |
| Validation | 2011-2022 | 2548 | 2573 | 0.85 | 0.3 | 18.5 | |
| Barley | Calibration | 2000-2011 | 3009 | 3358 | 0.77 | 0.25 | 19.9 |
| Validation | 2012-2019 | 3504 | 3546 | 0.85 | 0.57 | 7.2 | |
| Canola | Calibration | 1992-2010 | 1980 | 2098 | 0.8 | 0.03 | 13.6 |
| Validation | 2011-2022 | 2564 | 2309 | 0.81 | 0.1 | 14.1 | |
| Crop | Copula | S | P-value |
|---|---|---|---|
| Wheat | Clayton | 0.036 | 0.89 |
| Gaussian | 0.428 | 0.321 | |
| Frank | 0.002 | 0.95 | |
| Barley | Clayton | 0.013 | 0.878 |
| Gaussian | 0.919 | 0.169 | |
| Frank | 0.247 | 0.569 | |
| Canola | Clayton | 0.049 | 0.83 |
| Gaussian | 0.487 | 0.447 | |
| Frank | 0.001 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
