Submitted:
15 September 2025
Posted:
15 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Theoretical Framework
2.1. The Tole of GenAI in Contemporary Qualitative Research
2.2. Ethical Foundations in Qualitative Research in the Face of the Advance of GenAI
2.3. Researcher Perceptions and Emerging Regulatory Frameworks
3. Materials and Methods
3.1. Design
3.2. Participants and Setting
3.3. Data Collection
3.4. Data Analysis
4. Results
4.1. Ethical Implications of GenAI in Qualitative Research
4.2. Protocols and Guidelines to Ensure the Ethical Use of GenAI in Qualitative Research
4.3. Practical Uses and Implications of GenAI in Qualitative Research
4.4. GenAI Applications Currently Employed in Qualitative Research
4.5. Barriers to the Adoption of GenAI in Qualitative Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GenAI | Generative Artificial Intelligence |
| AI | Artificial Intelligence |
| GAN | Generative Adversarial Networks |
| GDPR | General Data Protection Regulation |
| UNESCO | United Nations Educational, Scientific and Cultural Organization |
| APA | American Psychological Association |
| C | Category |
| SC | Subcategory |
| CAQDAS | Computer-Assisted Qualitative Data Analysis Software |
| ACM | Association for Computing Machinery |
| IEEE | Institute of Electrical and Electronics Engineers |
Appendix A
| Category | Subcategory |
|---|---|
| C1. Ethical implications of GenAI in qualitative research | SC1.1 Algorithmic Bias SC1.2 Declaration of GenAI Use and Integration SC1.3 Recognizing and Mitigating Patterns of Exclusion or Inaccurate Representations SC1.4 Data Truth, Rigor, and Risk of Falsification SC1.5 Loss of the Human Component and Empathy as an Inherent Risk |
| C2. Protocols and guidelines to ensure the ethical use of GenAI in qualitative research | SC2.1 Need to establish clear regulatory frameworks governing the use of GenAI SC2.2 Ethical principles and researcher transparency SC2.3 Human oversight and process control SC2.4 Creation of ethics committees and interdisciplinary collaboration SC2.5 AI training and literacy SC2.6 Data protection, privacy, and bias mitigation SC2.7 Not knowing or feeling prepared to propose specific protocols or guidelines |
| C3. Practical uses and implications of GenAI in qualitative research | SC3.1 Does not use GenAI in qualitative research, either individually or as a team SC3.2 Initial phase of GenAI experimentation in qualitative research SC3.3 Support for routine tasks that are time-consuming but do not require interpretive judgment (transcription, translation, review and summarization of texts, etc.) SC3.4 Data organization and mining SC3.5 Literature review SC3.6 Tasks related to content analysis (generating codes, identifying themes, or creating groupings or clusters) SC3.7 Preparation of intermediate or final products (writing summaries or structuring reports) SC3.8 Technological integration of GenAI into CAQDAS (Atlas.ti, NVivo, or MAXQDA) SC3.9 Creation of documentation (questionnaires or dossiers for ethics committees) SC3.10 Critical points in the analysis of qualitative data with GenAI (quality, bias, authenticity, or need for human supervision) |
| C4. GenAI applications currently employed in qualitative research | SC4.1 Conversational and generative text assistants (ChatGPT, Claude, Gemini, Google Bard, Jasper, JenniAI, Copilot, MetaAI, AIWriter, AIAssistant, ScholarGPT, Bing) SC4.2 Qualitative analysis assisted by CAQDAS with AI module (Atlas.ti, NVivo, MAXQDA, Quirkos, Leximancer) SC4.3 Transcripción, subtitulado y procesamiento de audio (Amberscript, Cockatoo, OtterAI, Trint, SpeechLogger, Julius, Kahubi) SC4.4 Translation, correction and assisted writing (Deepl, Grammarly, Traductor de Word) SC4.5 Bibliographic review, literature discovery and reference organization (Connected Papers, Consensus, Elicit, Research Rabbit, SciteAI, Scispace, Scholarcy, Mendeley, Zotero, NotebookLM, Pinpoint, Perplexity) SC4.6 Data Mining and Visualization (PowerBI, Tableau, D3.js, Matlab, KNIME, RapidMiner, Alteryx, MonkeyLearn, Lexalytics) SC4.7 Surveys, forms and data collection (Qualtrics, SurveyMonkey) SC4.8 Generation of images and multimedia content (DALL·E, Midjourney) SC4.9 Corporate conversational assistants and specialized bots (IBM Watson Assistant, Microsoft Azure Bot Service, ChatbaseAI) SC4.10 Non-use or ignorance of AI SC4.11 All available AI applications |
| C5. Barriers to the adoption of GenAI in qualitative research | SC5.1 Barreras epistemológicas y metodológicas SC5.2 Barreras éticas SC5.3 Barreras técnicas y de accesibilidad a los recursos SC5.4 Resistencia cultural al cambio y apego a enfoques tradicionales en investigación cualitativa SC5.5 Barreras formativas y de alfabetización digital SC5.6 Barreras de validez e interpretación de los resultados |
References
- N. Ngozwana, “Ethical Dilemmas in Qualitative Research Methodology: Researcher’s Reflections,” INT J EDUC METHODOL, vol. 4, no. 1, pp. 19–28, Feb. 2018. [CrossRef]
- M. Salvaris, D. Dean, and W. H. Tok, “Generative Adversarial Networks,” in Deep Learning with Azure: Building and Deploying Artificial Intelligence Solutions on the Microsoft AI Platform, M. Salvaris, D. Dean, and W. H. Tok, Eds., Berkeley, CA: Apress, 2018, pp. 187–208. [CrossRef]
- T. van der Zant, M. Kouw, and L. Schomaker, “Generative Artificial Intelligence,” in Philosophy and Theory of Artificial Intelligence, V. C. Müller, Ed., Berlin, Heidelberg: Springer, 2013, pp. 107–120. [CrossRef]
- T. W. Griffith, “A computational theory of generative modeling in scientific reasoning,” phd, Georgia Institute of Technology, USA, 1999.
