Submitted:
12 September 2025
Posted:
15 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Quantizer–Dequantizer Method
3. Green Function and Feynman Path Integral
4. Example of the Evolution of Free Particle Tomogram
5. Integrals of Motion and the Green Function (Path Integral)
6. Three Methods of Calculating Tomograms
7. Conclusions
References
- Feynman, R. P. Statistical Mechanics. A Set of lectures; California Institute of Technology. W. A. Benjamin. Inc. Advanced Book Program: Reading, Massachusette, 1972. [Google Scholar]
- Landau, L. D. The damping problem in wave mechanics. Z. Physik 1927, 45, 430. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung Als Eigenwertproblem (Erste Mitteilung). Ann. Phys (Leipzig) 1926, 79, 489. [Google Scholar] [CrossRef]
- Dirac, P. The Principles of Quantum Mechanics; Oxford University Press, 1930.
- Mancini, S.; Man’ko, V. I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Man’ko, V. I. Quantum states in probability representation and tomography. J. Russ. Laser Res. 1997, 18, 407–444. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum tomography twenty years later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef]
- Gosson, M. A. Symplectic Radon transform and the metaplectic Representation. Entropy 2022, 24, 761. [Google Scholar] [CrossRef] [PubMed]
- Przhiyalkovskiy, Y. V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301. [Google Scholar] [CrossRef]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 23, 264. [Google Scholar]
- Kano, Y. A new phase--space distribution function in the statistical theory of the electromagnetic field. J. Math. Phys. 1965, 6, 1913–1915. [Google Scholar] [CrossRef]
- Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. Lett. 1963, 84, 2766. [Google Scholar] [CrossRef]
- Sudarshan, E. C. G. Equivalence of semiclassical and quantum–mechanical description of statistical light beams. Phys. Rev. Lett. 1963, 10, 277. [Google Scholar] [CrossRef]
- Blokhintsev, D. I. The Gibbs quantum ensemble and its connection with the classical ensemble. J. Phys.(USSR) 1940, 2, 71–74. [Google Scholar]
- Wootters, W. K. Quantum mechanics without probability amplitudes. Found. Phys. 1986, 16, 391. [Google Scholar] [CrossRef]
- Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Part of book series Ergebnisse der Mathematik und Ihrer Grenzgebiete; Springer: Berlin, Germany, 1933; Volume 2. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland Publishing Company: 1982.
- Khrennikov, A. Probability and Randomness. Quantum versus Classical; World Scientific: Singapore, 2016. [Google Scholar]
- Khrennikov, A.; Basieva, I. Entanglement of observables: Quantum conditional probability approach. Found. Phys. 2023, 53, 84. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I. Conditional probability framework for entanglement and its decoupling from tensor product structure. J. Phys. A Math. Theor. 2022, 55, 395302. [Google Scholar]
- Chernega, V. N.; Man’ko, O. V.; Man’ko, V. I. Entangled probability distributions. arXiv, 2023; arXiv:2302.13065v1 [quant-ph]. [Google Scholar]
- Chernega, V. N.; Man’ko, O. V. Dynamics of system states in the probability representation of quantum mechanics. Entropy 2023, 25, No. 5, 785. [Google Scholar] [CrossRef]
- Giri, S. K.; Sen, B.; Pathak, A.; Jana, P. C. Higher–order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 2016, 93, 012340. [Google Scholar] [CrossRef]
- Pathak, A.; Krepelka, J.; Perina, J. Nonclassicality in Raman scattering: Quantum entanglement, squeezing of vacuum fluctuations, sub–shot noise and joint photon–phonon number, and integrated–intensity distributions. Phys. Lett. A 2013, 377, 2692–2701. [Google Scholar] [CrossRef]
- Klimov, A. B.; Sanchez–Soto, L. L. Method of small rotations and effective Hamiltonians in nonlinear quantum optics. Phys. Rev. A 2000, 61, 063802. [Google Scholar] [CrossRef]
- Kuznetsov, S. V.; Kyusev, A. V.; Man’ko, O. V. Tomographic and statistical properties of superposition states for two-mode systems. Proc. SPIE 2004, 5402. [Google Scholar]
- Kuznetsov, S. V.; Man’ko, O. V.; Tcherniega, N. V. Photon distribution function, tomograms and entanglement in stimulated Raman scattering. J. Opt. B: Quantum Semiclass. Opt. 2003, 5, 5503. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Tcherniega, N. V. Tomographic description of stimulated Brillouin scattering. J. Russ. Laser Res. 2001, 22, 201–218. [Google Scholar] [CrossRef]
- Rohith, M.; Sudheesh, C. Signatures of entanglement in an optical tomogram. J. Opt. Soc. Am. B 2016, 33, 126–133. [Google Scholar] [CrossRef]
- Facchi, P.; Ligabó, M.; Solimini, S. Tomography: mathematical aspects and applications. Phys. Scr. 2015, 90, 074007. [Google Scholar] [CrossRef]
- Uzun, N. Hydrodynamic interpretation of generic squeezed coherent states: A kinetic theory. Ann. Phys. 2022, 442, 168900. [Google Scholar] [CrossRef]
- Shabani, A.; Khellat, F. Quantum tomographic Aubry–Mather theory. J. Math. Phys. 2023, 64, 042706. [Google Scholar] [CrossRef]
- Klimov, A. B.; Man’ko, O. V.; Man’ko, V. I.; Smirnov, Yu. F.; Tolstoy, V. N. Tomographic representation of spin and quark states. J. Phys. A: Math. Gen. 2002, 35, 6101. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Man’ko, V. I. Wave function in classical statistical mechanics. J. Russ. Laser Res. 2000, 22, N. 2, 149–167. [Google Scholar] [CrossRef]
- Chernega, V. N.; Man’ko, V. I. Wave function of the harmonic oscillator in classical statistical mechanics. J. Russ. Laser Res. 2007, 28, N. 6, 535–547. [Google Scholar] [CrossRef]
- Claeyes, P. W.; Polkovnikov, A. Quantum eigenstates from classical Gibbs distributions. SciPost Phys. 2021, 10, 014, 42pp. [Google Scholar] [CrossRef]
- Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Evolution of classical and quantum states in the groupoid picture of quantum mechanics. Entropy 2020, 22, 1292. [Google Scholar] [CrossRef]
- Elze, H.-T.; Gambarotta, G.; Vallone, F. General linear dynamics —quantum, classical or hybrid. J. Phys. Conf. Ser. 2011, 306, 012010. [Google Scholar] [CrossRef]
- Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050167. [Google Scholar] [CrossRef]
- Berra–Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [Google Scholar] [CrossRef]
- Foukzon, J. ; Potapov, A.A.; Menkova, E.; Podosenov, S. A. 2016. A new quantum-mechanical formalism based on the probability representation of quantum states. Available online: viXra:1612.0298.
