Submitted:
19 September 2025
Posted:
19 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection, Testing Protocol and Injury Registration
2.4. Data Treatment and Statistical Analysis
2.5. Development of the Logistic Regression Model
2.6. Model Performance
2.7. Stability Analyses
3. Results
Injury Incidence
Model Performance
Predictor Importance
Stability Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kekelekis, F. Manuel Clemente, and E. Kellis. Muscle injury characteristics and incidence rates in men’s amateur soccer: A one season prospective study. Research in Sports Medicine 2022, 00, 1–14. [Google Scholar] [CrossRef]
- López-valenciano et al.. Epidemiology of injuries in professional football : a systematic review and meta-analysis. pp. 1–9, 2019. [CrossRef]
- W. S. A. Al Attar and M. A. Husain. Effectiveness of Injury Prevention Programs With Core Muscle Strengthening Exercises to Reduce the Incidence of Hamstring Injury Among Soccer Players: A Systematic Review and Meta-Analysis. Nov. 01, 2023, SAGE Publications Inc. [CrossRef]
- J. Ekstrand, H. Bengtsson, M. Waldén, M. Davison, K. M. Khan, and M. Hägglund. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: the UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br J Sports Med 2023, 57, 292–298. [Google Scholar] [CrossRef]
- E. Eliakim, E. Morgulev, R. Lidor, and Y. Meckel. Estimation of injury costs: Financial damage of English Premier League teams’ underachievement due to injuries. BMJ Open Sport Exerc Med 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Green, M. N. Bourne, N. Van Dyk, and T. Pizzari. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-Analysis of risk factors for index and recurrent hamstring strain injury in sport. Br J Sports Med 2020, 54, 1081–1088. [Google Scholar] [CrossRef]
- K. -M. M. H. C. K. C. P. S. H. Y. K.-M. C. Justin W.Y. Lee. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football- A prospective study of 146 professional players. J Sci Med Sport 2018, 21, 789–793. [Google Scholar] [CrossRef] [PubMed]
- G. Henderson, C. A. Barnes, and M. D. Portas. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. J Sci Med Sport 2010, 13, 397–402. [Google Scholar] [CrossRef]
- R. G. Timmins, M. N. Bourne, A. J. Shield, M. D. Williams, C. Lorenzen, and D. A. Opar. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br J Sports Med 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Delextrat, J. Piquet, M. J. Matthews, and D. D. Cohen. Strength-Endurance Training Reduces the Hamstrings Strength Decline Following Simulated Football Competition in Female Players. Front Physiol, vol. Volume 9- 2018, 2018, [Online], https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.01059. [Google Scholar]
- J. Mendiguchia, E. Alentorn-Geli, and M. Brughelli. Hamstring strain injuries: Are we heading in the right direction?. Feb. 2012. [CrossRef]
- C.M. Wille, M. R. Stiffler-Joachim, S. A. Kliethermes, J. L. Sanfilippo, C. S. Tanaka, and B. C. Heiderscheit. Preseason Eccentric Strength Is Not Associated with Hamstring Strain Injury: A Prospective Study in Collegiate Athletes. Med Sci Sports Exerc 2022, 54, 1271–1277. [Google Scholar] [CrossRef]
- J. Orchard, J. Marsden, S. Lord, and D. Garlick. Preseason Hamstring Muscle Weakness Associated with Hamstring Muscle Injury in Australian Footballers *.
- Nordstrøm, R. Bahr, B. Clarsen, and O. Talsnes. Association Between Preseason Fitness Level and Risk of Injury or Illness in Male Elite Ice Hockey Players: A Prospective Cohort Study. Orthop J Sports Med 2022, 10, 1–10. [Google Scholar] [CrossRef]
- N. van Dyk, A. Farooq, R. Bahr, and E. Witvrouw. Hamstring and Ankle Flexibility Deficits Are Weak Risk Factors for Hamstring Injury in Professional Soccer Players: A Prospective Cohort Study of 438 Players Including 78 Injuries. American Journal of Sports Medicine 2018, 46, 2203–2210. [Google Scholar] [CrossRef]
- M. N. Bourne, D. A. Opar, M. D. Williams, and A. J. Shield. Eccentric knee flexor strength and risk of hamstring injuries in rugby union. American Journal of Sports Medicine 2015, 43, 2663–2670. [Google Scholar] [CrossRef]
- L. Heinert, T. W. Kernozek, J. F. Greany, and D. C. Fater. Hip Abductor Weakness and Lower Extremity Kinematics During Running. 2008.