- V. Yépez-Reyes and J. Cruz-Silva, “Inteligencia artificial en la transcripción de entrevistas,” Contratexto, no. 41, Art. no. 41, May 2024. [CrossRef]
- R. H. Tai et al., “An Examination of the Use of Large Language Models to Aid Analysis of Textual Data,” Jan. 09, 2024, bioRxiv. [CrossRef]
- J. R. dos Anjos, M. G. de Souza, A. S. de A. Neto, and B. C. de Souza, “An analysis of the generative AI use as analyst in qualitative research in science education,” Revista Pesquisa Qualitativa, vol. 12, no. 30, Art. no. 30, Apr. 2024. [CrossRef]
- J. P. Gamboa and D. D. Díaz-Guerra, “Artificial Intelligence for the development of qualitative studies,” LatIA, vol. 1, pp. 4–4, Dec. 2023. [CrossRef]
- K. Owoahene Acheampong and M. Nyaaba, “Review of Qualitative Research in the Era of Generative Artificial Intelligence,” Jan. 07, 2024, Social Science Research Network, Rochester, NY: 4686920. [CrossRef]
- N. Dahal, “How Can Generative AI (GenAI) Enhance or Hinder Qualitative Studies? A Critical Appraisal from South Asia, Nepal,” The Qualitative Report, vol. 29, no. 3, pp. 722–733, Mar. 2024. [CrossRef]
- T. K. F. Chiu, “Future research recommendations for transforming higher education with generative AI,” Computers and Education: Artificial Intelligence, vol. 6, p. 100197, Jun. 2024. [CrossRef]
- R. M. Davison et al., “The ethics of using generative AI for qualitative data analysis,” Information Systems Journal, vol. 34, no. 5, pp. 1433–1439, 2024. [CrossRef]
- E. Ferrara, “GenAI against humanity: nefarious applications of generative artificial intelligence and large language models,” J Comput Soc Sc, vol. 7, no. 1, pp. 549–569, Apr. 2024. [CrossRef]
- M. Al-kfairy, D. Mustafa, N. Kshetri, M. Insiew, and O. Alfandi, “Ethical Challenges and Solutions of Generative AI: An Interdisciplinary Perspective,” Informatics, vol. 11, no. 3, Art. no. 3, Sep. 2024. [CrossRef]
- S. Bale et al., “The Impact of Generative Content on Individuals Privacy and Ethical Concerns,” International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 1s, Art. no. 1s, 2024.