- Bazrafkan, M. R.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ. Laser Res. bf 2009, 30, 392–403. [Google Scholar] [CrossRef]
- Filinov, V. S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V. E.; Filinov, A. V. Center-of-mass tomographic approach to quantum dynamics. Phys. Lett. A 2008, 372, 5064. [Google Scholar] [CrossRef]
- Plotnitsky, A. Nature has no elementary particles and makes no measurements or predictions: Quantum measurement and quantum theory, from Bohr to Bell and from Bell to Bohr. Entropy 2021, 23, 1197. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, G. P. Microwave CQED quantum tomography. Eur. Phys. J. D 2016, 70, 271. [Google Scholar] [CrossRef]
- Koczor, B.; Zeier, R.; Glaser, S. J. Continuous phase-space representations for finite-dimensional quantum states and their tomography. Phys. Rev. A 2020, 101, 022318. [Google Scholar] [CrossRef]
- Toninelli, E.; Ndagano, B.; Valles, A.; Forbes, A. Concepts in quantum state tomography and classical implementation with intense light: Tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [Google Scholar] [CrossRef]
- Almarashi, A. M.; Abd-Elmougod, G. A.; Raqab, M. Z. Symplectic Radon transform and the metaplectic Representation. J. Russ. Laser Res. 2020, 41, 334–343. [Google Scholar] [CrossRef]
- Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. C.; Tanttu, T.; Huang, W.; Huang, J. H.; Hudson, F. E.; Itoh, K. M.; Laucht, A.; et al. Bell-state tomography in a silicon many-electron artificial molecule. Nat. Commun. 2021, 12, 3228. [Google Scholar] [CrossRef]
- Paul, S.; Balakrishnan, V.; Ramanan, S.; et al. Comparing probability distributions: application to quantum states of light. J. Indian Inst. Sci. 2025. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Man’ko, V. I. Probability representation of quantum states. Entropy 2021, 23, 549. [Google Scholar] [CrossRef] [PubMed]
- Hidayati; Putri, Nabila. A bibliometric study on the impact of teaching material utilization in quantum physics instruction using the problem-based learning models. J. Innovative Physics Teaching, 2025; 3, Iss.1, 58–69.
- Dodonov, V. V.; Malkin, I. A. Man’ko, V.I. Integrals of the motion, Green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 1975, 14, 37–54. [Google Scholar] [CrossRef]
- Dodonov, V. V. Universal integrals of motion and universal invariants of quantum systems. J. Phys. A Math. Gen 2000, 33, 7721–7738. [Google Scholar] [CrossRef]
- Dodonov, V. V. "Nonclassical" states in quantum optics: a "squeezed" review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 2002, 4, R1–R33. [Google Scholar] [CrossRef]
- Dodonov, V. V.; Dodonov, A. V. Magnetic-moment probability distribution of a quantum charged particle in thermodynamic equilibrium. Phys. Rev. A 2020, 102, 042216. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Man’ko, V. I.; Marmo, G. Alternative commutation relations, star–products and tomography. J. Phys. A Math. Gen. 2002, 35, 699–719. [Google Scholar] [CrossRef]
- Man’ko, O. V.; Man’ko, V. I.; Marmo, G. Tomographic map within the framework of star–product quantization. In: Proceedings of Second International Symposium on Quantum Theory and Symmetries, Krakow, Poland, (E. Kapuschik and A. Morzela, Eds.), World Scientific, Singapore, 2001; pp. 126–132. 18–21 July 2001. [Google Scholar]
- Man’ko, O. V.; Man’ko, V. I.; Marmo, G.; Vitale, P. Star product, duality and double Lie algebras. Phys. Lett. A 2007, 360, 522–532. [Google Scholar] [CrossRef]
- Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeite. Berichte–Sächsische Akademie der Wissenschaften zu Leipzig 1917, 29, 262–277. [Google Scholar]
- Man’ko, V. I.; Mendes, R. V. Non–commutative time–frequency tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef]
- Feynman, R. Space–time approach to non–relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).