- M. D. Mucha, W. Caldwell, E. L. Schlueter, C. Walters, and A. Hassen. Hip abductor strength and lower extremity running related injury in distance runners: A systematic review. Apr. 01, 2017, Elsevier Ltd. [CrossRef]
- A. Alammari, N. Spence, A. Narayan, S. D. Karnad, and Z. C. Ottayil. Effect of hip abductors and lateral rotators’ muscle strengthening on pain and functional outcome in adult patients with patellofemoral pain: A systematic review and meta-analysis. 2023, IOS Press BV. [CrossRef]
- J. Schuermans, D. Van Tiggelen, T. Palmans, L. Danneels, and E. Witvrouw. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef]
- A. Higashihara, Y. Nagano, K. Takahashi, and T. Fukubayashi. Effects of forward trunk lean on hamstring muscle kinematics during sprinting. J Sports Sci 2015, 33, 1366–1375. [Google Scholar] [CrossRef]
- E.S. Chumanov, B. C. Heiderscheit, and D. G. Thelen. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 2007, 40, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- W. Ben Kibler, J. Press, and A. Sciascia. CURRENT OPINION The Role of Core Stability in Athletic Function. 2006.
- A.J. Shield and M. N. Bourne. Hamstring Injury Prevention Practices in Elite Sport: Evidence for Eccentric Strength vs. Lumbo-Pelvic Training. Mar. 01, 2018, Springer International Publishing. [CrossRef]
- M. Wallden and N. Walters. Does lumbo-pelvic dysfunction predispose to hamstring strain in professional soccer players? J Bodyw Mov Ther 2005, 9, 99–108. [Google Scholar] [CrossRef]
- N. F. N. Bittencourt, W. H. Meeuwisse, L. D. Mendonça, A. Nettel-Aguirre, J. M. Ocarino, and S. T. Fonseca. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition - Narrative review and new concept. Nov. 01, 2016, BMJ Publishing Group. [CrossRef]
- N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr, and J. M. O’Sullivan. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers Media SA 2022. [CrossRef]
- M. Kolodziej et al.. Predictive modeling of lower extremity injury risk in male elite youth soccer players using least absolute shrinkage and selection operator regression. Scand J Med Sci Sports 2023, 33, 1021–1033. [Google Scholar] [CrossRef]
- F. Ayala et al.. A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int J Sports Med 2019, 40, 344–353. [CrossRef]
- M. Rico-González, J. Pino-Ortega, A. Méndez, F. Clemente, and A. Baca. Machine learning application in soccer: a systematic review. Biol Sport 2023, 40, 249–263. [Google Scholar] [CrossRef]
- R. Muazu Musa, A. P. P. Abdul Majeed, Z. Taha, M. R. Abdullah, A. B. Husin Musawi Maliki, and N. Azura Kosni. The application of Artificial Neural Network and k-Nearest Neighbour classification models in the scouting of high-performance archers from a selected fitness and motor skill performance parameters. Sci Sports 2019. [CrossRef]
- N. Rommers et al.. A Machine Learning Approach to Assess Injury Risk in Elite Youth Football Players. Med Sci Sports Exerc 2020, 52, 1745–1751. [Google Scholar] [CrossRef]
- B.C. Luu et al.. Machine Learning Outperforms Logistic Regression Analysis to Predict Next-Season NHL Player Injury: An Analysis of 2322 Players From 2007 to 2017. Orthop J Sports Med 2020, 8. [Google Scholar] [CrossRef]
- M. Henriquez, J. Sumner, M. Faherty, T. Sell, and B. Bent. Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes. Front Sports Act Living 2020, 2. [Google Scholar] [CrossRef]
- H. Van Eetvelde, L. D. Mendonça, C. Ley, R. Seil, and T. Tischer. Machine learning methods in sport injury prediction and prevention: a systematic review. Dec. 01, 2021, Springer Science and Business Media Deutschland GmbH. [CrossRef]
- J. D. Ruddy et al.. Predictive Modeling of Hamstring Strain Injuries in Elite Australian Footballers. Med Sci Sports Exerc 2018, 50, 906–914. [Google Scholar] [CrossRef]
- G.S. Collins et al.. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021, 11. [Google Scholar] [CrossRef]
- S. Cuschieri. The STROBE guidelines. Saudi J Anaesth 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- A.Kekelekis, Z. Kounali, N. Kofotolis, F. M. Clemente, and E. Kellis. Epidemiology of Injuries in Amateur Male Soccer Players: A Prospective One-Year Study. Healthcare 2023, 11, 352. [Google Scholar] [CrossRef]
- A. Kekelekis, R. M. Musa, P. T. Nikolaidis, F. M. Clemente, and E. Kellis. Hip Muscle Strength Ratios Predicting Groin Injury in Male Soccer Players Using Machine Learning and Multivariate Analysis—A Prospective Cohort Study. Muscles 2024, 3, 297–309. [Google Scholar] [CrossRef]
- H. Kang. Sample size determination and power analysis using the G*Power software. 2021, Korea Health Personnel Licensing Examination Institute. [CrossRef]
- D. A. Opar, M. D. Williams, and A. J. Shield. Hamstring strain injuries: Factors that Lead to injury and re-Injury. Sports Medicine 2012, 42, 209–226. [Google Scholar] [CrossRef]
- N. Van Dyk et al.. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries. American Journal of Sports Medicine 2016, 44, 1789–1795. [Google Scholar] [CrossRef]
- A. B. H. M. Maliki et al.. A multilateral modelling of Youth Soccer Performance Index (YSPI). in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Apr. 2018. [CrossRef]
- J. Cohen. A Power Primer. 1992.