- H. Zohny, J. McMillan, and M. King, “Ethics of generative AI,” Journal of Medical Ethics, vol. 49, no. 2, pp. 79–80, Feb. 2023. [CrossRef]
- X. S. F. Chichande, N. M. M. Gallardo, T. B. M. Márquez, and M. C. T. Rodriguez, “La etica en la inteligencia artificial desafíos y oportunidades para la sociedad moderna,” Sage Sphere International Journal, vol. 1, no. 1, Art. no. 1, Sep. 2024. [CrossRef]
- Tal et al., “The Artificial Third: Utilizing ChatGPT in Mental Health,” The American Journal of Bioethics, vol. 23, no. 10, pp. 74–77, Oct. 2023. [CrossRef]
- D. Kumar, R. Dhalwal, and A. Chaudhary, “Exploring the Ethical Implications of Generative AI in Healthcare,” in The Ethical Frontier of AI and Data Analysis, IGI Global Scientific Publishing, 2024, pp. 180–195. [CrossRef]
- W. I. Piedra-Castro, M. A. Cajamarca-Correa, E. S. Burbano-Buñay, and E. F. Moreira-Alcívar, “Integración de la inteligencia artificial en la enseñanza de las Ciencias Sociales en la educación superior,” Journal of Economic and Social Science Research, vol. 4, no. 3, Art. no. 3, Jul. 2024. [CrossRef]
- K. Nguyen-Trung, “ChatGPT in thematic analysis: Can AI become a research assistant in qualitative research?,” Qual Quant, Jun. 2025. [CrossRef]
- M. A. Adarkwah, “GenAI-Infused Adult Learning in the Digital Era: A Conceptual Framework for Higher Education,” Adult Learning, vol. 36, no. 3, pp. 149–161, Aug. 2025. [CrossRef]
- G. Islam and M. Greenwood, “Generative Artificial Intelligence as Hypercommons: Ethics of Authorship and Ownership,” J Bus Ethics, vol. 192, no. 4, pp. 659–663, Jul. 2024. [CrossRef]
- J. L. Cabanillas-García, “International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods,” Informatics, vol. 12, no. 3, Art. no. 3, Sep. 2025. [CrossRef]
- J. P. Andersen et al., “Generative Artificial Intelligence (GenAI) in the research process—A survey of researchers’ practices and perceptions,” Technology in Society, vol. 81, p. 102813, Jun. 2025. [CrossRef]
- L. Yan et al., “Human-AI Collaboration in Thematic Analysis using ChatGPT: A User Study and Design Recommendations,” in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, in CHI EA ’24. New York, NY, USA: Association for Computing Machinery, May 2024, pp. 1–7. [CrossRef]
- R. Kang, Z. Xuan, L. Tong, Y. Wang, S. Jin, and Q. Xiao, “‘The Winding Journey of Human-Machine Symbiosis’: Nurse Researchers’ Experiences and Perceptions of Generative Artificial Intelligence: Qualitative Study,” JMIR Preprints. Accessed: Aug. 07, 2025. [Online]. Available: https://preprints.jmir.org/preprint/65523.
- J. D. Herrera, La comprensión de lo social: Horizontes hermenéutico de las ciencias sociales. Universidad de los Andes, 2023.
- Y. Ning et al., “Generative artificial intelligence and ethical considerations in health care: a scoping review and ethics checklist,” The Lancet Digital Health, vol. 6, no. 11, pp. e848–e856, Nov. 2024. [CrossRef]
- F. Saz-Pérez and B. Pizà-Mir, “Necesidades y perspectivas de la integración de la inteligencia artificial generativa en el contexto educativo español,” UTE. Teaching & Technology, Universitas Tarraconensis, no. 2, Art. no. 2, Jun. 2024, Accessed: Aug. 08, 2025. [Online]. Available: https://raco.cat/index.php/UTE/article/view/429956.
- R. Pereira, I. W. Reis, V. Ulbricht, and N. dos Santos, “Generative artificial intelligence and academic writing: an analysis of the perceptions of researchers in training,” Management Research: The Journal of the Iberoamerican Academy of Management, vol. 22, no. 4, pp. 429–450, Aug. 2024. [CrossRef]
- M. Fawaz, W. El-Malti, S. M. Alreshidi, and E. Kavuran, “Exploring Health Sciences Students’ Perspectives on Using Generative Artificial Intelligence in Higher Education: A Qualitative Study,” Nursing & Health Sciences, vol. 27, no. 1, p. e70030, 2025. [CrossRef]
- D. de la F. Tambo, S. I. Moreno, and M. A. Ruiz, “Barriers and Enablers for Generative Artificial Intelligence in Clinical Psychology: A Qualitative Study Based on the COM-B and Theoretical Domains Framework (TDF) models.,” Oct. 25, 2024, Research Square. [CrossRef]
- “APA Journals policy on generative AI: Additional guidance,” https://www.apa.org. Accessed: Aug. 08, 2025. [Online]. Available: https://www.apa.org/pubs/journals/resources/publishing-tips/policy-generative-ai.
- L. C. Rivera, I. P. Mamani, J. R. M. Chalco, C. A. G. Jáuregui, and N. S. C. Castillo, “Ética en el uso de la Inteligencia Artificial en la Investigación Científica: Desafíos y consideraciones,” Aula Virtual, vol. 5, no. 12, Art. no. 12, Jan. 2024. [CrossRef]
- M. C. Sánchez-Gómez, J. L. Cabanillas-Garcia, and S. Verdugo-Castro, “Percepción y experiencias de los estudiantes de la Universidad de Salamanca sobre el ocio y el tiempo libre,” PSRI, no. 45, pp. 231–255, Jul. 2024. [CrossRef]
- Badil, D. D. M. D. Muhammad, Z. A. Z. Aslam, K. K. K. Khan, A. A. A. Ashiq, and U. B. U. Bibi, “The Phenomenology Qualitative Research Inquiry: A Review Paper: Phenomenology Qualitative Research Inquir,” Pakistan Journal of Health Sciences, pp. 09–13, Mar. 2023. [CrossRef]
- R. W. Emerson, “Convenience Sampling Revisited: Embracing Its Limitations Through Thoughtful Study Design,” Journal of Visual Impairment & Blindness, vol. 115, no. 1, pp. 76–77, Jan. 2021. [CrossRef]
- V. Braun and V. Clarke, “To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales,” Qualitative Research in Sport, Exercise and Health, vol. 13, no. 2, pp. 201–216, Mar. 2021. [CrossRef]
- R. Zhong, J. Northrop, P. Sahota, H. Glick, and A. Rostain, “Informed about Informed Consent: A Qualitative Study of Ethics Education,” Journal of Health Ethics, vol. 15, no. 2, Jan. 2019. [CrossRef]
- J. L. Cabanillas-García, “The Application of Active Methodologies in Spain: An Investigation of Teachers’ Use, Perceived Student Acceptance, Attitude, and Training Needs Across Various Educational Levels,” Education Sciences, vol. 15, no. 2, Art. no. 2, Feb. 2025. [CrossRef]
- V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, Jan. 2006. [CrossRef]
- J. L. Cabanillas-García, C. J. Rodríguez-Jiménez, M. C. Sánchez-Gómez, Á. Losada-Vázquez, M. Losada-Moncada, and J. M. Corrales-Vázquez, “Observational Study of Experiential Activities Linked to Astronomy with CAQDAS NVivo,” in Computer Supported Qualitative Research, A. P. Costa, A. Moreira, F. Freitas, K. Costa, and G. Bryda, Eds., Cham: Springer International Publishing, 2023, pp. 180–198. [CrossRef]
- C. Brandão, “P. Bazeley and K. Jackson, Qualitative Data Analysis with NVivo (2nd ed.): (2013). London: Sage,” Qualitative Research in Psychology, vol. 12, no. 4, pp. 492–494, Oct. 2015. [CrossRef]
- L. S. Nowell, J. M. Norris, D. E. White, and N. J. Moules, “Thematic Analysis: Striving to Meet the Trustworthiness Criteria,” International Journal of Qualitative Methods, vol. 16, no. 1, p. 1609406917733847, Dec. 2017. [CrossRef]
- F. Miao and W. Holmes, Guía para el uso de IA generativa en educación e investigación—UNESCO Biblioteca Digital, Unesco. 2024. Accessed: Mar. 25, 2025. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000389227.
- D. L. Morgan, “Exploring the Use of Artificial Intelligence for Qualitative Data Analysis: The Case of ChatGPT,” Int. J. Qual. Meth., vol. 22, p. 16094069231211248, Oct. 2023. [CrossRef]
- H. Sun, M. Kim, S. Kim, and L. Choi, “A methodological exploration of generative artificial intelligence (AI) for efficient qualitative analysis on hotel guests’ delightful experiences,” International Journal of Hospitality Management, vol. 124, p. 103974, Jan. 2025. [CrossRef]
- Z. Li and C. S. Ironsi, “The Efficacy of Generative Artificial Intelligence in Developing Science Education Preservice Teachers’ Writing Skills: An Experimental Approach,” J Sci Educ Technol, Aug. 2024. [CrossRef]
- G. Chatzichristos, “Qualitative Research in the Era of AI: A Return to Positivism or a New Paradigm?,” International Journal of Qualitative Methods, vol. 24, p. 16094069251337583, Aug. 2025. [CrossRef]





| Title 1 | Title 2 | Title 3 |
|---|---|---|
| Sex | Male | 120 (56.1) |
| Female | 94 (43.9) | |
| Age | 45.37 ± 12.59 | |
| Experience | 14.01 ± 10.97 | |
| Region | Europe | 89 (41.6) |
| South America | 22 (10.3) | |
| North America | 31 (14.5) | |
| Asia | 41 (19.2) | |
| Africa | 23 (10.7) | |
| Oceania | 8 (3.7) | |
| Area of knowledge | Social and Political Sciences | 94 (43.9) |
| Health Sciences | 73 (34.1) | |
| Engineering and Architecture | 8 (3.7) | |
| Arts and Humanities | 18 (8.4) | |
| Sciences | 21 (9.8) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