- M. A. Babyak. What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models. 2004.
- N. Olds, M., McLaine, S., & Magni. Validity and Reliability of the Kinvent Handheld Dynamometer in the Athletic Shoulder Test. J Sport Rehabil. [CrossRef]
- M. B. de Almeida et al.. Intra-Rater and Inter-Rater Reliability of the Kinvent Hand-Held Dynamometer in Young Adults. MDPI AG, Aug. 2023, p. 12. [CrossRef]
- L. L. Florencio, J. Martins, M. R. B. da Silva, J. R. da Silva, G. L. Bellizzi, and D. Bevilaqua-Grossi. Knee and hip strength measurements obtained by a hand-held dynamometer stabilized by a belt and an examiner demonstrate parallel reliability but not agreement. Physical Therapy in Sport 2019, 38, 115–122. [Google Scholar] [CrossRef]
- C. W. Fuller et al.. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Mar. 2006. [CrossRef]
- G. Tokutake, R. Kuramochi, Y. Murata, S. Enoki, Y. Koto, and T. Shimizu. The risk factors of hamstring strain injury induced by high-speed running. J Sports Sci Med 2018, 17, 650–655. [Google Scholar]
- L. Wolski, E. Pappas, C. Hiller, M. Halaki, and A. Fong Yan. Is there an association between high-speed running biomechanics and hamstring strain injury? A systematic review. 2021, Routledge. [Google Scholar] [CrossRef]
- J. Schuermans, L. Danneels, D. Van Tiggelen, T. Palmans, and E. Witvrouw. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study with Electromyography Time-Series Analysis during Maximal Sprinting. American Journal of Sports Medicine 2017, 45, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- J. L. Croisier, S. Ganteaume, J. Binet, M. Genty, and J. M. Ferret. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. American Journal of Sports Medicine 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- G. S. Bullock, J. Mylott, T. Hughes, K. F. Nicholson, R. D. Riley, and G. S. Collins. Just How Confident Can We Be in Predicting Sports Injuries? A Systematic Review of the Methodological Conduct and Performance of Existing Musculoskeletal Injury Prediction Models in Sport. Oct. 01, 2022, Springer Science and Business Media Deutschland GmbH. [CrossRef]
- E. W. Steyerberg et al.. Poor performance of clinical prediction models: the harm of commonly applied methods. J Clin Epidemiol 2018, 98, 133–143. [Google Scholar] [CrossRef] [PubMed]
- B. Shiferaw, M. Roloff, D. Waltemath, and A. A. Zeleke. Guidelines and Standard Frameworks for AI in Medicine: Protocol for a Systematic Literature Review. 2023, JMIR Publications Inc. [CrossRef]
- E. Christodoulou, J. Ma, G. S. Collins, E. W. Steyerberg, J. Y. Verbakel, and B. Van Calster. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Jun. 01, 2019, Elsevier USA. [CrossRef]





| Metric | Mean | SD | Description |
|---|---|---|---|
| Accuracy (%) | 69.9 | 3.8 | Proportion of all correctly classified cases |
| AUC | 0.792 | 0.064 | Area under the ROC curve |
| Sensitivity (Recall) | 0.700 | 0.073 | True positive rate (injured correctly class.) |
| Precision | 0.901 | 0.053 | Positive predictive value |
| F1 Score | 0.787 | 0.040 | Harmonic mean of precision and recall |
| Predictor | β (SE) | OR | 95% CI | p-value |
|---|---|---|---|---|
| Intercept | 0.963 (4.334) | 2.62 | 0.10 – 12.80 | 0.824 |
| Age (years) | −0.012 (0.050) | 0.99 | 0.90 – 1.09 | 0.808 |
| BMI (kg/m²) | 0.034 (0.136) | 1.03 | 0.79 – 1.35 | 0.805 |
| Previous hamstring injury | −1.283 (0.805) | 0.28 | 0.06 – 1.34 | 0.111 |
| Hip abduction (dominant leg) | −0.200 (0.083) | 0.82 | 0.70 – 0.96 | 0.016* |
| Hip flexion (non-dominant leg) | 0.108 (0.067) | 1.11 | 0.98 – 1.27 | 0.109 |
| Hip adduction ratio (D/ND) | 0.939 (1.520) | 2.56 | 0.13 – 50.27 | 0.536 |
| Hip abduction ratio (D/ND) | −0.414 (1.121) | 0.66 | 0.07 – 5.95 | 0.712 |
| Hamstring ratio (D/ND) | −0.346 (1.541) | 0.71 | 0.04 – 14.51 | 0.822 |
| Hip flexion ratio (D/ND) | 2.304 (2.251) | 10.02 | 0.12 – 826.22 | 0.306 |
| Hip flexion/hamstring ratio (dominant leg) | −0.621 (0.947) | 0.54 | 0.08 – 3.44 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
